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1 Introduction

In the last few years several interesting connections between integrable lattice models and

supersymmetric gauge theories have been revealed [1–14]. One of these connections known

as the gauge/YBE correspondence, is a relationship between quiver gauge theories and inte-

grable lattice models, where the integrability on the lattice side emerges as a manifestation

of supersymmetric duality on the gauge theory side. In the context of this correspon-

dence, partition functions of supersymmetric quiver gauge theories are identified with par-

tition functions of two-dimensional integrable lattice models of statistical mechanics. This
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particular correspondence was initially noted by Spiridonov [1], where he interpreted the

star-triangle relation of Bazhanov, and Sergeev (BS) [15], in terms of dual superconformal

indices for four-dimensional N = 1 quiver gauge theories [16], and was further developed

by Yamazaki [2, 3], who used four-dimensional N = 1 quiver gauge theory on the lens

space [17], to generalise the multi-spin integrable lattice model of BS [18, 19] satisfying the

star-star relation.

The most important advantage of the correspondence, is that in some cases new solu-

tions of the Yang-Baxter equation are able to be systematically derived from calculations of

supersymmetric gauge theory. This aspect of the correspondence has proven to be a power-

ful tool in obtaining some quite general two-dimensional integrable lattice models [3–6, 20].

In connection with the correspondence, a new integrable lattice model satisfying the star-

triangle relation form of the Yang-Baxter equation was recently discovered [21], closely

related to Yamazaki’s solution of the star-star relation [3]. The model [21] generalises the

BS master solution model [15] to the case of discrete and continuous spin variables, and

contains all known single-spin solutions of the star-triangle relation as special cases. The

star-triangle relation for this model was shown to result from a new type of elliptic hyperge-

ometric sum/integral identity [21], that may be considered a generalisation of Spiridonov’s

elliptic beta integral [22] to the case of both complex and integer variables. Just recently

Spiridonov extended this elliptic sum/integral [21] to the multiple sum/integral case asso-

ciated with the root system Cn, and described the corresponding analogue of the Gauss

hypergeometric function [23].

The aim of the present work, is to consider details of the hyperbolic limit of the above el-

liptic hypergeometric sum/integral [21], and associated lattice model satisfying star-triangle

relation, in the context of the gauge/YBE correspondence. This limit results in a hyperbolic

analogue of the elliptic hypergeometric sum/integral, that notably has two different physical

interpretations through this correspondence. First, it as a Yang-Baxter equation under-

pinning integrability of a new Ising type lattice model of statistical mechanics, generalising

the Faddeev-Volkov models [1, 24, 25], and second, it represents the equality of dual S3
b /Zr

lens partition functions for three-dimensional N = 2 supersymmetric gauge theory [17].

On the mathematical side, the hyperbolic sum/integral generalises the univariate hy-

perbolic beta integral [26] to the case of both complex and integer variables. Taking the

limit from the elliptic identity [21] to the hyperbolic identity ends up being fairly straight-

forward, after utilising previous estimates in the hyperbolic limit given by Rains [27]. As

in the latter cases the error introduced in taking the hyperbolic limit here is exponentially

small, and the elliptic identity is found to converge exponentially quickly to the hyperbolic

identity. Both the new solution of the star-triangle relation, and corresponding duality of

S3
b /Zr N = 2 partition functions considered in this paper, are obtained from the hyperbolic

sum/integral identity after simple changes of variables.

The rest of the paper is organized as follows. Section 2 provides a general overview of

the type of two-dimensional lattice models of statistical mechanics considered throughout

this paper. In section 3, the explicit solutions of the star-triangle relation for models

with discrete and continuous spin variables are given, along with some of their important

properties. Sections 4, and 5 show how such star-triangle relations may be obtained from

supersymmetric gauge theory calculations, for the hyperbolic and elliptic cases respectively.

– 2 –



J
H
E
P
0
2
(
2
0
1
7
)
0
4
0

q q q q q q q q

p

p

p

p

Figure 1. A square lattice L (solid lines) and its associated directed rapidity graph L (dashed

lines).

Some properties of the special functions used in this paper are summarised in ap-

pendix A. Appendix B gives details of the hyperbolic limit of the elliptic hypergeometric

sum/integral identity [21], analogously to previous hyperbolic limits for elliptic hyperge-

ometric integrals [27]. Appendix C describes another form of the elliptic and hyperbolic

sum/integral identities, without dependence on the modulus r. Particularly it is shown here

that there is a certain freedom in the choice of normalisation of the lens elliptic gamma

function, and as a consequence of this, the normalisation recently used in [23], that is dif-

ferent from the original normalisation [21], results in exactly the same elliptic sum/integral

identity.1

2 Two-dimensional exactly solved models of statistical mechanics

The models of statistical mechanics considered in this paper, are Ising type models of

interacting spins located at vertices of a two-dimensional lattice. The models considered

here are integrable, and satisfy a particular form of the Yang-Baxter equation known as the

star-triangle relation. This class of integrable models includes many important examples,

such as the two-dimensional Ising [28], Fateev-Zamolodchikov [29], Kashiwara-Miwa [30],

Chiral Potts models [31, 32], and several others [15, 21, 24, 25, 33–37]. Here a quite general

overview of such integrable lattice models and their properties will be given, before moving

on to the explicit new examples in section 3.

2.1 Square lattice model

Introduce the square lattice L, that contains N vertices, as is depicted graphically in

figure 1.

1This is contrary to remarks in [23], where it was incorrectly concluded that the different normalisation

of the lens elliptic gamma function results in an identity that is different from [21].
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Figure 2. Edges of the first (left) and second (right) types in the square lattice of figure 1, and

associated Boltzmann weights Wpq(σi, σj), and Wpq(σi, σj).

Each vertex j of the lattice L, is assigned a spin variable, denoted σj , which takes

some set of values. Here the spins will be of the form

σj = (xj ,mj) , j = 1, 2, . . . , N, (2.1)

where the spin component xj takes values in some subset of R, and the spin component

mj takes values in some subset of Z.

The directed rapidity graph L , is represented in figure 1 by directed dashed lines

crossing the edges of L at 45 degree angles. Two real valued rapidity variables, labelled

p, and q, are respectively associated to horizontally and vertically directed rapidity lines.

The crossing of rapidity lines distinguishes two types of edges of the square lattice L, that

are depicted graphically in figure 2.

The lattice model involves nearest neighbour interactions, where two spins σi, σj , in-

teract only if they are at two vertices i, j, connected by an edge (ij) of the lattice L. The

interactions are characterised by the Boltzmann weights Wpq(σi, σj), and Wpq(σi, σj), asso-

ciated to the two types of respective edges, where σi and σj are the spins located at opposite

ends of an edge, as shown in figure 2. Each of these Boltzmann weights generally depend on

the value of the two spin variables, and the two rapidity variables, associated to an edge of L.

In all cases considered here, the two Boltzmann weights Wpq, Wpq, depend only on the

difference of rapidity variables p− q (the majority of lattice models of statistical mechanics

satisfy this property, the most notable exception being the Chiral Potts model [32]). Conse-

quently the Boltzmann weights will be written in terms of the spectral variable α = p−q, as

Wα(σi, σj) := Wpq(σi, σj) , and Wα(σi, σj) := Wpq(σi, σj) . (2.2)

The two Boltzmann weights are also related by the crossing symmetry

Wα(σi, σj) = Wη−α(σi, σj) , (2.3)

where η > 0 is a real valued, model dependent “crossing parameter”. Thus all two-spin

interactions in the lattice model may be described in terms of the single Boltzmann weight

Wα(σi, σj).
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Figure 3. The star-triangle relation (2.5).

The Boltzmann weights considered here are spin reflection symmetric, such that

Wα(σi, σj) = Wα(σj , σi). Importantly, all lattice models considered here may be inter-

preted as “physical”, such that all interactions are described by positive, real valued Boltz-

mann weights Wα(σi, σj), that represent real valued interaction energies.

The model also depends on the single-spin Boltzmann weight S(σj), associated to each

vertex j of the lattice. This Boltzmann weight depends only on the value of the spin σj ,

and is independent of any rapidity variables.

2.2 Partition function and star-triangle relation

The partition function for the above lattice model is given by the expression

Z =
∑

∫

∏

(ij)

Wα(σi, σj)
∏

(kl)

Wη−α(σk, σl)
∏

n

S(σn) dxn . (2.4)

In this expression, the first product is taken over all edges (ij) of the first type in figure 2,

the second over all edges (kl) of the second type in figure 2, and the third product over all

interior vertices n of the lattice L. The integral and sum are taken over all possible values

of interior spins σn = (xn,mn) in the lattice (these values depend on the actual definition

of spins (2.1) for the particular model), and boundary spins are assigned fixed values.

The goal of statistical mechanics [28] is to evaluate (2.4) in the thermodynamic limit,

when N → ∞. An exact evaluation is possible if the Boltzmann weights satisfy the Yang-

Baxter equation [38], which for models considered here takes the form of the following

star-triangle relation

∑

ma

∫

dxa S(σ)Wη−αi(σi, σa)Wη−αj (σj , σa)Wη−αk
(σk, σa)

= R(αi, αj , αk)Wαi(σj , σk)Wαj (σi, σk)Wαk
(σj , σi) ,

(2.5)

that is depicted graphically in figure 3.

Here the three spectral parameters satisfy a constraint αi+αj+αk = η, and the factor

R(αi, αj , αk) is independent of any spin variables. The integral and sum are evaluated over

all possible values of the interior spin σa = (xa,ma), while the boundary spins σi, σj , σk,

are kept fixed.
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A second star-triangle relation is also required, that is obtained by reversing the ori-

entation of each rapidity line appearing in figure 3. However for models considered here

satisfying reflection symmetry (such that Wα(σi, σj) = Wα(σj , σi)), the second expression

is equivalent to (2.5). The key point is that the star-triangle relation (2.5) allows for an ex-

act evaluation of (2.4) in the thermodynamic limit, with the use of the commuting transfer

matrices technique pioneered by Baxter [28, 38].

2.3 Boltzmann weight normalisation and inversion relations

For all models considered here, a normalisation of the Boltzmann weights is chosen such

that R(αi, αj , αk) = 1 [37, 39]. For this particular normalisation, the Boltzmann weights

of the model may be shown to satisfy the following boundary conditions (for other normal-

isations, some extra factors will appear on the right hand sides of (2.6))

Wα(σi, σj)|α=0 = 1,

Wη−α(σi, σj)|α→0 =
1

2S(σi)
(δ(xi+xj) δmi,−mj + δ(xi−xj) δmi,mj ) ,

(2.6)

for all values of the spins σi, σj , where S(σi) 6= 0, and δ(x), and δm,n, are respectively Dirac

and Kronecker delta functions. The exact form of the second boundary condition differs

slightly depending on the symmetries satisfied by the Boltzmann weights, and explicit

expressions will be given for the two cases considered in section 3.

The boundary conditions (2.6), and star-triangle relation (2.5), imply the following

inversion relations

Wα(σi, σj)W−α(σi, σj) = 1 , (2.7)
∑

m0

∫

dx0 S(σ0)Wη−α(σi, σ0)Wη+α(σ0, σj) =
1

S(σi)
(δ(xi+xj) δmi,−mj + δ(xi−xj) δmi,mj ) .

The exact form of the inversion relations again depend on the model being considered.

The above relations, (2.5) and (2.7), may be used to show that in the thermodynamic limit

when N → ∞, the bulk free energy of the model vanishes

lim
N→∞

N−1 logZ = 0 . (2.8)

A derivation of this result requires some extensions [37] of the standard inversion relation

method [40–42]. Here the boundary spins are assumed to be kept finite in the limit N → ∞,

and there is a neccessary assumption that the free energy of the model is analytic in a region

containing the physical regime. Note that the result (2.8) is purely a consequence of the

special choice of normalisation for the Boltzmann weights [15, 24, 25], i.e. the free energy

is contained in the normalisation. Another advantage [37] of using the normalisation (2.6),

is strict invariance of the partition function (2.4) under deformations of the rapidity lattice

L , associated with Z-invariance [36], however this property will not be required in the

following.
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3 Solutions of the star-triangle relation with continuous and discrete

spins

3.1 The elliptic case

The most general known solution of the star-triangle relation for Ising type models with

scalar valued spin components, was recently discovered by the second author [21]. The

corresponding lattice model is a generalisation of the Bazhanov and Sergeev (BS) master

solution of the star-triangle relation [15], to the case of discrete and continuous spin vari-

ables. The star-triangle relation of the model arises as a particular case of a new type

of elliptic hypergeometric sum/integral identity, that generalises Spiridonov’s elliptic beta

integral [22] to the case of both integer and complex variables.

A review of the lattice model and corresponding star-triangle relation [21] is given

below. On the gauge theory side, the Boltzmann weights for this model originally appeared

in Yamazaki’s elliptic solution of the star-star relation [3], that corresponds to dualities

of four-dimensional N = 1 supersymmetric quiver gauge theory [17]. The star-triangle

relation [21] implies the particular duality [3] for the case of SU(2) gauge group and

corresponding star-star relation. However there is no known star-triangle relation for the

general SU(N) case and corresponding star-star relations involving vector valued spins.

The interpretation of this model [21] in terms of four-dimensional N = 1 quiver gauge

theory will be discussed further in section 5.

The following spins

σj = (xj ,mj), 0 ≤ xj < π, mj = 0, 1, . . . , ⌊r/2⌋ , (3.1)

are assigned to each vertex j of the lattice, where r ∈ {1, 2, . . . , } is a positive integer

parameter, and ⌊ ⌋ is the floor function. The model depends on two elliptic nomes p, and

q, which are defined as

p = e
πiσ, q = e

πiτ , Imσ, Im τ > 0 . (3.2)

The elliptic nomes act as temperature like parameters, and taking an elliptic nome to the

unit circle corresponds to a ground state of the model, that is evaluated on the solution of

a classical discrete integrable equation [15, 18, 37]. The crossing parameter is defined in

terms of σ, and τ as

η = −πi(σ + τ)/2 . (3.3)

The crossing parameter η is required to be real and positive, which corresponds to a physical

regime of the model.

The elliptic gamma function [43] is defined here as

Φ(z; p, q) =
∞
∏

j,k=0

1− e
2iz p2j+1 q2k+1

1− e
−2iz p2j+1 q2k+1

. (3.4)

Notably, the expression for the elliptic gamma function (3.4) appears implicitly [44] in

Baxter’s solution of the eight-vertex model [38], while studies of such generalised gamma

functions were initiated over 100 years ago with the work of Barnes [45].

– 7 –
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The “lens” elliptic gamma function is defined as the following product of two elliptic

gamma functions

Φr,m(z) = Φ(z + (r/2− JmKr)πσ; p q, p
r) Φ(z − (r/2− JmKr)πτ ; p q, q

r) (3.5)

=
∞
∏

j,k=0

1− e
2iz p−2JmKr (pq)2j+1 (pr)2k+2

1− e
−2iz p2JmKr (pq)2j+1 (pr)2k

1− e
2iz q2JmKr (pq)2j+1 (qr)2k

1− e
−2iz q−2JmKr (pq)2j+1 (qr)2k+2

,

where JmKr ∈ {0, 1, . . . , r − 1} denotes m modulus r. This function originated in studies

of the superconformal indices of four-dimensional N = 1 gauge theories involving the lens

space [2, 3, 17, 46]. If r = 1, then JmK1 = 0 for any m, and the lens elliptic gamma function

reduces to the usual elliptic gamma-function (3.4)

Φ1,0(z) = Φ(z; p, q) . (3.6)

The lens elliptic gamma function (3.5), satisfies the following periodicity and inversion

relations

Φr,m(z) = Φr,m(z + π),
1

Φr,m(z)
= Φr,−m(−z) . (3.7)

The two-spin Boltzmann weight of the lattice model, is defined in terms of the lens elliptic

gamma function (3.5) as

Wα(σi, σj) =
e
− 2α

r
( Jmi−mjK±+Jmi+mjK±)

κe(α)

Φr,mi−mj (xi − xj + iα) Φr,mi+mj (xi + xj + iα)

Φr,mi−mj (xi − xj − iα) Φr,mi+mj (xi + xj − iα)
,

(3.8)

where JmK± := JmKrJ−mKr. In the physical regime this represents the energy of the

interaction between two spins σi, σj , at vertices connected by an edge of the lattice. The

Boltzmann weight (3.8) also depends on the spectral parameter α, which is restricted to

values 0 ≤ α < η. For p = q∗, the Boltzmann weights (3.8) are positive and real valued,

corresponding to a physical regime of the model.

The normalisation factor κe(α) in (3.8) is defined as (the superscript e is introduced

here to distinguish the normalisation κe(α), from the normalisation κh(α) introduced in

the next subsection)

κe(α) = exp







∑

n 6=0

e
4αn((pq)rn − (pq)−rn)

n((pq)2n − (pq)−2n)(prn − p−rn)(qrn − q−rn)







, |Re(α)| < Re(η) .

(3.9)

This function has no poles or zeroes in the strip |Re(α)| < Re(η), and satisfies the required

pair of functional equations

κe(η − α)

κe(α)
= Φr,0(i(η − 2α)), κe(α)κe(−α) = 1 , (3.10)

so that the factor R(αi, αj , αk) = 1 in (2.5). Assuming that the free energy is analytic in

the physical regime 0 ≤ α < η, the function κe(α) thus represents the partition function per

– 8 –
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edge of the square lattice model, obtained through the inversion relation method [37, 40–

42], and for r = 1 reduces to the partition function per edge function appearing for the BS

master solution [15].

The one-spin Boltzmann weight of the model is defined as

S(σi) =
εi
π
(p2r; p2r)∞(q2r; q2r)∞ e

2ηJ2miK±/r Φr,−2mi(−2xi − iη) Φr,2mi(2xi − iη) , (3.11)

=
εi
π
e
2ηJ2miK±/r ϑ4(2xi + (r/2− J2miKr)πσ | pr)ϑ4(2xi − (r/2− J2miKr)πτ | qr) ,

where

εi =

{

1
2 mi = 0 or Jr −miKr ,

1 otherwise ,
(3.12)

ϑ4(z | p) is a Jacobi theta function

ϑ4(z | p) = (p2; p2)∞

∞
∏

n=1

(

1− e
2izp2n−1

) (

1− e
−2izp2n−1

)

, (3.13)

and

(x; q)∞ =
∞
∏

j=0

(1− x qj) , (3.14)

is the q-Pochhammer symbol.

The Boltzmann weights (3.8) are spin reflection symmetric, such that

Wα(σi, σj) = Wα(σj , σi) . (3.15)

The Boltzmann weights are π-periodic in the continuous spin variable, and they are invari-

ant under the spin transformation xi → −xi, mi → r−mi, The discrete spins are restricted

to values 0, 1, . . . , ⌊r/2⌋, and the εi factor is introduced in (3.12) in order to account for this.

The Boltzmann weights (3.8) satisfy the following boundary conditions analogous

to (2.6)

Wα(σi, σj)|α=0 = 1, (3.16)

Wη−α(σi, σj)|α→0 =
εi

S(σi)
(

δ(sin(xi+xj)) δJmi+mjKr,0 + δ(sin(xi−xj)) δJmi−mjKr,0

)

,

where S(σi) 6= 0. These relations follow straightforwardly from the definition of the Boltz-

mann weights (3.8) in terms of the lens elliptic gamma function (3.5).

The Boltzmann weights (3.8), and (3.11), satisfy the following star-triangle relation [21]

⌊r/2⌋
∑

m0=0

∫ π

0
dx0 S(σ0)Wη−αi(σi, σ0)Wη−αj (σj , σ0)Wη−αk

(σk, σ0)

= Wαi(σj , σk)Wαj (σi, σk)Wαk
(σj , σi) ,

(3.17)

with the spectral parameters satisfying η = αi +αj +αk. This star-triangle relation arises

as particular case of the elliptic hypergeometric sum/integral (B.13) [21], which for r = 1

is equivalent to Spiridonov’s elliptic beta integral identity [22].

– 9 –
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The expression for the partition function of the lattice model is given by (2.4), with

the Boltzmann weights defined in (3.8), and (3.11), and the integral and sum taken over

all values of spins defined in (3.1). The star-triangle relation (3.17) corresponds to Seiberg

duality of indices for four-dimensional N = 1 quiver gauge theories on the lens space, which

will be discussed in more detail in section 5. For the specific case of r = 1, the star-triangle

relation (3.17) is equivalent to the BS master solution of the star-triangle relation [15],

while on the gauge theory side, (3.17) represents a duality in terms of four-dimensional

N = 1 superconformal indices given by Dolan and Osborn [16].

3.2 The hyperbolic case

3.2.1 Hyperbolic limit

The hyperbolic limit of the star-triangle relation (3.17) when r = 1 is well known [26,

27, 47, 48], and essentially involves directly replacing elliptic gamma functions (3.4) with

hyperbolic gamma functions. The r > 1 case turns out to be quite analogous, and as is

to be be expected, involves introducing a generalisation of the hyperbolic gamma function

(equivalently the non-compact quantum dilogarithm) obtained as the limit of the lens ellip-

tic gamma function (3.5). The generalisation of the hyperbolic gamma function, and some

of its properties are summarised in appendix A, while more details of the hyperbolic limit

in terms of the elliptic hypergeometric sum/integral identity [21] corresponding to (3.17)

may be found in appendix B.

Introduce the complex parameters ω1, ω2, where Re(ω1),Re(ω2) > 0, and consider the

following hyperbolic limit of the elliptic nomes (3.2)

p = e
−ω1ǫ , q = e

−ω2ǫ, ǫ → 0+ . (3.18)

This limit of the lens elliptic gamma function (3.5) gives2

lim
ǫ→0

e
iπ2z/(6rω1ω2ǫ)Φr,m(zǫ) = ϕr,m(z) , (3.19)

where m = 0, 1, . . . , r − 1. The function ϕr,m(z) is defined for

− Re(η)−min(Re(ω1)(r − JmK),Re(ω2)JmK)

< Im(z) < Re(η) + min(Re(ω1)JmK,Re(ω2)(r − JmK)) ,
(3.20)

as

ϕr,m(z) = exp

{
∫ ∞

0
dx

(

iz

ω1ω2rx2
− sinh(2izx− ω1(r − 2JmK)x)

2x sinh(ω1rx) sinh(2ηx)

− sinh(2izx+ ω2(r − 2JmK)x)

2x sinh(ω2rx) sinh(2ηx)

)}

,

(3.21)

where η = (ω1 + ω2)/2. From this definition it is straightforward to see that

ϕr,m(z)ϕr,−m(−z) = 1 , (3.22)

2This is an analogue of Proposition III.12 of Ruijsenaars [43].
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and for r = 1, ϕr,m(z) is equivalent to the so-called hyperbolic gamma function,

ϕ1,0(z;ω1, ω2), where

ϕ1,0(z;ω1, ω2) = exp

{
∫ ∞

0
dx

{

iz

ω1ω2x2
− sinh(2izx)

2x sinh(ω1x) sinh(ω2x)

)}

. (3.23)

Note that the usual convention for the hyperbolic gamma function is equivalent to

ϕ1,0(−z;ω1, ω2) [43]. The function ϕr,m(z), may also be written as the following prod-

uct of two of the above hyperbolic gamma functions

ϕr,m(z) = ϕ1,0(z + iω1(r − 2JmK)/2;ω1, 2η)ϕ1,0(z − iω2(r − 2JmK)/2;ω2, 2η) . (3.24)

Further properties of ϕr,m(z) are summarised in appendix A.

In the limit (3.18), the normalisation function κe(α) (3.9) becomes

lim
ǫ→0

e
−π2α/(6rω1ω2ǫ)κe(αǫ) = κh(α) , (3.25)

where for |Re(α)| < Re(η)

κh(α) = exp

{
∫ ∞

0
dx

(

− α

rω1ω2x2
+

sinh(4αx) sinh(2rηx)

2x sinh(ω1rx) sinh(ω2rx) sinh(4ηx)

)}

. (3.26)

This function has no poles or zeroes in the strip |Re(α)| < Re(η), and satisfies the required

functional relations

κh(α)κh(−α) = 1 ,
κh(η − α)

κh(α)
= ϕr,0(i(η − 2α)) , (3.27)

for (along with the assumption of analyticity of the free energy in the physical regime

0 ≤ α < η) the result for the free energy (2.8) to hold, and the normalisation function

κh(α) may be interpreted as the partition function per edge, for the lattice model with

Boltzmann weights defined in the next subsection. For r = 1 the function represents

the partition function per edge of both the Faddeev-Volkov model [24, 25], and the

generalisation of the latter based on the hyperbolic beta integral [1]. Further properties

of κh(α) are summarised in appendix A.

The following limit is also required

lim
ǫ→0

e
π2(ω1+ω2)/(12rω1ω2ǫ)(p2r; p2r)∞(q2r; q2r)∞ =

π

rǫ
√
ω1ω2

, (3.28)

for the factors appearing in the one-spin Boltzmann weight S(σj) (3.11).

3.2.2 Star-triangle relation

In this section the spins are now defined as

σj = (xj ,mj) , 0 ≤ xj < ∞ , mj = 0, 1, . . . , ⌊r/2⌋ . (3.29)

The spectral parameters are restricted to the region 0 < αi < η, where the crossing

parameter

η = (ω1 + ω2)/2 , (3.30)

is required to be real and positive valued.
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The two-spin Boltzmann weights, are defined in terms of ϕr,m(z), and κh(α), as

Wα(σi, σj) =
1

κh(α)

ϕr,mi+mj (xi + xj + iα)ϕr,mi−mj (xi − xj + iα)

ϕr,mi+mj (xi + xj − iα)ϕr,mi−mj (xi − xj − iα)
. (3.31)

The model is in a physical regime when ω1 = ω∗
2, where this Boltzmann weight is positive

and real valued.

The one-spin Boltzmann weight, is given by

S(σj) =
εj

r
√
ω1ω2

ϕr,−2mj (−2xj − iη)ϕr,2mj (2xj − iη)

=
4εj

r
√
ω1ω2

sinh

(

2π

ω1r
(xj − iω1mj)

)

sinh

(

2π

ω2r
(xj + iω2mj)

)

.
(3.32)

The Boltzmann weight (3.31), satisfies the spin reflection symmetry (3.15), and the

following boundary conditions analogous to (2.6)

Wα(σi, σj)|α=0 = 1,

Wη−α(σi, σj)|α→0 =
εj

S(σi)
(

δ(xi+xj) δJmi+mjKr,0 + δ(xi−xj) δJmi−mjKr,0

)

,
(3.33)

where S(σi) 6= 0.

Formally the limit (3.18) of the elliptic star-triangle relation (3.17) gives the following

new star-triangle relation

⌊r/2⌋
∑

m0=0

∫ ∞

0
dx0 S(σ0)Wη−αi(σi, σ0)Wη−αj (σj , σ0)Wη−αk

(σk, σ0)

= Wαi(σj , σk)Wαj (σi, σk)Wαk
(σj , σi) ,

(3.34)

with Boltzmann weights defined in (3.31), and (3.32), and the spectral parameters satisfying

η = αi+αj+αk. The star-triangle relation (3.34) arises as a particular case of a hyperbolic

hypergeometric sum/integral identity (B.18), derived in appendix B. The interpretation of

the star-triangle relation (3.34) in terms of dual N = 2 S3
b /Zr partition functions, is

described in the next section.

The partition function of the lattice model is given by (2.4), with the Boltzmann

weights defined in (3.31), and (3.32), and the integral and sum taken over all values of

spins defined in (3.29). As is expected for r = 1, the star-triangle relation (3.34) reduces

to a generalisation [1] of the star-triangle relation for the Faddeev-Volkov model [24, 25].

The limit r → ∞ results in the “rational” solution of the star-triangle relation given in

terms of the Euler gamma function [21, 25, 35], corresponding to the matching of dual

two-dimensional N = (2, 2) partition functions [17, 46, 49].

A new solution of the star-triangle relation is also expected to be obtained as a partic-

ular limit of (3.34), when the real component of each spin in (3.34) is taken to infinity [1],

such that only a dependence on spin differences xi − xj , mi −mj will remain. For super-

symmetric gauge theory, such a reduction corresponds to the breaking of the SU(2) gauge

– 12 –



J
H
E
P
0
2
(
2
0
1
7
)
0
4
0

group to U(1). The resulting identity is expected to be directly related to a particular self-

dual solution of the star-triangle relation given in terms of a quantum dilogarithm with

real and integer variables, which was recently obtained by Kashaev [50] from considerations

of gauge invariance in quantum field theory. The details of this calculation however are

beyond the scope of this paper.

4 The hyperbolic case from supersymmetric gauge theory

In this section we consider supersymmetric duality for three-dimensional N = 2 theories

on the squashed lens spaces, which are free quotients of squashed three-sphere S3
b by

Zr. Using the gauge/YBE correspondence we show that the star-triangle relation (3.34)

results from the invariance of the three-dimensional squashed lens partition functions under

supersymmetric duality.

4.1 Supersymmetric partition function on the squashed lens space

We start by defining the objects of interest, namely the general form of the three-

dimensional N = 2 lens partition function, supersymmetric duality and then discuss the

gauge/YBE correspondence.

Besides the ordinary generators of the Poincare algebra the three-dimensional N = 2

supersymmetric algebra has four real supercharges. These theories have a gauge group

G and a global symmetry group F . The gauge group multiplets belong to the adjoint

representation of G whereas chiral multiplets belong to a suitable representation of G

and F (in our case the fundamental). The supersymmetry algebra contains the SO(2)

R-symmetry which rotates supercharges.

In recent years, there have been extensive studies on exactly calculable quantities of

supersymmetric gauge theories in diverse dimensions due to the use of the supersymmetric

localization technique [51, 52]. This powerful analytical tool enables us to compute ex-

act quantities3 such as superconformal indices, partition functions on compact manifolds,

Wilson loops, ’t Hooft loops, surface operators and so on. For our purposes such an ex-

actly calculable quantity is the partition function on the squashed lens space S3
b /Zr. This

partition function has been first obtained in [17] and studied in [55–58].

The squashed lens space S3
b /Z is defined as the squashed three-sphere4

S3
b = {(x, y) ∈ C

2| b2|x|2 + b−2|y|2 = 1} , (4.1)

with the identification

(x, y) ∼ (e
2πi
r x, e−

2πi
r y) . (4.2)

3We will not discuss here the supersymmetric localization technique, since we will not use it except

the fact that it provides exact results, the short review of the subject can be found in [53]. The idea of

localization was applied to three-dimensional N = 2 supersymmetric theories in [54].
4The particular reason to consider supersymmetric theories on the squashed sphere is reproducing the

quantities in Liouville theory which has the parameter b.
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As we mentioned, the localization technique enables us to calculate the partition func-

tion of N = 2 theories on the squashed lens space exactly,5 as a result the partition function

is decomposed in the following form

Z =
∑

m

∫
∏rank G dzj
2πi

∏

k |Wk|
Zcl[z,m] Zvector[z,m] Zmatter[z,m] . (4.3)

Here the sum is over the holonomies

m =
r

2π

∫

C
Aµdx

µ , (4.4)

where the integration over a non-trivial cycle C on S3
b /Zr and Aµ is the gauge field.

The zj variables are associated with the Weyl weights for the Cartan subalgebra of the

gauge group G. The k is the rank of gauge group G and the prefactor |Wk| is the order of

the Weyl group of gauge group which is broken by holonomy into a product of r subgroups

G →
r−1
∏

k=0

Gk . (4.5)

The classical term Zcl is given by non-zero contributions from classical action of the Chern-

Simons term and Fayet-Iliopoulos term. In our examples in the next sections we only discuss

theories without the Chern-Simons terms, therefore Zcl will be absent in our expressions.

There are two other contributions to the partition function, Zvector coming from vector

multiplets and Zmatter coming from the chiral multiplets. These contributions are as follows:

the one-loop contribution of chiral multiplets6 is given by

Zmatter =
∏

i

∏

ρi

∏

φi

ŝb,−ρi(m)−φi(n)

(

i
Q

2
(1−∆i)− ρi(z)− φi(Φ)

)

, (4.6)

where i labels chiral multiplets, ρi, φi, are respectively the weights of the representation

of the gauge and flavor groups7 and ∆i the Weyl weight of i’th chiral multiplet. Here

Q = b+ 1
b with the squashing parameter8 b2 = ω2/ω1. The function ŝb,−m is the improved

double sine function [57], defined here in terms of (3.21) as

ŝb,−m(x) = σ(m)ϕr,m(x) , (4.7)

where σ is the following sign factor

σ(m) = e

iπ
2r

(JmK(r−JmK)−(r−1)m2) . (4.8)

5One can find the details of the computations, for instance in [59] where authors consider a three-

dimensional N = 2 Chern-Simons-matter theory on lens space S3
b /Zr. Note that the localization technique

in this case is quite similar to the partition function computations on S3
b [60]. It is also possible to derive

the lens partition function from the four-dimensional index on S1×S3/Zr via dimensional reduction [17, 46]

(see the next section).
6The chiral multiplet consists of a complex scalar field, a complex Dirac fermion and a complex auxiliary

scalar field.
7Note that φi correspond to the real masses associated to flavor group.
8The squashing parameter can be real or a phase [61, 62].
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The double sine function (related to the r = 1 case of (4.7)) is a variant of Faddeev’s

non-compact quantum dilogarithm, which appears in various branches of mathematical

physics. Many properties of this function can be found in [48].

Note that it is actually a product representation of (4.7)

ŝb,−m(x) = σ(m) e
πi
2
Bϕ(x,m,ω1,ω2)

×
r−1
∏

j=0

(e2π(x+iω2JmK)/(ω2r) (eπi(ω1+ω2)/(ω2r))2j+1; e2πiω1/(ω2r))∞

(e2π(x−iω1JmK)/(ω1r) (e−πi(ω1+ω2)/(ω1r))2j+1; e−2πiω2/(ω1r))∞
,

(4.9)

that naturally arises from gauge theory calculations, rather than the integral representation

obtained from (3.21). HereBϕ is a particular combination of multiple Bernoulli polynomials

defined in (A.11). However when the squasing parameter is real, the infinite product

representation (4.9) is not valid, and one needs to use the integral representation obtained

from (3.21). An example of this is in the case of the usual round sphere, where one has to

set b = 1.

The one-loop contribution of the vector multiplet9 for theory with non-abelian gauge

group,10 combined with the Vandermonde determinant, is given by

Zvector =
∏

α

1

ŝb,α(m)

(

i
Q
2 + α(z)

)

=
∏

α>0

4 sinh
π

r

(

α(z)

ω1
+ iα(m)

)

sinh
π

r

(

α(z)

ω2
− iα(m)

)

, (4.10)

where the product is over the positive roots α of the gauge group G.

4.2 3d N = 2 supersymmetric duality

About two decades ago, Seiberg argued [63] a highly non-trivial statement about four-

dimensional N = 1 supersymmetric gauge theories, that such theories with different ultra-

violet behavior may flow to the same infrared fixed point, where these theories describe

the same physics, i.e. an observer testing the low energy physics cannot distinguish the

dual theories. The duality statement extends to other dimensions, particularly to three-

dimensional N = 2 theories.11

Supersymmetric dualities have passed a number of consistency checks. An important

test for the duality is an equivalence of partition functions of dual theories in the infrared

fixed point12

Ztheory A = Ztheory B . (4.11)

9The vector multiplet consists of a gauge field, a complex Dirac fermion, a real scalar field and auxiliary

scalar field.
10For abelian vector fields, the one-loop determinant is trivial.
11Three-dimensional supersymmetric duality is first studied in [64, 65]. Note that often four-dimensional

dualities are called Seiberg duality, whereas three-dimensional N = 2 SQCD with U(N) gauge group

discussed in [65] is called Aharony duality. Recently, three-dimensional Seiberg duality for SU(N) gauge

group is found in [66] and special cases discussed in [67, 68].
12As usual it is not proof of the duality, but very solid evidence for it.
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For several three-dimensional N = 2 dualities (mirror symmetry, Seiberg-like dualities etc.)

such checks have been verified at the level of sphere partition functions (e.g. [69]), squashed

sphere partition functions (e.g. [70–72]), superconformal indices (e.g. [67, 68, 73, 74]), lens

partition functions (e.g. [55, 56]) and so on.

Now let us consider the following three-dimensional N = 2 supersymmetric duality:13

the theory A and its low-energy description theory B, which can be described purely in

terms of composite gauge singlets.14

• Theory A: this theory has gauge group SU(2) and the flavor group SU(6). The field

content is: chiral multiplets that transform under the fundamental representation

of the gauge group and the flavor group, the vector multiplet that transform as the

adjoint representation of the gauge group. The lens partition function reads

ZSQCD =
r−1
∑

m0=0

∫

R

dx0
r
√
ω1ω2

2 sinh
2π

rω1
(x0 − iω1m0) sinh

2π

rω2
(x0 + iω2m0)

×
6
∏

k=1

ŝb,−m0−mk
(x0 + xk + iQ/2)

ŝb,−m0+m̄k
(x0 − xk − iQ/2)

, (4.12)

with the balancing condition i
∑6

i=1 xi = Q,
∑6

i=1mi = 0 imposed by superpotential.

The first line of the partition function includes the contributions of a vector multiplet,

while the second line contains the contribution of chiral multiplets.

• Theory B: in the dual description of the theory there is no gauge symmetry,15 there

are fifteen chiral multiplets in the totally antisymmetric tensor representation of

the flavor group. The lens partition function of the theory is given by the simpler

expression

Z =
∏

1≤j<k≤6

ŝb,−mj−mk
(xj + xk + iQ/2) . (4.13)

Since all physical degrees of freedom of the theory B are gauge invariant (since it has

no gauge group symmetry) there is no any summation (no holonomy) and integration

in the expression of the partition function.

Due to the supersymmetric duality one finds the equality of lens partition functions

r−1
∑

m0=0

∫

R

dx0
r
√
ω1ω2

2 sinh
2π

rω1
(x0 − iω1m0) sinh

2π

rω2
(x0 + iω2m0) (4.14)

×
6
∏

k=1

ŝb,−m0−mk
(x0 + xk + iQ/2)

ŝb,−m0+m̄k
(x0 − xk − iQ/2)

=
∏

1≤j<k≤6

ŝb,−mj−mk
(xj + xk + iQ/2) ,

13The duality discussed here is a special case of SP (2N) duality considered in [66].
14These theories are confining theories, i.e. all of the massless degrees of freedom are gauge (color) singlet

particles.
15One can see that dual theories have different gauge group, but same global symmetries. Indeed, gauge

symmetry is redundancy of the theory, whereas the global symmetries are observables, hence cannot be

different in two descriptions of the same theory.
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with the balancing condition i
∑6

i=1 xi = Q,
∑6

i=1mi = 0. In appendix B, details are given

of the derivation of (4.14) as the limit of the elliptic hypergeometric sum/integral [21] corre-

sponding to duality of lens indices of four-dimensional N = 1 supersymmetric gauge theory.

In [70] it was noticed that the three-dimensional N = 2 squashed sphere partition

functions have similar structure to four-dimensional N = 1 superconformal indices and

one can obtain the latter via dimensional reduction. Using the results of [70], Benini et

al. [17] described the procedure which reduces16 four-dimensional N = 1 lens index to

three-dimensional N = 2 lens partition function. Geometrically, one needs to consider the

four-dimensional N = 1 supersymmetric dual theories on a S3
b /Zr × S1. Then shrinking

the circle S1 to zero gives rise to a three-dimensional supersymmetric theory with the same

amount of supercharges on S3
b /Zr. From the perspective of special functions this reduction

is just the limit (3.19) discussed in the previous section.

Note that the balancing conditions are imposed by the effective superpotential and the

theories described above are dual only in the presence of certain superpotentials (for detail

see e.g. [75]). In order to obtain the correct three-dimensional duality via dimensional

reduction one needs to add [66] to theory A the superpotential17 W = ηY , where Y is the

low-energy limit of the monopole operator and η is the dynamical scale of the corresponding

four-dimensional theory (instanton factor).

The duality above is precisely the one considered in [76] where the authors presented

the squashed sphere partition functions18 for dual theories. The proof of the integral

identity for the squashed sphere partition functions can be found e.g., in [48, 77]. The

matching of the superconformal indices for this duality was shown in [68] (see also [6]).

As for the case r = 1 [77] we expect that the integral identity (4.14) has the Weyl

symmetry group of the exceptional root system E6, for the case where each mi = 0.

4.3 Integrability from duality

In the context of gauge/YBE correspondence the spin lattice models of section 3 can be

identified with the quiver gauge theory with SU(2) gauge groups. We associate a quiver

diagram19 to three-dimensional N = 2 supersymmetric gauge theory in the following way.

On the vertices20 we have gauge groups, in our case the corresponding gauge group of the

theory is
∏N SU(2). The bifundamental matter content is represented as lines between

gauge groups.21 The partition function of the corresponding integrable model is equivalent

to the lens partition function of the corresponding supersymmetric quiver gauge theory

with SU(2) gauge groups. The contribution of chiral and vector multiplets to the lens

16Of course, the three-dimensional duality obtained from the four-dimensional duality differs from the

naive dimensional reduction, see [66] for details.
17In case of SU(N) gauge theory the theory B also has the superpotential W = η̃Ỹ .
18In case when r = 1, one obtains an identity for the squashed sphere partition functions [76].
19Mathematically, a quiver is a pair of (V,E), where V is a set of vertices (loops) and E a set of arrows

such that each arrow begins and ends on vertices, see, e.g. [78, 79] for details.
20In supersymmetry literature widely used loop instead of vertex.
21In principle, one needs to specify fundamental and anti-fundamental representations by an arrow (out-

going and incoming arrows, respectively), but we do not need it here.
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x0

xi

xj xk

=

xi

xj xk

Figure 4. Seiberg duality: the boxes correspond to SU(2) flavor subgroups and the circle represents

SU(2) gauge group. The dash lines represent mesons giving contribution to the spin-independent

R-factor in the star-triangle relation. In our case due to the renormalization of the Boltzmann

weights the R-factor equals to one.

partition function correspond to the Boltzmann weights for the nearest-neighbor and the

self- interaction, respectively.

The boundary conditions for the Boltzmann weights play a role of the “chiral” sym-

metry breaking phenomenon on the gauge theory side [6, 80]. It is not well-studied subject

on the level of supersymmetric partition functions and much work remains to be done in

this direction.

As already emphasized, the key observation is that the equality for the lens partition

functions (4.14) can be written as the star-triangle relation (3.34). By adding a certain

superpotential one may break flavor symmetry of both theories from SU(6) group down to

SU(2)×SU(2)×SU(2). In fact, one can do it by introducing the following change of variables

x1 = +xi − iαi , x3 = +xj − iαj , x5 = +xk − iαk ,

x2 = −xi − iαi , x4 = −xj − iαj , x6 = −xk − iαk ,
(4.15)

and

m1 = mi , m2 = −mi , m3 = mj , m4 = −mj , m5 = mk , m6 = −mk . (4.16)

Under this change of variables the identity (4.14) gets exactly the form of the star-triangle

relation (3.34).

5 The elliptic case from supersymmetric gauge theory

5.1 Lens index

Here we briefly review the four-dimensional N = 1 lens supersymmetric index.

The basic ingredients that are needed to know about four-dimensional N = 1 super-

symmetric gauge theory are the following: it has a gauge group and a flavor symmetry

group. The gauge group multiplets belong to the adjoint representation of the gauge group
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whereas the chiral multiplets belong to a suitable representation of gauge and flavor group.

The supersymmetry algebra contains the U(1) R-symmetry which rotates supercharges.

The lens supersymmetric index was introduced in [17] and studied in [3, 46, 57, 81].

The section will mainly follow the exposition in [3].

The four-dimensional N = 1 lens supersymmetric index is a generalization of the

Witten index (partition function on S3/Zr×S1) by including to the index symmetries of a

theory commuting with a chosen supercharge. To construct the lens index let us consider,

for example, the supercharges Q which satisfy the following relation22

{Q,Q†} = H − 3

2
R− 2J2 , (5.1)

where H, R are the Hamiltonian in the radial quantization and the generator of the R-

symmetry, respectively. J1 and J2 are the Cartan generators of the SU(2)×SU(2) isometry

of S3. Then one can define the lens supersymmetric index in the following way

I({ti}, p, q) = Tr

[

(−1)F e−β{Q,Q†}pj1+j2+
r

2 q−j1+j2+
r

2

∏

i

tFi
i

]

, (5.2)

Here (−1)F is the fermion number operator, Fi are generators of global symmetries com-

muting with Q and Q†, and ti are the corresponding fugacities (additional regulators).

The trace in the definition of the index is over the Hilbert space of the theory on a S3/Zr.

The states23 with E − 3
2r − 2j2 6= 0 come in pairs and cancel out because of the factor

(−1)F , therefore the index is β-independent and counts states with E − 3
2r − 2j2 = 0.

The index does not depend on coupling constants of the theory and it is invariant under

marginal deformations of the theory. In the special case when r = 1 one obtains the usual

supersymmetric index [82, 83].

According to the Romelsberger prescription24 [82, 84] for N = 1 theory with a weakly-

coupled description one can write the lens index via the so-called “plethystic” exponen-

tial [85] of the single letter index. Then one can get the full index via the following integral

over the gauge group25 (see the appendix in [17] for details)

I({ti}, p, q; r) =
∑

m=0

∫

dµm(g) exp

( ∞
∑

n=1

1

n
ind

(

pn, qn, zn, tni ;m
)

)

, (5.3)

where dµm(g) is the gauge group-invariant Haar measure and ind(p, q, z, ti,m) stand for

the index for single particle states. It is convenient to express the index as a product of

contributions from chiral and vector multiplets

I({ti}, p, q; r) =
∑

m

∫

1

|W |Zgauge(zi, p, q;m)
∏

Φ

ZΦ(zi, ta, p, q;m)
rankG
∏

i=1

dzi
2πizi

. (5.4)

22For the full superconformal algebra, see e.g. [16].
23Here we use eigenvalues of operators and therefore have different letters than in (5.1).
24Note that one can consider the lens index as a twisted partition function on S3

b /Zr × S1. Then using

localization technique one gets the same result for a twisted partition function.
25Since we are interested in gauge invariant physical observables.
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Here the sum is over holonomies m on the S3 and the prefactor |W | = ∏r−1
m=0(rankGm)!

is the order of the Weyl group of G which is “broken” by the holonomies into the product

G0×G1×· · ·×Gr−1. The one loop superdeterminants of the vector and matter multiplets

are expressed in terms of lens elliptic gamma functions Γe(z,m;σ, τ) defined in (B.4).

5.2 Duality

Now one can consider the four-dimensional version of the duality from section 4.2, namely,

supersymmetric duality states [63, 86] that the superconformal infrared fixed point of the

following four-dimensional N = 1 theories are equivalent:

• Theory A: SU(2) gauge theory with SU(6) flavor group26 with chiral multiplets form-

ing the six dimensional fundamental representation. The lens supersymmetric index

of this theory reads (see appendix B for the notations)

(pr; pr)∞(qr; qr)∞
2

r−1
∑

y=0

∫ 1

0
dz

∏6
i=1 Γe(ti ± z, ui ± y;σ, τ)

Γe(±2z,±2y;σ, τ)
(5.5)

with the balancing conditions

6
∑

i=1

ti = σ + τ,
6

∑

i=1

ui = 0 , (5.6)

where ti and z stand for the flavor fugacities and gauge groups, and ui and y are

corresponding holonomies associated with these groups, respectively.

• Theory B: without gauge degrees of freedom with chiral multiplets forming the 15-

dimensional antisymmetric tensor representation. The lens supersymmetric index of

the theory reads
∏

1≤i<j≤6

Γe(ti + tj , ui + uj ;σ, τ) . (5.7)

The identity of the lens supersymmetric indices27 for dual theories has a form of the

sum/integral identity (B.13) which can be written as the star-triangle relation (3.17) [21].

All arguments about the gauge/YBE correspondence in this case structurally identical to

the formal arguments of the section 4.2.

5.3 W (E7) symmetry and its breaking

Let us consider the following integral elliptic hypergeometric sum/integral

V (t; q) =
(pr; pr)∞(qr; qr)∞

2

r−1
∑

y=0

∫ 1

0
dz

∏8
i=1 Γe(ti ± z, ui ± y;σ, τ)

Γe(±2z,±2y;σ, τ)
, (5.8)

26It is interesting to note that the global symmetry SU(6) is enhanced to the exceptional symmetry group

E6 in the presence of the five-dimensional hypermultiplets [87] (see section 5.3).
27Note that the matching of superconformal indices for this duality, i.e. the r = 1 case was shown by

Dolan and Osborn in [16].
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with the balancing conditions

8
∑

i=1

ti = σ + τ,
8

∑

i=1

ui = 0 , (5.9)

where the variables are

p, q, ti ∈ C, ui ∈ Z, |p|, |q| < 1, Im(ti) > 0 , i = 1, . . . , 8 . (5.10)

For the case ui = 0, i = 1, . . . , 8 this sum/integral obeys the W (E7)-group of sym-

metries transformation — the Weyl group of the exceptional root system of E7, with the

following transformation law (this property also was considered in [23])

V (t; q) = V (t̃; q)
∏

1≤j<k≤4

Γe(tj + tk, 0;σ, τ)
∏

5≤j<k≤8

Γe(tj + tk, 0;σ, τ) , (5.11)

where
{

t̃j = tj + ǫ, j = 1, 2, 3, 4

t̃j = tj − ǫ, j = 5, 6, 7, 8
; ǫ =

σ + τ − t1 − t2 − t3 − t4
2

=
t5 + t6 + t7 + t8 − σ − τ

2
.

(5.12)

The proof is analogous to the proof in the usual elliptic case [88] (see also [77]). Note

that the sum/integral (5.8) can be put in the form of a star-star relation, namely it is a

special case of the R-matrix found in [3]. It also has a form of the the lens index of a

four-dimensional N = 1 supersymmetric gauge theory with SU(2) gauge group and SU(8)

flavor group; all matter multiplets in the fundamental representation of the gauge and

flavor groups, vector multiplet is in the adjoint of the gauge group.

The lens sum/integral (5.8) reduces to the lens elliptic beta sum/integral (B.13) when

e.g. t7 + t8 = σ+ τ and u7 + u8 = 0. The latter has the W (E6) group of symmetry for the

case when all holonomies associated with the flavor symmetries are absent (this property

also appears to apply for a more general situation [23]). Since the lens elliptic gamma

function (B.4) is r-periodic in the integer variable, the form of the hypergeometric equations

satisfied by (5.8) should take a simpler form than in [23]. This is because of the different

normalisation of (B.4) chosen in [23], details of this difference are given in appendix C.

6 Conclusion

In this paper a new solution of the star-triangle relation (3.34) was given, that provides a

generalisation of the Faddeev-Volkov model [1, 24, 25] to the case of both continuous and

real valued spin components. This new lattice model arises in the hyperbolic limit of the

elliptic model previously obtained by the second author [21]. The Boltzmann weights of

the model (3.31), (3.32), are given in terms of a generalisation of the hyperbolic gamma

function (3.21) (or non-compact quantum dilogarithm), that takes both integer and com-

plex arguments. The exact solution of the model is contained in the normalisation (3.26) of

Boltzmann weights, through an extension of the inversion relation method [37, 40–42]. As

is typical with this method, there is a neccessary assumption on the analyticity of the free
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energy, and it remains an open problem to verify the results for the free energy (3.9), (3.26),

using more rigorous methods. The star-triangle relation of the model (3.34) was shown

to arise as the duality of S3
b /Zr partition functions for three-dimensional supersymmetric

gauge theory. While the latter supersymmetric dualities are known in the literature [63, 86],

the approach here of studying them through the lens partition function and lens supersym-

metric index is new.

There are many possible directions for future research. For example, the Faddeev-

Volkov model (r = 1 case of section 3.2) notably has connections to discrete conformal

geometry [25], and to classical discrete integrable equations in the quasi-classical limit [25,

37]. The Faddeev-Volkov model is also connected with the modular double of the quantum

group Uq(sl2) [89], and with the lattice Liouville and sinh-Gordon models [89–93]. It would

be interesting to see how these connections might be extended to the generalisation of the

Faddeev-Volkov model considered here (for r > 1). It is also of interest to determine the

hypergeometric properties [48] of the hyperbolic sum/integral (B.18) corresponding to the

star-triangle relation (3.34), as was recently done for the elliptic case [23].

Another possible future direction is to consider different limits or generalisations of the

star-triangle relations (3.17), (3.34), in order to obtain new integrable models. For example,

many generalisations of the hyperbolic sum/integral (B.18) are known for r = 1 [27], it

would be interesting to extend these results to the case r > 1, and give the interpretation in

terms of the gauge/YBE correspondence. There are also expected to be many interesting

limits of (3.34) (resp. (B.18)), at the hyperbolic and rational levels. For example, the

limit r → ∞ [46] of (3.34), is a rational limit that results in a lattice model with discrete

and continuous spin variables [21, 24, 35], with Boltzmann weights given in terms of the

Euler gamma function. On the supersymmetry side this reduction (geometrically, the S1

fiber of the lens space S3
b /Zr shrinks to zero size and gives S2) [17] gives the equality of

the sphere partition functions of dual two-dimensional N = (2, 2) supersymmetric gauge

theories. The root of unity limit could also be explored, which in the elliptic r = 1 case

was shown to reproduce well-known discrete spin integrable lattice models [15].

In the context of the gauge/YBE correspondence, it has recently been shown [10] that

a surface defect in four-dimensional N = 1 supersymmetric gauge theory, corresponds to a

transfer matrix constructed from Sklyanin’s L-operators [94] (see also [95, 96]) of the lattice

spin model. It would be interesting to study this relationship for the cases in this paper.

Also, while the present paper provides a new example of the gauge/YBE correspondence in

2 dimensions, the question remains of whether it is possible to extend the gauge/YBE cor-

respondence to 3 dimensions, where the analogue of the Yang-Baxter equation is Zamolod-

chikov’s tetrahedron equation [97]. In one case, Gadde et al. [98] have speculated that the

superconformal indices of a two-dimensional N = (0, 2) triality could provide a solution

to the tetrahedron equation. However apart from such speculation (e.g. see also [4]), a

genuine extension of the correspondence to 3 dimensions is yet to be established.
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A Properties of ϕr,m(z) and κh(α)

The following multiple Bernoulli polynomials [99, 100] are used throughout the appendices:

B1,1(z, ω1) =
z

ω1
− 1

2
,

B2,2(z, ω1, ω2) =
z2

ω1ω2
− (ω1 + ω2)z

ω1ω2
+

ω2
1 + ω2

2 + 3ω1ω2

6ω1ω2
,

B3,3(z, ω1, ω2, ω3) =
z3

ω1ω2ω3
− 3(ω1 + ω2 + ω3)z

2

2ω1ω2ω3

+
(ω2

1 + ω2
2 + ω2

3 + 3(ω1ω2 + ω2ω3 + ω3ω1))z

2ω1ω2ω3

− (ω1 + ω2 + ω3)(ω1ω2 + ω2ω3 + ω3ω1)

4ω1ω2ω3
,

(A.1)

for complex variables z ∈ C, and ω1, ω2, ω3 ∈ C− {0}.
In the following, r ∈ {1, 2, . . .}, the two complex parameters ω1, ω2, satisfy

Re(ω1),Re(ω2) > 0, and the following definitions are used:

ω = e
πi/r , q = e

πiω1/(ω2r) , q̃ = e
−πiω2/(ω1r) , q = e

−πirω2/(2η) ,

η = (ω1 + ω2)/2 , JmK = m mod r , (x; p)∞ =
∞
∏

j=0

(1− xpj) ,
(A.2)

where JmK ∈ {0, 1, . . . , r − 1}, and |p| < 1.

The function ϕr,m(z). The function ϕr,m(z) depends on an integer m (mod r), a com-

plex variable z, and implicitly on the two complex parameters ω1, ω2. The properties for

the r = 1 case have been studied in various different forms, such as the hyperbolic gamma

function [43, 48], the non-compact quantum dilogarithm [24, 91, 101], and the double sine

function [45, 92, 102–104]. The latter functions only depend on the complex variables

z, ω1, ω2, and are related to each other by a simple change of variables [1]. Below the

relevant properties are given for the function ϕr,m(z), for the case of general r ≥ 1, which

may be derived through straightforward generalisations of the r = 1 case.
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(i) Definition: for

− Re(η)−min (Re(ω1)(r − JmK),Re(ω2)JmK) (A.3)

< Im(z) < Re(η) + min (Re(ω1)JmK,Re(ω2)(r − JmK)) ,

ϕr,m(z) = exp

{
∫ ∞

0

dx

x

(

iz

ω1ω2rx
− sinh(2x(iz − ( r2 − JmK)ω1))

2 sinh(ω1rx) sinh(2ηx)
(A.4)

− sinh(2x(iz + ( r2 − JmK)ω2))

2 sinh(ω2rx) sinh(2ηx)

)}

= ϕ1,0(z + iω1(r − 2JmK)/2;ω1r, 2η)ϕ1,0(z − iω2(r − 2JmK)/2;ω2r, 2η) ,

where

ϕ1,0(z;ω1, ω2) = exp

{
∫ ∞

0

dx

x

(

iz

ω1ω2x
− sinh(2izx)

2 sinh(ω1x) sinh(ω2x)

)}

. (A.5)

(ii) Functional equations:

ϕr,m(z)ϕr,−m(−z) = 1 , (A.6)

ϕr,m+1(z + iω1)

ϕr,m(z)
=

i

2 sinh
(

π
ω2r

(z + i(η + ω2JmK))
) , (A.7)

and
ϕr,m+1(z − iω2)

ϕr,m(z)
= 2i sinh

(

π

ω1r
(z − i(η + ω1JmK))

)

. (A.8)

(iii) Poles and zeros:

Poles : {+iη + iω2j + iω1 (rk + Jm+ jK)} ,
Zeros : {−iη − iω1j − iω2 (rk + Jm+ jK)} ,

(A.9)

where j, k = 0, 1, . . ..

(iv) Product representation: for Im(ω1/ω2) > 0,

ϕr,m(z) = e

πi
2
Bϕ(z,m,ω1,ω2)

r−1
∏

j=0

(e2π(z+iω2JmK)/(ω2r) (qω)2j+1; q2r)∞

(e2π(z−iω1JmK)/(ω1r) (q̃/ω)2j+1; q̃2r)∞
, (A.10)

where Bϕ(z,m, ω1, ω2) is defined as

Bϕ(z,m, ω1, ω2) := B2,2(iz+ω1JmK+η, rω1, 2η)+B2,2(iz+ω2(r−JmK)+η, rω2, 2η) . (A.11)

For r = 1 this simplifies to

Bϕ(z,m, ω1, ω2) = B2,2(iz + η, ω1, ω2) . (A.12)

The above functional equations (A.6)–(A.8) can be derived directly from the defini-

tion (A.4) by using only elementary trigonometric identities. Through the functional iden-

tities, the function ϕr,m(z) may be continued to a meromorphic function on z ∈ C, with

the poles and zeroes (A.9) lying entirely in the upper and lower half planes respectively.
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The product representation (A.10) may be obtained by expanding the integral in (A.4)

as a sum over residues in the upper half plane. Through the product representation the

above hyperbolic gamma function can be put in the form of a generalisation of the double

sine functions

ϕr,m(i(z − η)) = e

πi
2
Bϕ(i(z−η),m,ω1,ω2)

r−1
∏

j=0

(e2πi(z+ω2JmK)/(ω2r) (qω)2j ; q2r)∞

(e2πi(z−ω1JmK)/(ω1r) (q̃/ω)2j+2; q̃2r)∞
. (A.13)

The representation (A.13) is equivalent to the function S2,m(z), previously studied in the

context of three-dimensional N = 2 partition functions on S3
b /Z

3 [57]. The product repre-

sentation however is not valid for Im(ω1/ω2) = 0, which includes part of the physical regime

of the lattice model in section 3.2 (when Im(ω1) = 0, and ω2 = ω1), and also includes the

case when the squashing parameter b2 is on the real line, for the supersymmetric gauge

theory described in section 4.2.

The function κh(α). The function κh(α) represents the partition function per edge of

the lattice model defined in section 3.2. For r = 1, the function κh(α) appeared28 as the

partition function per edge of both the Faddeev-Volkov model [24, 25], and its generalisation

based on the hyperbolic beta integral [1], and has also appeared with respect to the quantum

sinh-Gordon model [105]. The properties of κh(α) for general r ≥ 1 are summarised below,

and may be obtained analogously to the properties of ϕr,m(z).

(i) Definition: for |Re(α)| < Re(η),

κh(α) = exp

{
∫ ∞

0

dx

x

(

− α

rω1ω2x
+

sinh(4αx) sinh(2rηx)

2 sinh(ω1rx) sinh(ω2rx) sinh(4ηx)

)}

. (A.14)

(ii) Functional equations:

κh(α)κh(−α) = 1 ,
κh(η − α)

κh(α)
= ϕr,0(i(η − 2α)) . (A.15)

(iii) Poles and zeros:

Poles :







{

+η (2j1+1)+ k1ω1r
2 + k2ω2r

2 , k1+k2−|k1−k2|=0 mod 4
}

, r odd ,
{

+η (2j2 + 1) + k1ω1r
2 + k2ω2r

2

}

, r even ,
(A.16)

Zeros :







{

−η (2j1+1)− k1ω1r
2 − k2ω2r

2 , k1+k2−|k1−k2|=0 mod 4
}

, r odd ,
{

−η (2j2 + 1)− k1ω1r
2 − k2ω2r

2

}

, r even ,
(A.17)

where j1 = 0, 1, . . . , r − 1, j2 = 0, 1, . . . , r/2− 1, and k1, k2 = 0, 1, . . ..

28Specifically, for r = 1, ω1 = b, ω2 = 1/b, the function Φ(2iα) in [24, 25] , is equivalent to

e
−πi

2
Bκ(α,b,1/b)κh(α), (Bκ is defined in (A.20)). For r = 1, and ω3 = ω1 + ω2, the function m(α) in [1] is

equivalent to κh(α).
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(iv) Product representation: for Im(ω1/ω2) > 0, and r odd,

κh(α) = e

πi
2
Bκ(z,ω1,ω2)

(eiπα/η q; q2)∞

(−eiπα/η q; q2)∞

r−1
∏

j=0

(e4iπα/(ω2r)(qω)4j+2; q4r)∞

(e4iπα/(ω1r)(q̃/ω)4j+2; q̃4r)∞
. (A.18)

For Im(ω1/ω2) > 0, and r even,

κh(α) = e

πi
2
Bκ(z,ω1,ω2)

r/2−1
∏

j=0

(e4iπα/(ω2r)(qω)4j+2; q2r)∞

(e4iπα/(ω1r)(q̃/ω)4j+2; q̃2r)∞
, (A.19)

where Bκ(z, ω1, ω2) is defined as

Bκ(z, ω1, ω2) := B2,2(2(η + z), rω1, 4η) +B2,2(2(η − z), rω2, 4η) . (A.20)

B Hyperbolic limit

This section expands on the results of section 3.2, by providing details of the hyperbolic

limit of the elliptic hypergeometric integral/sum identity [21] that corresponds to the star-

triangle relation (3.17).

Define the following elliptic nomes

p = e
2iπσ , q = e

2iπτ , Im(σ), Im(τ) > 0 , (B.1)

and define the following combinations of the multiple Bernoulli polynomial

B3,3(z;σ, τ) (A.1)

R(z;σ, τ) =
B3,3(z;σ, τ,−1) +B3,3(z − 1;σ, τ,−1)

12
, (B.2)

R2(z,m;σ, τ) = R(z +mσ; rσ, σ + τ) +R(z + (r −m)τ ; rτ, σ + τ)

=
(σ + τ − 2z)(2z2 − 2z(σ + τ) + στ(r2 + 6(m− r)m) + 1)

24rστ
(B.3)

− (σ − τ)(2m− r)(m− r)m

12r
,

where z ∈ C, m ∈ Z, r ∈ {1, 2, . . .}. The second equality explicitly shows that R2(z,m;σ, τ)

is defined for σ = −τ , and this case will be utilised below.

The lens elliptic gamma function is defined here as29

Γe(z,m;σ, τ) = e
φe(z,JmK;σ,τ)γe(z, JmK;σ, τ) , (B.4)

where

γe(z,m;σ, τ) =
∞
∏

j,k=0

1− e
−2πizp−m(pq)j+1pr(k+1)

1− e
2πizpm(pq)jprk

1− e
−2πizq−r+m(pq)j+1qr(k+1)

1− e
2πizqr−m(pq)jqrk

, (B.5)

29This definition is related to (3.5) by Φ(π((σ + τ)/2− z),m) = e
−φe(z,JmK;σ,τ)Γe(z, JmK;σ, τ).
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and

φe(z,m;σ, τ) = 2πi (R2(z, 0;σ − 1/2, τ + 1/2)−R2(z,m;σ − 1/2, τ + 1/2))

= 2πi (R2(z, 0;σ, τ) +R2(0,m, 1/2,−1/2)−R2(z,m;σ, τ)) .
(B.6)

The lens elliptic gamma function (B.4), may also be written as the following product of

two regular elliptic gamma functions

Γe(z,m;σ, τ) = e
φe(z,JmK;σ,τ) Γe,1(z+σJmK; rσ, σ+ τ) Γe,1(z+ τ(r− JmK); rτ, σ+ τ) , (B.7)

where [43, 106]

Γe,1(z;σ, τ) =
∞
∏

j,k=0

1− e
−2πizpj+1qk+1

1− e
2πizpj , qk

, z ∈ C

= exp {Ge,1(z;σ, τ)} , 0 < Im(z) < Im(σ + τ) ,

(B.8)

and

Ge,1(z;σ, τ) = − i

2

∞
∑

k=1

sin(kπ(2z − σ − τ))

k sin(kπσ) sin(kπτ)
. (B.9)

Note that the following sum of two R2 polynomials may be explicitly written as

2πi (R2(z, 0;σ, τ)−R2(z,m;σ, τ)) =
πim(m− r)

2r
(2z − (σ + τ) + (σ − τ)(2m− r)/3) ,

(B.10)

and thus the normalisation factor in (B.4) is

φe(z, JmK;σ, τ) =
πi JmKJ−mK

2r
(σ + τ − 2z + (1 + τ − σ)(JmK − J−mK)/3) , (B.11)

which is the same normalisation that was previously used [21], up to a simple rescaling of

z, σ, τ .30

The following useful compact notation for products of gamma functions will be used

Γ(z1 ± z2, u1 ± u2;σ, τ) = Γ(z1 + z2, u1 + u2;σ, τ) Γ(z1 − z2, u1 − u2;σ, τ) , (B.12)

for z1, z2 ∈ C, and u1, u2 ∈ Z.

The lens elliptic gamma function (B.4) satisfies the following elliptic hypergeometric

sum/integral identity [21]

λ

⌊r/2⌋
∑

y=0

ε(y)

∫ 1
2

− 1
2

dz

∏6
i=1 Γe(ti ± z, ui ± y;σ, τ)

Γe(±2z,±2y;σ, τ)
=

∏

1≤i<j≤6

Γe(ti + tj , ui + uj ;σ, τ) , (B.13)

where

λ =
(pr; pr)∞(qr; qr)∞

2
, ε(y) =

{

1 y = 0 or r
2 ,

2 otherwise ,
(B.14)

30Note also that in the context of the lens supersymmetric index, the factor (B.11) is the contribution to

the zero point energy of chiral and vector multiplets [17].
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and the variables are

p, q, ti ∈ C, ui ∈ Z, |p|, |q| < 1, Im(ti) > 0 , i = 1, . . . , 6 , (B.15)

and satisfy
6

∑

i=1

ti = σ + τ,

6
∑

i=1

ui = 0 . (B.16)

The truncation of the sum from 0 ≤ y ≤ r − 1, to 0 ≤ y ≤ ⌊r/2⌋, follows from the

invariance of the integral under the change of variables z → −z, y → r − y, and the

inclusion of the factor ε(y) correctly counts the integrals after employing this symmetry.

The star-triangle relation (3.17) is obtained from (B.13) for a particular choice of variables

ui, ti [21], and (B.13) is equivalent to Spiridonov’s elliptic beta integral [22] for r = 1.

In the hyperbolic limit

p = e
2πiω1ǫ , q = e

2πiω2ǫ , ǫ → 0+ , (B.17)

where Im(ω1), Im(ω2) > 0, it will be shown that (B.13) reduces to the following identity

1

2r
√−ω1ω2

⌊r/2⌋
∑

y=0

ε(y)

∫ ∞

−∞
dz

∏6
i=1 Γh(ti ± z, ui ± y;ω1, ω2)

Γh(±2z,±2y;ω1, ω2)
=

∏

1≤i<j≤6

Γh(ti + tj , ui + uj ;ω1, ω2) .

(B.18)

Here the function Γh(z,m;ω1, ω2), is defined in terms of ϕr,m(z;ω1, ω2) (A.4) as

Γh(z,m;ω1, ω2) = e
φh(JmK) ϕr,m(−z + (ω1 + ω2)/2;−iω1,−iω2)

= e
φh(JmK)γh(z,m;ω1, ω2) ,

(B.19)

where

φh(m) = 2πiR2(0,m, 1/2,−1/2) , (B.20)

and

γh(z,m;ω1, ω2) = Γh,1(z+ω1JmK; rω1, ω1+ω2) Γh,1(z+ω2(r− JmK); rω2, ω1+ω2) . (B.21)

The Γh,1(z;ω1, ω2) is the usual hyperbolic gamma function [43], defined for 0 < Im(z) <

Im(ω1 + ω2) as

Γh,1(z;ω1, ω2) = e
Gh,1(z;ω1,ω2) , (B.22)

where

Gh,1(z;ω1, ω2) =
i

2

∫ ∞

0

dx

x

(

2z − ω1 − ω2

πω1ω2 x
− sin(π(2z − ω1 − ω2)x)

sin(πω1x) sin(πω2x)

)

. (B.23)

The products of the Γh in (B.18) follow the convention given in equation (B.12), and the

variables are

ω1, ω2, ti ∈ C , ui ∈ Z , Im(ω1), Im(ω2), Im(ti) > 0 , i = 1, . . . , 6 , (B.24)
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and satisfy
6

∑

i=1

ti = ω1 + ω2,
6

∑

i=1

ui = 0 . (B.25)

Equation (B.18) is basically a generalisation of the univariate hyperbolic beta integral [26],

with 6 integer variables in addition to the 6 complex variables, and is equivalent to the

hyperbolic beta integral for r = 1.

Rather than directly substituting the hyperbolic limits of (B.4) into the integral (B.13)

as was done in section 3.2, asymptotic estimates that were previously obtained by Rains [27]

will be used in a relevant form for the gamma functions (B.4), and (B.19), to show the con-

vergence of the elliptic identity (B.13) to the hyperbolic identity (B.18). Obtaining relevant

asymptotic estimates for the gamma functions (B.4), and (B.19) is rather straightforward,

since both gamma functions may be written in terms of products of two standard elliptic,

and hyperbolic gamma functions respectively, for which the previous asymptotic results [27]

apply. Specifically, the results here provide an extension to values r > 1, of a particular

case (m = 0, n = 1) of Corollary 4.2 of [27].

Three asymptotic results for the gamma functions (B.4), and (B.19), will be used,

which follow directly from Corollary 3.1, Proposition 2.10, and Corollary 2.3, respectively

of [27]. First, let {x} ∈ [0, 1) denote the fractional part of the real number x. Then in the

limit (B.17) the lens elliptic gamma function (B.4) satisfies,

Γe(ǫz1 + x,m1; ǫω1, ǫω2) Γe(ǫz2 − x,m2; ǫω1, ǫω2)

exp {2πi (R2(ǫz1, 0; ǫω1, ǫω2) +R2(ǫz2, 0; ǫω1, ǫω2))}
= O

(

e
2πi {x}{−x}(z1+z2−(ω1+ω2))/(2ǫrω1ω2)

)

,

(B.26)

where m1,m2 ∈ Z, z1, z2 ∈ C, x ∈ R. Importantly the factor in the denominator on the

left hand side is independent of the value of the integers m1,m2.

Next define

Ge(z,m;ω1, ω2) = φe(z, JmK;ω1, ω2) +Ge,1(z + JmKω1; rω1, ω1 + ω2) (B.27)

+Ge,1(z + (r − JmK)ω2; rω2, ω1 + ω2) ,

Gh(z,m;ω1, ω2) = φh(JmK) +Gh,1(z + JmKω1; rω1, ω1 + ω2) (B.28)

+Gh,1(z + (r − JmK)ω2; rω2, ω1 + ω2) ,

so that

Γe(z,m;ω1, ω2) = e
Ge(z,m;ω1,ω2) , Γh(z,m;ω1, ω2) = e

Gh(z,m;ω1,ω2) . (B.29)

Through the functional relations satisfied by the gamma functions Γe,1, and Γh,1, the

functions Ge, and Gh, have unique analytic continuations to the complex plane with branch

cuts located at the poles and zeroes of the respective functions Γe, and Γh [27]. In the

limit (B.17), the function Γe (B.4) is related to the function Γh (B.19) by

− 2πiR2(z, 0; ǫω1, ǫω2) +Ge(z,m; ǫω1, ǫω2)−Gh(z,m; ǫω1, ǫω2) = O
(

e
−2πα/ǫ

)

, (B.30)
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where the real number α satisfies

0 < α < min
ω′∈Ω

(

Im

(−1

ω′

)

−
∣

∣

∣
Im

( z

ω′

)
∣

∣

∣

)

, (B.31)

for Ω = {rω1, rω2, ω1 + ω2}. The limit of the lens elliptic gamma function (3.19) follows

from (B.30) for ǫ → 0.

The asymptotics of Γh for z → ∞ are given by

−πiP (z,m;ω1, ω2)− φh(JmK) +Gh(z,m;ω1, ω2) = O
(

e
−2πα|z|

)

,

+πiP (−z,m;ω1, ω2)− φh(JmK) +Gh(−z,m;ω1, ω2) = O
(

e
−2πα|z|

)

,
(B.32)

where the real number α satisfies

0 < α < min
ω′∈Ω

(

Im

(

−e
i arg z

ω′

))

, (B.33)

for Ω = {rω1, rω2, ω1+ω2}, and P (z,m;ω1, ω2) is defined in terms ofBϕ(z,m;ω1, ω2) (A.11)

as

2P (z,m;ω1, ω2) = Bϕ(−z + (ω1 + ω2)/2;−iω1,−iω2) . (B.34)

The following expansion is also needed for the factor λ (B.14)

1− rǫ
√−ω1ω2 e

2πiR2(0,0,ǫω1,ǫω2)(e2πiω1ǫ; e2πiω1ǫ)∞(e2πiω2ǫ; e2πiω2ǫ)∞ = O(e−2πα/(ǫr)) ,

(B.35)

where the real number α satisfies

0 < α < min

(

Im

(−1

ω1

)

, Im

(−1

ω2

))

. (B.36)

From the equations (B.26), (B.30), (B.32), (B.35), the hyperbolic limit from (B.13)

to (B.18) follows an identical argument of Theorem 4.1 of [27].

Specifically, define ρe(z, y, ti, ui;ω1, ω2) to be the integrand of (B.13)

ρe(z, y, ti, ui;ω1, ω2) =

∏6
i=1 Γe(ti ± z, ui ± y;ω1, ω2)

Γe(±2z,±2y;ω1, ω2)
. (B.37)

In the limit (B.17), equation (B.26) gives

e
4πi(R2(0,0;ǫω1,ǫω2)−

∑6
i=1 R2(ǫti,0;ǫω1,ǫω2))ρe(z, y, ǫti, ui; ǫω1, ǫω2)

= O
(

e
−2πi(2{z}{−z}−{2z}{−2z}/2)(ω1+ω2)/(ǫrω1ω2)

)

.
(B.38)

Since Im(1/ω1 + 1/ω2) < 0, the left hand side of (B.38) is maximised at the minimum

of 2{z}{−z} − {2z}{−2z}/2, which by Lemma 3.3 of [27], is at z = 0. This allows the

restriction of the integrand to the smaller interval [−1/4, 1/4] with the introduction of an

exponentially small error. The equation (B.30) may now be used to replace all instances of

the lens elliptic gamma functions (B.4) on the left hand side of (B.38), with its hyperbolic

analogue (B.19). The remaining contribution from the R2 polynomials coming from the

– 30 –



J
H
E
P
0
2
(
2
0
1
7
)
0
4
0

normalisation functions φe (B.6), cancels with the contribution from the R2 polynomials

appearing on the left hand side of (B.38).

Following a change of variables z → ǫz, the use of (B.32) reveals that the resulting

integrand from (B.38)

ρh(z, y, ti, ui;ω1, ω2) =

∏6
i=1 Γh(ti ± z, ui ± y;ω1, ω2)

Γh(±2z,±2y;ω1, ω2)
, (B.39)

decays exponentially for z → ±∞ as

ρh(z, y, ti, ui;ω1, ω2) = O
(

e
−2πi |z| (ω1+ω2)/(rω1ω2)

)

. (B.40)

This means that the integration of ρh may be extended to the entire real line with only

exponentially small error, and the final result for the limit ǫ → 0 of (B.38) may be written as

lim
ǫ→0

e
2πi(3R2(0,0,ǫω1,ǫω2)−2

∑6
i=1 R2(ǫti,0;ǫω1,ǫω2))λ

⌊r/2⌋
∑

y=0

ε(y)

∫ 1
2

− 1
2

dz ρe(z, y, ǫti, ui; ǫω1, ǫω2)

=
1

2r
√−ω1ω2

⌊r/2⌋
∑

y=0

ε(y)

∫ ∞

−∞
dz ρh(z, y, ti, ui;ω1, ω2) , (B.41)

with exponentially fast convergence to the right hand side. As a consequence, the iden-

tity (B.18), follows from the identity (B.13) in the hyperbolic limit (B.17) (the limit of the

right hand side of (B.13) follows from the use of (B.30)), which is what was to be shown.

The star-triangle relation (3.34) is recovered from (B.18) after setting

t1 = +x1 + iα , t3 = +x3 + iβ , t5 = +x2 + ω1 + ω2 − i(α+ β) ,

t2 = −x1 + iα , t4 = −x3 + iβ , t6 = −x2 + ω1 + ω2 − i(α+ β) ,
(B.42)

and
u1 = +m1 , u3 = +m3 , u5 = +m2 ,

u2 = −m1 , u4 = −m3 , u6 = −m2 ,
(B.43)

and finally substituting ω1 → iω1, ω2 → iω2, for Re(ω1),Re(ω2) > 0.

The gauge theory equation (4.14) is recovered, up to the different respective normali-

sations used in (4.8) and (B.20), after the simpler substitution

ti = xi , ui = mi , (B.44)

followed by ω1 → iω1, ω2 → iω2, for Re(ω1),Re(ω2) > 0. Some details are given in

appendix C on the validity of the identity (B.18) (resp. (B.13)) under such different nor-

malisations of the hyperbolic gamma function (B.19) (resp (B.4)).

C The mod r dependence

In this section it will be shown that the dependence on JmK = m mod r in the identi-

ties (B.13), and (B.18), may be replaced with a dependence on the integer m itself. This
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directly follows from the fact that the gamma functions (B.4), and (B.19), are unchanged af-

ter replacing JmK with m. It is straightforward to show this, through the use of well-known

relations for the regular elliptic gamma function (B.8), and the associated theta function in

the elliptic case, and analogous relations for the hyperbolic gamma function (B.22) in the

hyperbolic case. This section was motivated by the different form of the identity (B.13),

recently appearing in [23]. The considerations of this section make clear that the univariate

case of the elliptic sum/integral identity of [23] (Theorem 2 of [23]), is equivalent to the

identity (B.13) originally obtained by the second author [21].

Specifically, redefine the lens elliptic gamma function as

Γe(z,m;σ, τ) = e
φe(z,m;σ,τ)γe(z,m;σ, τ) , (C.1)

where γe(z,m;σ, τ) is given in (B.5), and φe(z,m;σ, τ) is given in (B.6), in terms of the

function R2(z,m;σ, τ) now defined as

R2(z,m;σ, τ) = R(z +mσ; r̂σ, σ + τ) +R(z + (r̂ −m)τ ; r̂τ, σ + τ) . (C.2)

The r̂ is an independent non-zero integer parameter, where r̂ = r in (B.3). It will be shown

that the identity (B.13) is also satisfied by (C.1), and is in fact independent of the value of r̂.

The case r̂ = r corresponds to the original normalisation of the lens elliptic gamma function

used in [21], and the case r̂ = 1 corresponds to the recent normalisation appearing in [23].

For now, fix r̂ = r, and introduce the theta function

θ(z;σ) = (e2πiz; p)∞ (e−2πizp; p)∞ , (C.3)

where z ∈ C, and p is defined in (B.1). The theta function satisfies the identity

θ(z + kσ;σ) =
θ(z;σ)

(−e2πiz)ke2πiσk(k−1)/2
, k ∈ Z . (C.4)

The regular elliptic gamma function (B.8) satisfies the following relations with the theta

function (C.3)

Γe,1(z + nσ;σ, τ) = Γe,1(z;σ, τ)
n−1
∏

j=0

θ(z + jσ; τ) ,

Γe,1(z + nτ ;σ, τ) = Γe,1(z;σ, τ)
n−1
∏

j=0

θ(z + jτ ;σ) ,

(C.5)

for integers n = 1, 2, . . ..

It may be shown that for r̂ = r,

Γe(z, JmK;σ, τ) = Γe(z,m;σ, τ) , (C.6)

for all integers m, and thus (B.13) is unchanged after replacing all integers JmK, with m.

This follows from the following periodicity property of (C.1) (for r̂ = r)

Γe(z,m+ kr;σ, τ) = Γe(z,m;σ, τ) , k ∈ Z , (C.7)
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which may be shown directly with the use of (C.4), and (C.5). For example, consider the

shift m− ar, for integers a ≥ 1. Then

γe(z,m− ar;σ, τ) = Γe,1(z + σ(m− ar); rσ, σ + τ) Γe,1(z + τ(r −m+ ar); rτ, σ + τ)

= γe(z,m;σ, τ)

a−1
∏

j=0

θ(z − τ(m− (j + 1)r);σ + τ)

θ(z + τ(m− (j + 1)r);σ + τ)
. (C.8)

The ratio of theta functions may be exchanged for an exponential term using (C.4), and

the desired relation

Γe(z,m− ar;σ, τ) = Γe(z,m;σ, τ) , (C.9)

follows after inspecting that the following equality is satisfied

e
φe(z,m−ar;σ,τ)

a−1
∏

j=0

θ(z − τ(m− (j + 1)r);σ + τ)

θ(z + σ(m− (j + 1)r);σ + τ)
= e

φe(z,m;σ,τ) . (C.10)

The case of the shift m+ ar, for a ≥ 1 is very similar. Thus the identity (B.13) holds with

the lens elliptic gamma function (C.1), for the case r̂ = r. Note that for the normalisation

used in [23] (corresponding to r̂ = 1), the analogue of (C.7) is a more cumbersome quasi-

periodicity condition of the lens elliptic gamma function.

Then after combining all z independent terms coming from the normalisation factors

φe(z,m;σ, τ) (B.6), into a single normalisation factor β(ti, ui, y), the identity (B.13) may

be written in terms of γe(z,m;σ, τ) (B.5) as

λ

⌊r/2⌋
∑

y=0

ε(y)β(ti, ui, y)

∫ 1

0

dz

e
4πizy

∏6
i=1 γe(ti ± z, ui ± y;σ, τ)

γe(±2z,±2y;σ, τ)
=

∏

1≤i<j≤6

γe(ti + tj , ui + uj ;σ, τ) ,

(C.11)

where

β(ti, ui, y) = exp

{

2πi

(

6
∑

i=1

tiui − (σ − τ)

(

y2 − 1

2

6
∑

i=1

u2i

))}

. (C.12)

Observe that the normalisation of the lens elliptic gamma function (C.1) depends on r̂

explicitly only, however the combined normalisation β(ti, ui, y) (C.12) in (C.11), is in-

dependent of r̂. Thus the identity (B.13) remains invariant after replacing the integer

parameter r̂ (which has been fixed to r̂ = r up to now) appearing in the normalisation

factor φe(z,m;σ, τ), by any non-zero integer (generally r̂ could be any non-zero complex

number). Consequently (B.13) holds with the function (C.1) for any non-zero choice of r̂,

which is what was to be shown.

Now setting r̂ = 1 in φe(z,m;σ, τ) exactly results in the normalisation of γe(z,m;σ, τ)

used in [23]. Thus contrary to what was stated at the end of section 5 of [23], the identity of

Theorem 2 of [23] is equivalent to the second authors original identity [21], corresponding

to the normalisation r̂ = r.31 The normalisation corresponding to r̂ = 1 was chosen in [23]

31This also means that the theta function identity (A.27) of [21], is equivalent to the n = 1 case of the

theta function identity (63) of [23] (which was obtained in [44]), which can indeed be shown through direct

computation.
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so that

Γe(z,m;σ, τ) = Γe,1(z;σ, τ) , (r = 1) , (C.13)

is satisfied for all integersm, where Γe,1(z;σ, τ) is the regular elliptic gamma function (B.8).

This is also obviously satisfied for the normalisation r̂ = r. Due to the periodicity rela-

tion (C.7) satisfied by the lens elliptic gamma function (C.1) for r̂ = r, it is likely that

the hypergeometric equations constructed from (5.8) will take a simpler form than in [23],

however details of this calculation are beyond the scope of this paper.

The removal of the dependence on mod r is similar at the hyperbolic level. First

redefine the function Γh by dropping the mod r dependence in (B.19)

Γh(z,m;ω1, ω2) = e
φh(m)γh(z,m;ω1, ω2) , (C.14)

where φh(m), and γh(z,m;ω1, ω2) are defined in (B.20), and (B.21) respectively.

The periodicity property

Γh(z,m+ kr;σ, τ) = Γh(z,m;σ, τ) , k ∈ Z , (C.15)

follows simply from the following functional relations satisfied by Γh,1(z;ω1, ω2) (B.22)

Γh,1(z + nω1;ω1, ω2) = Γh,1(z;ω1, ω2)
n−1
∏

j=0

2 sin
π(z + jω1)

ω2
,

Γh,1(z + nω2;ω1, ω2) = Γh,1(z;ω1, ω2)
n−1
∏

j=0

2 sin
π(z + jω2)

ω1
,

(C.16)

for n = 1, 2, . . .. Consequently the hyperbolic identity (B.18) is also satisfied by the

function (C.14). While the normalisation factor (B.20) is required for the periodic-

ity (C.15) of Γh (C.14), it may be omitted from (C.14) without affecting the validity

of the identity (B.18). This follows from the absence of any terms in the exponent of

β(ti, ui, y) (C.12) that depend only on the integers ui, y. As a consequence, the “sign

factor” normalisation (4.8) also cannot make any overall contribution to the identity (4.14)

(equivalently (B.18)), and could be dropped from (4.7) without affecting the validity of

the latter identity.
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