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A note of the fractional integral operators in generalized Morrey spaces
on the Heisenberg group
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Abstract. We shall give a characterization for the strong and weak type boundedness of the fractional
integral operator Iα on Heisenberg group Hn in the generalized Morrey spaces Mp,ϕ(Hn).
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1 Introduction

Heisenberg groups, in discrete and continuous versions, appear in many parts of mathe-
matics, including Fourier analysis, several complex variables, geometry, and topology. We
state some basic results about Heisenberg group. More detailed information can be found
in [1–3] and the references therein. Let Hn be the 2n + 1-dimensional Heisenberg group.
That is, Hn = Cn × R, with multiplication

(z, t) · (w, s) = (z + w, t+ s+ 2Im(z · w̄)),

where z · w̄ =
n∑
j=1

zjw̄j . The inverse element of u = (z, t) is u−1 = (−z,−t) and we write

the identity of Hn as 0 = (0, 0). The Heisenberg group is a connected, simply connected
nilpotent Lie group. We define one-parameter dilations on Hn, for r > 0, by δr(z, t) =
(rz, r2t). These dilations are group automorphisms and the Jacobian determinant is rQ,
where Q = 2n + 2 is the homogeneous dimension of Hn. A homogeneous norm on Hn is
given by

|(z, t)| = (|z|2 + |t|)1/2.

With this norm, we define the Heisenberg ball centered at u = (z, t) with radius r by
B(u, r) = {v ∈ Hn : |u−1v| < r}, and we denote byBr = B(0, r) = {v ∈ Hn : |v| < r}
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the open ball centered at 0, the identity element of Hn, with radius r. The volume of the
ball B(u, r) is CQrQ, where CQ is the volume of the unit ball B1.

Using coordinates u = (z, t) = (x + iy, t) for points in Hn, the left-invariant vector

fields Xj , Yj and T on Hn equal to
∂

∂xj
,
∂

∂yj
and

∂

∂t
at the origin are given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
,

respectively. These 2n + 1 vector fields form a basis for the Lie algebra of Hn with com-
mutation relations

[Yj , Xj ] = 4T

for j = 1, ..., n, and all other commutators equal to 0.
Let f ∈ Lloc

1 (Hn). The maximal operator M and the fractional integral operator Iα are
defined by

Mf(u) = sup
r>0
|B(u, r)|−1

∫
B(u,r)

|f(v)|dV (v),

Iαf(u) =

∫
Hn

f(v)dV (v)∣∣u−1v∣∣Q−α , 0 < α < Q,

where Q is the homogeneous dimension of the homogeneous Heisenberg group Hn and
|B(u, r)| is the Haar measure of the Hn- ball B(u, r).

The operators M and Iα play an important role in real and harmonic analysis and appli-
cations (see, for example [1] and [2]).

In the present work, we shall give a characterization for the Spanne type boundedness
of the operator Iα on the generalized Morrey spaces, including weak versions.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Generalized Morrey spaces

In the study of local properties of solutions to of partial differential equations, together with
weighted Lebesgue spaces, Morrey spaces Lp,λ(Rn) play an important role. They were
introduced by C. Morrey in 1938 [6]. The Morrey space in a Heisenberg group is defined as
follows: for 1 ≤ p ≤ ∞, 0 ≤ λ ≤ Q, a function f ∈ Lp,λ(Hn) if f ∈ Lloc

p (Hn) and

‖f‖Lp,λ := sup
u∈Hn, r>0

r
−λ
p ‖f‖Lp(B(u,r)) <∞.

If λ = 0, then Lp,0(Hn) = Lp(Hn); if λ = Q, then Lp,Q(Hn) = L∞(Hn); if λ < 0 or
λ > Q, then Lp,λ(Hn) = Θ, where Θ is the set of all functions equivalent to 0 on Hn.

We also denote byWLp,λ(Hn) the weak Morrey space of all functions f ∈WLloc
p (Hn)

for which

‖f‖WLp,λ
≡ ‖f‖WLp,λ(Hn) = sup

u∈Hn, r>0
r
−λ
p ‖f‖WLp(B(u,r)) <∞,

where WLp(B(u, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(B(u,r)) = sup
t>0

t |{y ∈ B(u, r) : |f(y)| > t}|1/p . (2.1)

We find it convenient to define the generalized Morrey spaces in the form as follows.
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Definition 2.1 Let 1 ≤ p < ∞ and ϕ(u, r) be a positive measurable function on G ×
(0,∞). The generalized Morrey space Mp,ϕ(Hn) is defined of all functions f ∈ Llocp (Hn)
by the finite norm

‖f‖Mp,ϕ = sup
u∈Hn,r>0

r
−Q
p

ϕ(u, r)
‖f‖Lp(B(u,r)).

Also the weak generalized Morrey space WMp,ϕ(Hn) is defined of all functions f ∈
Llocp (Hn) by the finite norm

‖f‖WMp,ϕ = sup
u∈Hn,r>0

r
−Q
p

ϕ(u, r)
‖f‖WLp(B(u,r)).

Lemma 2.1 Let ϕ(u, r) be a positive measurable function on Hn × (0,∞).

(i) If

sup
t<r<∞

r
−Q
p

ϕ(u, r)
=∞ for some t > 0 and for all u ∈ Hn, (2.2)

then Mp,ϕ(Hn) = Θ.
(ii) If

sup
0<r<τ

ϕ(u, r)−1 =∞ for some τ > 0 and for all u ∈ Hn, (2.3)

then Mp,ϕ(Hn) = Θ.

Proof. (i) Let (2.2) be satisfied and f be not equivalent to zero. Then supu∈Hn ‖f‖Lp(B(u,t)) >

0, hence

‖f‖Mp,ϕ
≥ sup

u∈Hn
sup

t<r<∞
ϕ(u, r)−1r

−Q
p ‖f‖Lp(B(u,r))

≥ sup
u∈Hn

‖f‖Lp(B(u,t)) sup
t<r<∞

ϕ(u, r)−1r
−Q
p .

Therefore ‖f‖Mp,ϕ
=∞.

(ii) Let f ∈Mp,ϕ(Hn) and (2.3) be satisfied. Then there are two possibilities:
Case 1. sup0<r<t ϕ(u, r)−1 =∞ for all t > 0.
Case 2. sup0<r<t ϕ(u, r)−1 <∞ for some t ∈ (0, τ).

For Case 1, by Lebesgue differentiation theorem, for almost all u ∈ Hn,

lim
r→0+

‖fχB(u,r)‖Lp
‖χB(u,r)‖Lp

= |f(u)|. (2.4)

We claim that f(u) = 0 for all those x. Indeed, fix u and assume |f(u)| > 0. Then by
Lemma 2.2 and (2.4) there exists t0 > 0 such that

r
−Q
p ‖f‖Lp(B(u,r)) ≥ 2−1c

1
p

2 |f(u)|

for all 0 < r ≤ t0. Consequently,

‖f‖Mp,ϕ
≥ sup

0<r<t0

ϕ(u, r)−1r
−Q
p ‖f‖Lp(B(u,r)) ≥ 2−1c

1
p

2 |f(u)| sup
0<r<t0

ϕ(u, r)−1.
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Hence ‖f‖Mp,ϕ
=∞, so f /∈Mp,ϕ(Hn) and we have arrived at a contradiction.

Note that Case 2 implies that sups<r<τ ϕ(u, r)−1 =∞, hence

sup
s<r<∞

ϕ(u, r)−1r
−Q
p ≥ sup

s<r<τ
ϕ(u, r)−1r

−Q
p ≥ τ−

Q
p sup
s<r<τ

ϕ(u, r)−1 =∞,

which is the case in (i).

Remark 2.1 We denote by Ωp the sets of all positive measurable functions ϕ on Hn ×
(0,∞) such that for all t > 0,

sup
u∈Hn

∥∥∥ r
−Q
p

ϕ(u, r)

∥∥∥
L∞(t,∞)

<∞, and sup
u∈Hn

∥∥∥ϕ(u, r)−1
∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that ϕ ∈ Ωp.

A functionϕ : (0,∞)→ (0,∞) is said to be almost increasing (resp. almost decreasing)
if there exists a constant C > 0 such that

ϕ(r) ≤ Cϕ(s) (resp. ϕ(r) ≥ Cϕ(s)) for r ≤ s.

Let 1 ≤ p < ∞. Denote by Gp the the set of all almost decreasing functions ϕ : (0,∞) →
(0,∞) such that t ∈ (0,∞) 7→ t

Q
p ϕ(t) ∈ (0,∞) is almost increasing.

Seemingly the requirement φ ∈ Gp is superfluous but it turns out that this condition is
natural. Indeed, Nakai established that there exists a function ρ such that ρ itself is decreas-
ing, that ρ(t)tn/p ≤ ρ(T )Tn/p for all 0 < t ≤ T <∞ and that Mp,φ(Hn) = Mp,ρ(Hn).

By elementary calculations we have the following, which shows particularly that the
spaces Mp,ϕ(Hn) and WMp,ϕ(Hn) are not trivial.

Lemma 2.2 Let ϕ ∈ Gp, 1 ≤ p < ∞, B0 = B(u0, r0) and χ
B0

is the characteristic
function of the ball B0, then χ

B0
∈Mp,ϕ(Hn). Moreover, there exists C > 0 such that

1

ϕ(r0)
≤ ‖χ

B0
‖WMp,ϕ ≤ ‖χB0

‖Mp,ϕ ≤
C

ϕ(r0)
.

Proof. Let ϕ ∈ Gp, 1 ≤ p < ∞, B0 = B(u0, r0) denote an arbitrary ball in Hn. It is easy
to see that

‖χ
B0
‖WMp,ϕ = sup

u∈Hn,r>0

1

ϕ(r)

( |B(u, r) ∩B0|
|B(u, r)|

)1/p
≥ 1

ϕ(r0)

( |B0 ∩B0|
|B0|

)1/p
=

1

ϕ(r0)
.

Now, if r ≤ r0, then ϕ(r0) ≤ Cϕ(r) and

1

ϕ(r)

( |B(u, r) ∩B0|
|B(u, r)|

)1/p
≤ 1

ϕ(r)
≤ C

ϕ(r0)

for all x ∈ Hn.
On the other hand, if r0 ≤ r, we have ϕ(r0)r

Q/p
0 ≤ Cϕ(r)rQ/p for all x ∈ Hn and

1

ϕ(r)

( |B(u, r) ∩B0|
|B(u, r)|

)1/p
=
|B(u, r) ∩B0|1/p

c
1/p
2 ϕ(r)rQ/p

≤ |B0|1/p

c
1/p
2 ϕ(r)rQ/p

=
r
Q/p
0

ϕ(r)rQ/p
≤ C

ϕ(r0)

for all x ∈ Hn. This completes the proof.
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The following theorem was proved in [5].
Theorem 2.1 Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfies the condition

sup
r<t<∞

t
−Q
p ess sup

t<s<∞
ϕ1(u, s) s

Q
p ≤ C ϕ2(u, r), (2.5)

where C does not depend on u and r. Then for p > 1, the operator M is bounded from
Mp,ϕ1(Hn) to Mp,ϕ2(Hn) and for p = 1, the operator M is bounded from M1,ϕ1(Hn) to
WM1,ϕ2(Hn).

3 Fractional integral operator in the spaces Mp,ϕ(Hn)

Following theorem were proved in [4, Theorem 5.2].

Theorem 3.1 Let 1 ≤ p < ∞, 0 < α < Q
p , 1

q = 1
p −

α
Q , ϕ1 ∈ Ωp, ϕ2 ∈ Ωq and the pair

(ϕ1, ϕ2) satisfy the condition

∫ ∞
t

ess sup
r<s<∞

ϕ1(u, s)s
Q
p

r
Q
q

dr

r
≤ C ϕ2(u, t), (3.1)

where C does not depend on u and r. Then for p > 1 the operator Iα is bounded from
Mp,ϕ1(Hn) to Mq,ϕ2(Hn) and for p = 1 the operator Iα is bounded from M1,ϕ1(Hn) to
WMq,ϕ2(Hn).

For proving our main result, we need the following estimate.

Lemma 3.1 If B0 := B(u0, r0), then rα0 ≤ c2
(
2c0
)Q−α

IαχB0
(u) for every x ∈ B0.

Proof. If u, v ∈ B0, then
∣∣u−1v∣∣ ≤ c0(∣∣u−1u0∣∣+ ∣∣u−10 v

∣∣) < 2c0r0. Since 0 < α < Q, we
get rα−Q0 ≤

(
2c0
)Q−α∣∣u−1v∣∣α−Q. Therefore

IαχB0
(u) =

∫
Hn
χB0

(y)
∣∣u−1v∣∣α−Qdy =

∫
B0

∣∣u−1v∣∣α−Qdy ≥ c2(2c0)Q−αrα0 .
Our main result is the following theorem.

Theorem 3.2 Let 0 < α < Q, p, q ∈ [1,∞), ϕ1 ∈ Ωp and ϕ2 ∈ Ωq.
1. If 1 ≤ p < Q

α and 1
q = 1

p−
α
Q , then the condition (3.1) is sufficient for the boundedness

of Iα from Mp,ϕ1(Hn) to WMq,ϕ2(Hn). Moreover, if 1 < p < Q
α , the condition (3.1) is

sufficient for the boundedness of Iα from Mp,ϕ1(Hn) to Mq,ϕ2(Hn).
2. If the function ϕ1 ∈ Gp, then the condition

tαϕ1(t) ≤ Cϕ2(t), (3.2)

for all t > 0, where C > 0 does not depend t, is necessary for the boundedness of Iα from
Mp,ϕ1(Hn) to WMq,ϕ2(Hn) and Mp,ϕ1(Hn) to Mq,ϕ2(Hn).

3. Let 1 ≤ p < Q
α and 1

q = 1
p −

α
Q . If ϕ1 ∈ Gp satisfies the regularity condition∫ ∞

t
rα−1 ϕ1(r)dr ≤ Ctαϕ1(t), (3.3)

for all t > 0, where C > 0 does not depend t, then the condition (3.2) is necessary and
sufficient for the boundedness of Iα from Mp,ϕ1(Hn) to WMq,ϕ2(Hn). Moreover, if 1 <

p < Q
α , then the condition (3.2) is necessary and sufficient for the boundedness of Iα from

Mp,ϕ1(Hn) to Mq,ϕ2(Hn).
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Proof. The first part of the theorem proved in Theorem 3.1.
We shall now prove the second part. Let B0 = B(u0, t0) and u ∈ B0. By Lemma 3.1

we have tα0 ≤ CIαχB0
(u). Therefore, by Lemma 2.2 and Lemma 3.1

tα0 . |B0|−
1
p ‖IαχB0

‖Lq(B0) . ϕ2(t0)‖IαχB0
‖Mq,ϕ2

. ϕ2(t0)‖χB0
‖Mp,ϕ1

.
ϕ2(t0)

ϕ1(t0)

or

tα0 .
ϕ2(t0)

ϕ1(t0)
for all t0 > 0⇐⇒ tα0ϕ1(t0) . ϕ2(t0) for all t0 > 0.

Since this is true for every t0 > 0, we are done.
The third statement of the theorem follows from first and second parts of the theorem.
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