
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277608346

Spectral Properties of Fourth Order Differential Operators with Periodic and

Antiperiodic Boundary Conditions

Article  in  Results in Mathematics · March 2015

DOI: 10.1007/s00025-015-0454-2

CITATIONS

2
READS

161

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Sturm-Liouville View project

Hikmet Gunes

Inonu University

1 PUBLICATION   2 CITATIONS   

SEE PROFILE

Nazim B. Kerimov

Mersin University,Mersin, Turkey

48 PUBLICATIONS   516 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Nazim B. Kerimov on 24 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/277608346_Spectral_Properties_of_Fourth_Order_Differential_Operators_with_Periodic_and_Antiperiodic_Boundary_Conditions?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/277608346_Spectral_Properties_of_Fourth_Order_Differential_Operators_with_Periodic_and_Antiperiodic_Boundary_Conditions?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sturm-Liouville?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hikmet_Gunes?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hikmet_Gunes?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Inonu_University?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hikmet_Gunes?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazim_Kerimov?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazim_Kerimov?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazim_Kerimov?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nazim_Kerimov?enrichId=rgreq-aa403ca01e16c4920efc2a2217954072-XXX&enrichSource=Y292ZXJQYWdlOzI3NzYwODM0NjtBUzoyNjU4OTYxOTUyNjA0MTZAMTQ0MDQwNjAwMTY2MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Results. Math. Online First
c© 2015 Springer Basel
DOI 10.1007/s00025-015-0454-2 Results in Mathematics

Spectral Properties of Fourth Order
Differential Operators with Periodic
and Antiperiodic Boundary Conditions

Hikmet Gunes, Nazim B. Kerimov and Ufuk Kaya

Abstract. In this paper, we consider the following periodic and antiperi-
odic problem

yiv + p2 (x) y′′ + p1 (x) y′ + p0 (x) y = λy, 0 < x < 1,

y(s) (1) − (−1)σ y(s) (0) = 0, s = 0, 3,

where λ is a spectral parameter; pj(x) ∈ L1(0, 1), j = 0, 1, p2(x) ∈
W 1

1 (0, 1) with
∫ 1

0
p2(ξ)dξ = 0 are complex-valued functions and σ = 0, 1.

The boundary conditions of this problem are periodic-antiperiodic bound-
ary conditions and it is well known that they are regular but not strongly
regular. Asymptotic formulae for eigenvalues and eigenfunctions of the
considered boundary value problem are established. Under the condition

(p2 (1) − p2 (0) − 2c1) (p2 (1) − p2 (0) + 2c1) �= 0,

it is proved that all the eigenvalues (except for finite number) are simple,

where c1 =
∫ 1

0
p1(ξ)dξ. Furthermore, we prove that the system of root

functions of this spectral problem forms a basis in the space Lp(0, 1),

1 < p < ∞, when p1(1) = p1(0); p
(s)
2 (1) = p

(s)
2 (0), s = 0, 1; pj(x) ∈

W j
1 (0, 1), j = 0, 1, 2; c1 �= 0. Also, it is shown that this basis is uncondi-

tional for p = 2.
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Keywords. Fourth order eigenvalue problem, periodic and antiperiodic
boundary conditions, asymptotic behavior of eigenvalues and eigenfunc-
tions, basis properties of the system of root functions.
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1. Introduction

Henceforward, by L we denote a differential operator generated by the differ-
ential expression

l (y) = yiv + p2 (x) y′′ + p1 (x) y′ + p0 (x) y, x ∈ (0, 1) , (1)

where pj(x) ∈ L1(0, 1), j = 0, 1, p2(x) ∈ W 1
1 (0, 1) with

∫ 1

0
p2(ξ)dξ = 0, are

complex-valued functions and the periodic-antiperiodic boundary conditions

Us (y) ≡ y(s) (1) − (−1)σ
y(s) (0) = 0, s = 0, 3, σ = 0, 1. (2)

It is easy to verify that boundary conditions (2) are regular, but not strongly
regular.

In this paper, the structures of eigenvalues and root functions of the
operator L are given under the condition

(p2 (1) − p2 (0) − 2c1) (p2 (1) − p2 (0) + 2c1) �= 0.

Asymptotic formulae for eigenvalues and root functions are obtained. More-
over, the basicity of the root functions system is established in the space
Lp(0, 1), 1 < p < ∞ when p1(1) = p1(0); p(s)

2 (1) = p
(s)
2 (0), s = 0, 1; pj(x) ∈

W j
1 (0, 1), j = 0, 1, 2; c1 �= 0, where

c1 =
∫ 1

0

p1 (ξ) dξ. (3)

In [13–15], Kerimov and Kaya have investigated the following problem

yiv + p2 (x) y′′ + p1 (x) y′ + p0 (x) y = λy, 0 < x < 1,

y′′′ (1) − (−1)σ
y′′′ (0) + α3,2y

′′ (0) α3,1y
′ (0) + α3,0y (0) = 0,

y′′ (1) − (−1)σ
y′′ (0) + α2,1y

′ (0) α2,0y (0) = 0,
y′ (1) − (−1)σ

y′ (0) + α1,0y (0) = 0,
y (1) − (−1)σ

y (0) = 0

in various conditions. However, there is no case reduced to the periodic-
antiperiodic boundary conditions. Indeed, the basicity properties of a fourth
order periodic-antiperiodic problem are firstly investigated in this paper.

In [8,17,29], it has been studied basicity of the system of root functions
of differential operators with strongly regular boundary conditions. Besides,
basicity of the system of root functions of differential operators with regular
(but not strongly) boundary conditions is studied in [3–7,9,11,16,18–28,31–
35]. For the Sturm-Liouville operator with periodic (antiperiodic) boundary
conditions, first examples of potentials providing divergence of corresponding
spectral expansions were constructed in [21] and [7]. More information about
these studies was given in [13–15].

Let us define the number γ0 as follows. Assume that γ0 is any fixed
number satisfying the equality

γ2
0 = (−1)σ (p2 (1) − p2 (0) − 2c1) (p2 (1) − p2 (0) + 2c1) . (4)
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The following assertions are the basic results of this paper:

Theorem 1. Let p0(x), p1(x) ∈ L1(0, 1), p2(x) ∈ W 1
1 (0, 1) be arbitrary complex-

valued functions and γ0 �= 0. Then all eigenvalues of differential operator (1)–
(2) except for a finite number, are simple and form two infinite sequences
λn,1 and λn,2, n = 1, 2, . . . . Moreover, for sufficiently large numbers n, the
asymptotic formula

λn+nj ,j = ((2n − σ)π)4
{

1 +
(−1)j

γ0

2 ((2n − σ)π)3
+ O

(
n−3εn

)
}

(5)

is valid, where j = 1, 2 and n1, n2 are certain integers. Furthermore, for suffi-
ciently large numbers n, the corresponding eigenfunctions un,1(x) and un,2(x),
n = 1, 2, . . . , have the following asymptotic formulae:

un+nj ,j (x) = (2c1 + (p2 (1) − p2 (0))) cos (2n − σ)πx

+ (−1)j
γ0 sin (2n − σ)πx + O (εn) , (6)

where

εn =

∣
∣
∣
∣
∣
∣

1∫

0

(2p1 (ξ) − p′
2 (ξ)) e2(2n−σ)πiξdξ

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

1∫

0

(2p1 (ξ) − p′
2 (ξ)) e−2(2n−σ)πiξdξ

∣
∣
∣
∣
∣
∣
+ n−1. (7)

Theorem 2. Let pj(x) ∈ W j
1 (0, 1), j = 0, 1, 2, p

(s)
2 (1) = p

(s)
2 (0), s = 0, 1 and

p1(1) = p1(0). Then the system of root functions of differential operator (1)-(2)
forms a basis in the space Lp(0, 1), 1 < p < ∞, and this basis is unconditional
for p = 2. In addition, the asymptotic formulae for the eigenfunctions can be
written by the following form:

un+nj ,j (x) = cos (2n − σ)πx + (−1)j
i1−σ sin (2n − σ)πx + O

(
n−1

)
(8)

in this case.

Corollary 1. Assume that all conditions of Theorem 2 be fulfilled. Then n1 +
n2 = 1 − σ and we can choose n1 = 0 and n2 = 1 − σ.

2. Some Auxiliary Results

Let

S0 =
{

ρ ∈ C : 0 ≤ arg ρ ≤ π

4

}
, (9)

where C is the set of complex numbers. We denote by ωk, k = 1, 4, different
4-th roots of −1. It is known that the numbers ωk, k = 1, 4, can be ordered in
such a way that for all ρ ∈ S0 the inequalities
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� (ρω1) ≤ � (ρω2) ≤ � (ρω3) ≤ � (ρω4) (10)

hold, where �(z) means the real parts of z (see [30, Chapter II, §4.2]). Hencefor-
ward, the numbers ωk, k = 1, 4, will be such that for all ρ ∈ S0 the inequalities
(10) are valid. In this case, it is proved that the numbers ωk, k = 1, 4, can be
determined using the equalities (see [30, Chapter II, §4.8])

ω1 = e3πi/4, ω2 = e−3πi/4, ω3 = eπi/4, ω4 = e−πi/4. (11)

It is easy to see that

ω1 = −ω4, ω2 = −ω3. (12)

Lemma 1. [15] In S0, the following inequalities are valid:

� (ρω1) ≤ −
√

2
2

|ρ| , � (ρω4) ≥
√

2
2

|ρ| . (13)

Consider the domain obtained from the sector S0 [see (9)] by a translation
ρ → ρ−c, where c is a fixed complex number. This new sector with its vertex at
the point ρ = −c will be denoted by T0. For the new sector T0 the inequalities
(10) and (13) will be rewritten in the forms

� ((ρ + c) ω1) ≤ � ((ρ + c) ω2) ≤ � ((ρ + c) ω3) ≤ � ((ρ + c) ω4) , (14)

� ((ρ + c) ω1) ≤ −
√

2
2

|ρ + c| , � ((ρ + c) ω4) ≥
√

2
2

|ρ + c| . (15)

Fix such a domain T0. For ρ ∈ T0, the equation

l (y) + ρ4y = 0 (16)

has four linearly independent solutions yk(x, ρ), k = 1, 4 (see [30, Chapter II,
§4.5-4.6]). These solutions are regular if |ρ| is large enough. The derivatives
satisfy the integro-differential equations

dsyk (x, ρ)
dxs

= ρsωs
keρωkx +

1
4ρ3

x∫

0

∂sK1 (x, ξ, ρ)
∂xs

q (ξ) yk (ξ) dξ

− 1
4ρ3

1∫

x

∂sK2 (x, ξ, ρ)
∂xs

q (ξ) yk (ξ) dξ, s = 0, 3, (17)

where

K1 (x, ξ, ρ) =
k∑

α=1

ωαeρωα(x−ξ), K2 (x, ξ, ρ) =
4∑

α=k+1

ωαeρωα(x−ξ). (18)

Moreover, it is known (see [30, Chapter II, §4.5]) that
dsyk (x, ρ)

dxs
= ρseρωkxzk,s (x, ρ) , (19)

where zk,s(x, ρ) is analytic function of ρ and it satisfies

zk,s (x, ρ) = ωs
k + O

(
ρ−1

)
, k = 1, 4, s = 0, 3. (20)
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From (17)–(19), we have

zk,s (x, ρ) = ωs
k +

ωs+1
k

4ρ

x∫

0

2∑

j=0

pj (ξ)
ρ2−j

zk,j (ξ, ρ) dξ

+
1
4ρ

k−1∑

α=1

ωs+1
α

x∫

0

eρ(ωα−ωk)(x−ξ)
2∑

j=0

pj (ξ)
ρ2−j

zk,j (ξ, ρ) dξ

− 1
4ρ

4∑

α=k+1

ωs+1
α

1∫

x

eρ(ωα−ωk)(x−ξ)
2∑

j=0

pj (ξ)
ρ2−j

zk,j (ξ, ρ) dξ. (21)

Note that, by (14), we have

� (ρ (ωα − ωβ)) = � ((ρ + c) (ωα − ωβ)) − � (c (ωα − ωβ)) ≤ 2 |c| ,
where 1 ≤ α ≤ β ≤ 4. From here and (20) we obtain

x∫

0

pj (ξ) zk,j (ξ, ρ) eρ(ωα−ωk)(x−ξ)dξ = O (1) , α ≤ k;

1∫

x

pj (ξ) zk,j (ξ, ρ) eρ(ωα−ωk)(x−ξ)dξ = O (1) , α ≥ k,

where k = 1, 4 and j = 0, 1, 2. Consequently, it follows from (21) that

zk,s (x, ρ) = ωs
k +

ωs+1
k

4ρ

x∫

0

2∑

j=1

pj (ξ)
ρ2−j

zk,j (ξ, ρ) dξ

+
1
4ρ

k−1∑

α=1

ωs+1
α

x∫

0

eρ(ωα−ωk)(x−ξ)
2∑

j=1

pj (ξ)
ρ2−j

zk,j (ξ, ρ) dξ

− 1
4ρ

4∑

α=k+1

ωs+1
α

1∫

x

eρ(ωα−ωk)(x−ξ)
2∑

j=1

pj (ξ)
ρ2−j

zk,j (ξ, ρ) dξ + O
(
ρ−3

)
,

(22)

and particularly

zk,s (x, ρ) = ωs
k

⎧
⎨

⎩
1 − 1

4ρωk

x∫

0

p2 (ξ) dξ + O
(
ρ−2

)
⎫
⎬

⎭
. (23)

From (22), the formulae

zk,s (0, ρ) = ωs
k − 1

4ρ

4∑

α=k+1

ωs+1
α Bα,k (ρ) + O

(
ρ−3

)
(24)
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and

zk,s (1, ρ) = ωs
k +

ωs+1
k

4ρ

2∑

j=1

1
ρ2−j

1∫

0

pj (ξ) zk,j (ξ, ρ) dξ

+
1
4ρ

k−1∑

α=1

ωs+1
α Bα,k (ρ) + O

(
ρ−3

)
(25)

are valid, where

Bα,k (ρ)=

⎧
⎨

⎩

∑2
j=1

1
ρ2−j

∫ 1

0
pj (ξ) zk,j (ξ, ρ) e−ρ(ωα−ωk)ξdξ, if 1 ≤ k < α ≤ 4,

∑2
j=1

1
ρ2−j

∫ 1

0
pj (ξ) zk,j (ξ, ρ) eρ(ωα−ωk)(1−ξ)dξ, if 1 ≤ α < k ≤ 4.

(26)

One can easily see that

Bα,k (ρ) = O
(
ρ−1

)
. (27)

According to (3) and (20),

1∫

0

p1 (ξ) zk,1 (ξ, ρ) dξ = ωk

1∫

0

p1 (ξ) dξ + O
(
ρ−1

)
= c1ωk + O

(
ρ−1

)

and, by (23), the formula

1∫

0

p2 (ξ) zk,2 (ξ, ρ) dξ

= ω2
k

1∫

0

p2 (ξ)

⎧
⎨

⎩
1 − 1

4ρωk

ξ∫

0

p2 (t) dt

⎫
⎬

⎭
dξ + O

(
ρ−2

)
= O

(
ρ−2

)

can be easily obtained. This two equalities require

ωs+1
k

4ρ

2∑

j=1

1
ρ2−j

1∫

0

pj (ξ) zk,j (ξ, ρ) dξ =
c1ω

s+2
k

4ρ2
+ O

(
ρ−3

)
.

From here, (25) can be rewritten as follows:

zk,s (1, ρ) = ωs
k +

c1ω
s+2
k

4ρ2
+

1
4ρ

k−1∑

α=1

ωs+1
α Bα,k (ρ) + O

(
ρ−3

)
. (28)

By using formulae (24) and (28), for s = 0, 3, we obtain the following
equalities:
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z2,s (0, ρ) = ωs
2 − ωs+1

3

4ρ
B3,2 (ρ) − ωs+1

4

4ρ
B4,2 (ρ) + O

(
ρ−3

)
,

z3,s (0, ρ) = ωs
3 − ωs+1

4

4ρ
B4,3 (ρ) + O

(
ρ−3

)
,

z2,s (1, ρ) = ωs
2 +

c1ω
s+2
2

4ρ2
+

ωs+1
1

4ρ
B1,2 (ρ) + O

(
ρ−3

)
,

z3,s (1, ρ) = ωs
3 +

c1ω
s+2
3

4ρ2
+

ωs+1
1

4ρ
B1,3 (ρ) +

ωs+1
2

4ρ
B2,3 (ρ) + O

(
ρ−3

)
.

(29)

3. Proof of Theorem 1

Let

Δ (ρ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

U3 (y1) U3 (y2) U3 (y3) U3 (y4)

U2 (y1) U2 (y2) U2 (y3) U2 (y4)

U1 (y1) U1 (y2) U1 (y3) U1 (y4)

U0 (y1) U0 (y2) U0 (y3) U0 (y4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (30)

where yk(x, ρ), k = 1, 4, are the linearly independent solutions of the Eq. (16).
If we properly choose the vertex ρ = −c of the domain T0, then the eigenvalues
λ of the differential operator (1)–(2) whose absolute values are sufficiently large
have the form λ = −ρ4, where the numbers ρ are the roots of the equation

Δ (ρ) = 0 (31)

in the domain T0, and the set of such points ρ includes all the roots of (31) in
the domain T0 except for a finite number (see [30, Chapter II. § 4.9]). By (19),
for s = 0, 3 and k = 1, 4, we have

Us (yk) = ρs {eρωkzk,s (1, ρ) − (−1)σ
zk,s (0, ρ)} . (32)

According to (15), eρω1 tends exponentially to zero and eρω4 tends ex-
ponentially to infinity. Consequently, the following equalities are valid by (20)
and (32):

Us (y1) = −ρs (−1)σ {
z1,s (0, ρ) + O

(
ρ−1

)}
,

Us (y4) = ρseρω4
{
z4,s (1, ρ) + O

(
ρ−1

)}
,

i.e.

Us (y1) = −ρs (−1)σ {
ωs

1 + O
(
ρ−1

)}
,

Us (y4) = ρseρω4
{
ωs

4 + O
(
ρ−1

)}
. (33)

Let

As,k (ρ) = eρωkzk,s (1, ρ) − (−1)σ
zk,s (0, ρ) , k = 2, 3, s = 0, 3. (34)
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Due to (32), it is obvious that

Us (yk) = ρsAs,k (ρ) , k = 2, 3, s = 0, 3. (35)

By using the formulae (64) and (65) in [15], if ρ is a root of Eq. (31), we
get that the following equalities are valid:

eρωk − (−1)σ = O
(
ρ−2

)
, k = 2, 3 (36)

because p2 (x) ∈ W 1
1 (0, 1) and α1,0 = α2,1 = α3,2 = 0 by present conditions.

From here, (27) and (29), we get

As,k (ρ) = Cs,k (ρ) + Ds,k (ρ) + O
(
ρ−3

)
, k = 2, 3, s = 0, 3 (37)

and

As,k (ρ) = O
(
ρ−2

)
, k = 2, 3, s = 0, 3, (38)

where

Cs,k (ρ) = ωs
k (eρωk − (−1)σ) +

(−1)σ
c1ω

s+2
k

4ρ2
+

(−1)σ
ωs+1

5−k

4ρ
B5−k,k (ρ) ,

Ds,k (ρ) =
(−1)σ

ωs+1
1

4ρ
B1,k (ρ) +

(−1)σ
ωs+1

4

4ρ
B4,k (ρ) ,

k = 2, 3, s = 0, 3. (39)

We substitute these expressions in the Eq. (31) (see (30)) and divide
out the common factors ρ3, ρ2, ρ of the rows and also the common factor
−(−1)σ and eρω4 of the first and last column of the determinant Δ(ρ). Then
the Eq. (31) can be written in the form

Δ(1) (ρ) + O
(
ρ−5

)
= 0, (40)

where

Δ(1) (ρ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

ω3
1 A3,2 (ρ) A3,3 (ρ) ω3

4

ω2
1 A2,2 (ρ) A2,3 (ρ) ω2

4

ω1 A1,2 (ρ) A1,3 (ρ) ω4

1 A0,2 (ρ) A0,3 (ρ) 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (41)

Taken into account (37) in the determinant (41) (see (39)), one can easily
see that the column vectors Ds,k(ρ) for k = 2, 3 are linear combinations of first
and last columns. As a result, (40) is reduced to the following equation:

Δ(2) (ρ) + O
(
ρ−5

)
= 0, (42)

where

Δ(2) (ρ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ω3
1 C3,2 (ρ) C3,3 (ρ) ω3

4

ω2
1 C2,2 (ρ) C2,3 (ρ) ω2

4

ω1 C1,2 (ρ) C1,3 (ρ) ω4

1 C0,2 (ρ) C0,3 (ρ) 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (43)
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After calculating the determinant (43), by (11) and (39), the Eq. (42) is
equivalent to

−16 (eρω2 − (−1)σ) (eρω3 − (−1)σ) − 4 (−1)σ
ic1 (eρω2 − (−1)σ)

ρ2

−4 (−1)σ
ic1 (eρω3 − (−1)σ)

ρ2
+

c2
1

ρ4
− iB3,2 (ρ) B2,3 (ρ)

ρ2
+ O

(
ρ−5

)
= 0.

(44)

From Riemann–Lebesque Lemma, for an arbitrary function f(x) ∈
L1(0, 1), the formulae

1∫

0

f (ξ) eτξdξ = o (1) ,

1∫

0

f (ξ) eτ(1−ξ)dξ = o (1) , |τ | → +∞ (45)

hold for �τ ≤ c1 = const. Using (12), (20), (26), (36), (45) and integration by
parts, we have

B3,2 (ρ) B2,3 (ρ) = − i (p2 (1) − p2 (0))2

4ρ2
+ O

(
ρ−2ε (ρ)

)
, (46)

where

ε (ρ) =

∣
∣
∣
∣
∣
∣

1∫

0

(2p1 (ξ) − p′
2 (ξ)) e2ρω2ξdξ

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

1∫

0

(2p1 (ξ) − p′
2 (ξ)) e2ρω2(1−ξ)dξ

∣
∣
∣
∣
∣
∣
+
∣
∣ρ−1

∣
∣ . (47)

Also, ε (ρ) satisfies

ε (ρ) = o (1)

by (45).
From (46), we can rewrite the Eq. (44) as follows:

−16 (eρω2 − (−1)σ) (eρω3 − (−1)σ) − 4 (−1)σ
ic1 (eρω2 − (−1)σ)

ρ2

−4 (−1)σ
ic1 (eρω3 − (−1)σ)

ρ2
+

c2
1

ρ4
− (p2 (1) − p2 (0))2

4ρ4
+ O

(
ρ−4ε (ρ)

)
= 0.

After some simplifications, the equation above is reduced to the form
(

16 − 4ic1

ρ2

)

e2ρω2 − 2 (−1)σ

(

16 − 4ic1

ρ2
− c2

1

2ρ4
+

(p2 (1) − p2 (0))2

8ρ4

)

eρω2

+
(

16 − 4ic1

ρ2

)

+ O
(
ρ−4ε (ρ)

)
= 0.
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The last equation splits into two equations:

eρω2 = (−1)σ − γ0

8ρ2
+ O

(
ρ−2ε (ρ)

)
, (48)

eρω2 = (−1)σ +
γ0

8ρ2
+ O

(
ρ−2ε (ρ)

)
, (49)

where γ0 is the number defined by (4).
Now, we will investigate the Eq. (48). By using Rouche’s theorem, it can

be proved in a standard way that the roots ρ ∈ T0 of the Eq. (48) whose
absolute values are sufficiently large lie on the domains Gn ⊂ T0, n = n0, n0 +
1, . . . , where Gn is the O(n−1)-neighborhood of the point −(2n−σ)πi/ω2 and
n0 is sufficiently large natural number (see [30, Chapter II, § 4.9]). Moreover,
(48) has a unique root within each Gn, n = n0, n0 + 1, . . . . Let ρ̃ be the root
of the Eq. (48) belonging to Gn. By using the equalities (67) and (71) from
[15], we have

ρ̃ = − (2n − σ)πi

ω2
+ r, r = O

(
n−2

)
. (50)

From here, the equalities

1
ρ̃

=
−ω2

(2n − σ)πi
+ O

(
n−4

)
,

1
ρ̃ 2

=
1

(2n − σ)2 π2i
+ O

(
n−5

)
,

eρ̃ω2 = (−1)σ {1 + rω2 + O
(
n−4

)}
(51)

can be easily obtained. By (7), (47), (50) and (51), we calculate as

ε (ρ) = O (εn) . (52)

Writing ρ = ρ̃ in (48) and using the relations (51) and (52), after simple
transformations we have

r =
− (−1)σ

γ0

8ω2 (2n − σ)2 π2i
+ O

(
n−2εn

)
. (53)

Thus, by (50) and (53), within O(n−1)-neighborhood Gn of the point
zn = −(2n − σ)πi/ω2, n = n0, n0 + 1, . . . , the Eq. (48) has the unique root

ρ̃n,1 = − 1
ω2

{

(2n − σ) πi +
γ0

8 (2n − σ)2 π2i

}

+ O
(
n−2εn

)
. (54)

Similarly, we find that, within O(n−1)-neighborhood Gn of the point zn,
n = n0, n0 + 1, . . . , the Eq. (49) has the unique root

ρ̃n,2 = − 1
ω2

{

(2n − σ) πi − γ0

8 (2n − σ)2 π2i

}

+ O
(
n−2εn

)
. (55)
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We seek the eigenfunction ũn,j(x), j = 1, 2, corresponding to the eigen-
value λ = −(ρ̃n,j)4, j = 1, 2, for sufficiently large n, in the form

ũn,j (x) =
ie−ρω4

ρ4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) y4 (x, ρ)

U3 (y1) U3 (y2) U3 (y3) U3 (y4)

U2 (y1) U2 (y2) U2 (y3) U2 (y4)

U1 (y1) U1 (y2) U1 (y3) U1 (y4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

or, more precisely

ũn,j (x) = − (−1)σ
iρ2

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− (−1)σ
y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) e−ρω4y4 (x, ρ)

− (−1)σ
ρ−3U3 (y1) ρ−3U3 (y2) ρ−3U3 (y3) ρ−3e−ρω4U3 (y4)

− (−1)σ
ρ−2U2 (y1) ρ−2U2 (y2) ρ−2U2 (y3) ρ−2e−ρω4U2 (y4)

− (−1)σ
ρ−1U1 (y1) ρ−1U1 (y2) ρ−1U1 (y3) ρ−1e−ρω4U1 (y4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where ρ = ρ̃n,j .
With (35), we can write

ũn,j (x) = − (−1)σ
iρ2

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− (−1)σ
y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) e−ρω4y4 (x, ρ)

− (−1)σ
ρ−3U3 (y1) A3,2 (ρ) A3,3 (ρ) ρ−3e−ρω4U3 (y4)

− (−1)σ
ρ−2U2 (y1) A2,2 (ρ) A2,3 (ρ) ρ−2e−ρω4U2 (y4)

− (−1)σ
ρ−1U1 (y1) A1,2 (ρ) A1,3 (ρ) ρ−1e−ρω4U1 (y4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
ρ=ρ̃n,j

.

(56)

From (19) and (20), we get

yk (x, ρ) = O (1) , k = 1, 2, 3, e−ρω4y4 (x, ρ) = O (1) . (57)

In view of (33), (38), (56) and (57), we have

ũn,j (x) = − (−1)σ
iρ2 {y3 (x, ρ) E2 (ρ) − y2 (x, ρ) E3 (ρ)} + O

(
ρ−1

)
, (58)

where ρ = ρ̃n,j and

Ek (ρ) =

∣
∣
∣
∣
∣
∣
∣

ω3
1 A3,k (ρ) ω3

4

ω2
1 A2,k (ρ) ω2

4

ω1 A1,k (ρ) ω4

∣
∣
∣
∣
∣
∣
∣
ρ=ρ̃n,j

, k = 2, 3.

Using (37) and (39), we reduce the determinant Ek (ρ) to

Ek (ρ) =

∣
∣
∣
∣
∣
∣
∣

ω3
1 C3,k (ρ) ω3

4

ω2
1 C2,k (ρ) ω2

4

ω1 C1,k (ρ) ω4

∣
∣
∣
∣
∣
∣
∣
ρ=ρ̃n,j

+ O
(
ρ−3

)
, k = 2, 3.
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If we calculate this determinant using (48) and (49), we will get

Ek (ρ) =
(−1)j

γ0 + (−1)k+σ
i (2c1 + (p2 (1) − p2 (0)))
2ρ2

+ O
(
ρ−2ε (ρ)

)
, (59)

where k = 2, 3 and ρ = ρ̃n,j . By (19), (20), (54) and (55), we have

y2 (x, ρ̃n,j) = e−(2n−σ)πix + O
(
n−2

)
, y3 (x, ρ̃n,j) = e(2n−σ)πix + O

(
n−2

)
,

(ρ̃n,j)
−1 = O

(
n−1

)
,

where j = 1, 2. By using these expressions and (52), (57), (58), (59) we have
the representation for j = 1, 2,

ũn,j (x) = (2c1 + (p2 (1) − p2 (0))) cos (2n − σ)πx

(−1)j
γ0 sin (2n − σ)πx + O (εn) . (60)

The construction of the integers n1 and n2 is completely similar to the
method in [13–15]. Consequently, the formulae (5) and (6) are directly obtained
from (54), (55), (60) and the relation λ = −ρ4.

4. Proofs of Theorem 2 and Corollary 1

Since pj(x) ∈ W j
1 (0, 1), j = 1, 2, by (7), we have εn = O(n−1). Consequently,

in this case, the formula (8) are true.
Let

v1,1 (x) , v1,2 (x) , . . . , vn,1 (x) , vn,2 (x) , . . . (61)

be the system which is biorthogonally conjugate to the system

u1,1 (x) , u1,2 (x) , . . . , un,1 (x) , un,2 (x) , . . . , (62)

i.e. (un,j , vm,s) = δn,m.δj,s, n,m = 1, 2, . . . , j, s = 1, 2. It is well known from
[17, p.84] or [30, p.99] that (61) is the system of root functions of the differential
operator L∗ which is the adjoint operator to L. By the conditions p

(s)
2 (1) =

p
(s)
2 (0), s = 0, 1 and p1(1) = p1(0) of Theorem 2, the differential operator

L∗ is generated by the following differential expression and adjoint boundary
conditions

l∗ (z) = ziv +
(
p2 (x)z

)′′
−
(
p1 (x)z

)′
+ p0 (x)z,

U∗
0 (z) ≡ z (1) − (−1)σ

z (0) = 0,
U∗

1 (z) ≡ z′ (1) − (−1)σ
z′ (0) = 0, (63)

U∗
2 (z) ≡ z′′ (1) − (−1)σ

z′′ (0) = 0,
U∗

3 (z) ≡ z′′′ (1) − (−1)σ
z′′′ (0) = 0.
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From the form of the differential operator L∗ and Theorem 1, it follows
that for sufficiently large numbers n the equality

vn+nj ,j (x)

= rn+nj ,j

(
cos (2n − σ)πx + (−1)j (−i)1−σ sin (2n − σ)πx + O

(
n−1

))
,

(64)

is valid, where rnj+n,j , j = 1, 2 are some numbers determined from the equality
(unj+n,j , vnj+n,j) = 1, j = 1, 2. According to the equality (un+nj ,j , vn+nj ,j) =
1, j = 1, 2, and the asymptotic formulae (8), (64), for sufficiently large numbers
n, we have rn+nj ,j = 1 + O(n−1), j = 1, 2. Consequently, from (64), for
sufficiently large numbers n, we obtain

vn+nj ,j (x) = cos (2n − σ)πx + (−1)j (−i)1−σ sin (2n − σ) πx + O
(
n−1

)
.

(65)

Let

g0 (x) = 1, g2n−1 (x) =
√

2 sin 2nπx, g2n (x) =
√

2 cos 2nπx, (66)

g̃2n−1 =
√

2 sin (2n − 1) πx, g̃2n =
√

2 cos (2n − 1) πx, (67)

h0 (x) = 1, h2(n−1)+j (x) = cos 2nπx + (−1)j
i sin 2nπx, (68)

h̃2(n−1)+j (x) = cos (2n − 1) πx + (−1)j sin (2n − 1) πx, (69)

where n = 1, 2, . . . , j = 1, 2. Each of the systems (66) and (67) is an orthonor-
mal basis of the space L2 (0, 1). From the asymptotic formulae (8), (65), it is
obvious that each of the systems (61) and (62) satisfies the Bessel inequality.
Namely, for an arbitrary function f (x) ∈ L2 (0, 1),

∞∑

n=1

2∑

j=1

|(f, un,j)|2 < +∞,
∞∑

n=1

2∑

j=1

|(f, vn,j)|2 < +∞.

Furthermore, each of the systems (61) and (62) is complete in the space
L2 (0, 1) (see [2]). Consequently each of these systems forms a Riesz basis
of the space L2 (0, 1) (see [10, Chapter VI, §2.2 Theorem 2.1]).

Let us prove Corollary 1. According to Lemma 2 in [14], each of the
systems (68) and (69) (see (66) and (67)) is a Riesz basis in the space L2(0, 1).
Consider the case σ = 0. The case σ = 1 can be checked in the same way by
using (69). Assume that n1 ≥ 0 and n2 ≥ 0. From the asymptotic formulae
(6) and the definition of {hk(x)}∞

k=0 (see (68)), we obtain
∞∑

n=1

(
‖un+n1,1 − h2n−1‖2 + ‖un+n2,2 − h2n‖2

)
≤ const

∞∑

n=1

1
n2

< +∞. (70)

It is easy to see that n1 +n2 root functions of the operator L and one function
from system (68) are absent in (70). Let n1 + n2 > 1. In this case, by (70),
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the system S generated by all functions except n1 + n2 − 1 functions from the
system (62) is quadratically close to system (68). Since (68) is a Riesz basis of
L2(0, 1), then S also forms a Riesz basis of L2(0, 1) [10]. The latter contradicts
the basicity of the system (62) in L2(0, 1).

Let n1 = n2 = 0. Since (62) is a Riesz basis of the space L2(0, 1), then
again by (70), the system {hk(x)}∞

k=1 is a basis of the space L2(0, 1) and this
contradicts the basicity of the system {hk(x)}∞

k=0 in L2(0, 1). All the remaining
cases can be investigated in a similar way.

Thus, n1 + n2 = 1 holds. Therefore, without loss of generality we can
assume that n1 = 0, n2 = 1 − σ. Consequently, from (8) and (65), we have

un,1 (x) = cos (2n − σ)πx − i1−σ sin (2n − σ)πx + O
(
n−1

)
,

un+1−σ,2 (x) = cos (2n − σ)πx + i1−σ sin (2n − σ) πx + O
(
n−1

)
,

vn,1 (x) = cos (2n − σ)πx − (−i)1−σ sin (2n − σ) πx + O
(
n−1

)
,

vn+1−σ,2 (x) = cos (2n − σ)πx + (−i)1−σ sin (2n − σ)πx + O
(
n−1

)
.

(71)

Next we prove that the system of the root functions of the differential
operator L forms a basis of the space Lp(0, 1), where 1 < p < ∞ and p �= 2.
As above, we consider only the case σ = 0. The case σ = 1 is similar. Note
that (66) is a basis of the space Lp(0, 1) for any p ∈ (1,∞) [1, Chapter VIII,
§20, Theorem 2]. Consequently, there exists a constant Mp > 0 ensuring the
inequality

∥
∥
∥
∥
∥

N∑

n=0

(f, gn) gn

∥
∥
∥
∥
∥

p

≤ Mp ‖f‖p , N = 1, 2, . . . , (72)

for any function f(x) ∈ Lp(0, 1), where ‖ · ‖p means the norm in the space
Lp(0, 1) (see [12, Chapter I, §4, Theorem 6]). We now fix p ∈ (1, 2). Since the
system (62) is complete in the space L2(0, 1), then this system is complete in
Lp(0, 1) as well. Moreover, it is easy to see that

‖(f, vn,j) un,j‖p ≤ const ‖f‖p ,

where n = 1, 2, . . . and j = 1, 2. Consequently, in order to prove the basicity
of this system in Lp(0, 1), it is enough to prove the existence of a constant
M > 0 ensuring the inequality

∥
∥
∥
∥
∥
∥

m∑

n=1

2∑

j=1

(f, vn,j) un,j

∥
∥
∥
∥
∥
∥

p

≤ M ‖f‖p m = 1, 2, . . . ,

for f (x) ∈ Lp (0, 1) (see [12, Chapter VIII, §4, Theorem 6]). Note that in-
stead of this inequality, under the same conditions, it is enough to prove the
inequality
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Jm (f) =

∥
∥
∥
∥
∥

m∑

n=1

{(f, vn,1) un,1 + (f, vn+1,2) un+1,2}
∥
∥
∥
∥
∥

p

≤ M ′ ‖f‖p , (73)

where m = 1, 2, . . . and M ′ is a certain positive constant.
From (66) and (71), we have

Jm (f) ≤ Jm,1 (f) + Jm,2 (f) + Jm,3 (f) + Jm,4 (f) , (74)

where m = 1, 2, . . . and

Jm,1 (f) =

∥
∥
∥
∥
∥

2m∑

n=1

(f, gn) gn

∥
∥
∥
∥
∥

p

, Jm,2 (f) =

∥
∥
∥
∥
∥

2m∑

n=1

(f, gn) O
(
n−1

)
∥
∥
∥
∥
∥

p

,

Jm,3 (f) =

∥
∥
∥
∥
∥

2m∑

n=1

(
f,O

(
n−1

))
gn

∥
∥
∥
∥
∥

p

, Jm,4 (f) =

∥
∥
∥
∥
∥

2m∑

n=1

(
f,O

(
n−1

))
O
(
n−1

)
∥
∥
∥
∥
∥

p

.

By (72),

Jm,1 (f) ≤ const ‖f‖p . (75)

By Riesz theorem, it follows that

Jm,2 (f) ≤ const
2m∑

n=1

|(f, gn)|n−1

≤ const

(
2m∑

n=1

|(f, gn)|q
)1/q ( 2m∑

n=1

n−p

)1/p

≤ const ‖f‖p , (76)

where 1/p + 1/q = 1 (see [36, Chapter XII, §2, Theorem 2.8]). Further,

Jm,3 (f) ≤
∥
∥
∥
∥
∥

2m∑

n=1

(
f,O

(
n−1

))
gn

∥
∥
∥
∥
∥

2

=

(
2m∑

n=1

∣
∣
(
f,O

(
n−1

))∣
∣2
)1/2

const ‖f‖1

(
2m∑

n=1

n−2

)1/2

≤ const ‖f‖p . (77)

Moreover,

Jm,4 ≤ const ‖f‖1

2m∑

n=1

n−2 ≤ const ‖f‖p . (78)

The inequality (73) is a consequence of the inequalities (74)–(78). Thus,
the basicity of the system (62) in the space Lp(0, 1) for 1 < p < 2 is proved.

Let 2 < p < ∞ and 1/p + 1/q = 1. Note that 1 < q < 2 and the
system (61) is the system of root functions of the differential operator L∗. As
it has been proved above, the system of root functions of such operator forms
a basis of the space Lr(0, 1) for any r ∈ (1, 2), in particular r = q. Thus,
the system (61) is a basis of Lq(0, 1). Consequently, the system (62) which is
biorthogonally conjugate to (61) forms a basis of Lp(0, 1).
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