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Abstract

In the paper are obtained the generalizations of Housdorff-Young,
Riesz and Paley type theorems with respect to uniformly orthonormed
system for the case of the space L(p,q) with the mixed norm.
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1 Introduction

One of the important problems of theory of Fourier series is estimation of
Fourier coefficients by a function, and vice versa, the function by its Fourier
coefficients. In this connection, in the space L2 the Parseval inequality and
Riesz-Fisher theorem are known. In principle, this means that a space of coef-
ficients of an orthogonal basis in Hilbert space L2 coincides with l2. Partially
these results are extended on the space Lp (p �= 2) by Hausdorff–Young state-
ments for trigonometric systems, by F . Riesz statements for general orthog-
onal and Hardy Littlewood-Paley systems. According to F. Riesz theorem,
to each function of the space Lp[a, b] (1 < p ≤ 2) with respect to some or-
thonormed system there corresponds the sequence of its Fourier coefficients

from lp′
(

1
p′ + 1

p

)
, and vice versa. This fact doesn’t remain valid for p > 2.
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However, for p > 2 the Paley theorem is associated to this result. These mat-
ters are well interpreted in [8;10;11;16;19]. Another direction in this field is
study of behavior of Fourier coefficients under some smoothness conditions on
a function. The Bernstein theorem on absolute convergence of Fourier series of
functions of the class Lipα (α > 1/2) is the basic result of this matter. Further,
the Fourier series with vector coefficients, Banach spaces of Fourier type p, of
type and cotype of Rademaher are of great interest in this direction. One can
be acquainted with these matters in [1;4;5;15].

The Housdorff-Young, Riesz and Paley type theorems play a special role
while studying many problems (for example, in grounding the Fourier method
for solving partial equations, in theory of wavelet analysis and also in theory
of frames and etc.) in harmonic analysis. The present paper is devoted to
obtaining generalizations of these theorems for the case of b-basis. In the
paper, relations between the functions of the space L(p,q) with appropriate
sequence of coefficients of its Fourier series of the space of sequences lp with
ordinary norm are established. These results are extended to the case of the
space W(p,q). It should be noticed that the results obtained in the papers [1-
3;6;7;9;12-14;17;18] are very close to the matters considered in this paper.

2 Some notion and facts

Give some notion and facts used in the paper.
Let Lp(a, b) (1 < p < +∞) be a Banach space of measurable on (a, b)

functions f(x) for which the norm

‖f‖Lp
=

⎛
⎝ b∫

a

|f(x)|p dx

⎞
⎠

1/p

is finite. W m
p (a, b) (1 < p < +∞) is a Banach of functions u(x) having gener-

alized derivatives on (a, b) m-th order, ininclusively, for which the norm

‖u‖W m
p

=

m∑
k=0

∥∥u(k)
∥∥

Lp

is finite.
L(p,p′)((a, b)× (c, d))

(
1 < p < +∞, 1

p
+ 1

p′ = 1
)

is a Banach space of mea-

surable on (a, b) × (c, d) functions f(x, y) for which the mixed norm

‖f‖L(p,p′)
=

(∫ b

a

(∫ d

c

|f (x, y)|p′ dy

)p/p′

dx

)1/p



Riesz-Fisher theorem 1805

is finite. W m,n
(p,p′)((a, b)× (c, d))

(
1 < p < +∞, 1

p
+ 1

p′ = 1
)

is a Banach space of

functions u(x, y) having on (a, b) the generalized derivatives ∂mu
∂xm , ∂nu

∂yn and the
finite mixed norm

‖u‖W m,n

(p,p′)
= ‖u‖L(p,p′)

+

∥∥∥∥∂mu

∂xm

∥∥∥∥
L(p,p′)

+

∥∥∥∥∂nu

∂yn

∥∥∥∥
L(p,p′)

.

lp(a, b) (1 < p < +∞) is a Banach space of sequences a (t) = {ai (t)}i∈N of
measurable on (a, b) functions ai (t) , for which the norm

‖ā‖lp(a,b) =

⎛
⎝ ∞∑

i=1

b∫
a

|ai(t)|p dt

⎞
⎠

1/p

is finite.

Let {ϕn(t)} be an orthonormed system on [a, b]. Then the series
∞∑
i=1

aiϕi(t),

where ai =
b∫

a

f(t)ϕi(t)dt is said to be a Fourier series of the function f(t) by

the system {ϕn(t)}, is written as f(t) ∼
∞∑
i=1

aiϕi(t), and the numbers ai are

called the Fourier coefficients of the function f(t) by the system {ϕn(t)}.
Give the following Riesz and Paley classic statements: (see [10.ch. 6]).

Theorem 2.1. Let {ϕn(t)} be an orthonormed system on [a, b] such that
almost everywhere on [a, b]: |ϕn (t)| ≤ M (n ∈ N), M is independent of n and
1
p′ + 1

p
. Then:

1) if f ∈ Lp[a, b] (1 < p ≤ 2), then ‖{ai}‖lp′
≤ M

2−p
p ‖f‖Lp

, where ai are

the Fourier coefficients of the function f(t) by the system {ϕn(t)};
2) if {ai} ∈ lp (1 < p ≤ 2), then there exists the function f ∈ Lp′ [a, b]

for which ai are Fourier coefficients by the system {ϕn(t)}, and ‖f‖Lp′ ≤
mp‖ {ai} ‖lp, where mp is independent of {ai} and f .

Theorem 2.2. Let {ϕn(t)} be an orthonormed system such that almost ev-
erywhere on [a, b] : |ϕn (t)| ≤ M (n ∈ N), M is independent of n. Then:

1) if f ∈ Lp[a, b] (1 < p ≤ 2), then
∞∑
i=1

|ai|p ip−2 ≤ Mp

b∫
a

|f(t)|p dt, where

Mp is independent of f and ai are the Fourier coefficients of the function f(t);
2) if {ai} :

∑∞
i=1 |ai|q iq−2 < +∞ (q ≥ 2), then there exists a function f ∈

Lp [a, b] for which ai are Fourier coefficients, and

b∫
a

|f (t)|q dt ≤ Mq

∞∑
i=1

|ai|q iq−2,



1806 M. I. Ismailov and T. Z. Garayev

where Mq is independent of {ai}.

3 lp(a, b) variants

In this section, we establish the analogues of Riesz and Paley theorems for the
case of spaces L(p′,p) and lp(a, b), and also study the analogues of the results
on convergence rate of Fourier series depending on smoothness degree of the
function for the functions of space W m,n

(p,p′) by the system of exponents.

Let Π = (a, b) × (c, d). The following theorems are valid.

Theorem 3.1. Let {ϕn(t)} be an orthonormed system on [c, d] such that
almost everywhere on [c, d]:|ϕn (t)| ≤ (n ∈ N), M is independent of n, and
1
p′ + 1

p
. Then:

1) if f ∈ L(p′,p)(Π) (1 < p ≤ 2), then a (t) = {ai (t)}i∈N ∈ lp′ (a, b) , where

ai (t) =
∫ d

c
f (t, s)ϕi (s) ds and

‖a‖lp′(a,b)
≤ M

2−p
p ‖f‖L(p′,p)

. (1)

2) if a(t) = {ai(t)} ∈ lp(a, b) (1 < p ≤ 2), then there exists a function

f ∈ L(p,p′)(Π) for which ai (t) =
∫ d

c
f (t, s) ϕi (s) ds and

‖f‖L(p,p′)
≤ M

2−p
p ‖a‖lp(a,b)

. (2)

Proof. Prove statement 1). Since the function f ∈ L(p′,p)(Π), then
it follows from the Foubini theorem that for almost all t ∈ [a, b] the func-
tion f (t, ·) ∈ Lp ([c, d]). Therefore, by the Riesz theorem for {ai(t)}, where

ai(t) =
d∫
c

f(t, s)ϕi(s)ds, almost everywhere on [a, b] it holds
∞∑
i=1

|ai(t)|p′ < +∞(
1
p′ + 1

p

)
and

( ∞∑
i=1

|ai(t)|p
′
)1/p′

≤ M
2−p

p

⎛
⎝ d∫

c

|f(t, s)|p ds

⎞
⎠

1/p

. (3)

Raising the both hand sides of (3) in p′-th degree and integrating with respect

to t on the segment [a, b], we get
∞∑
i=1

b∫
a

|ai(t)|p
′
dt < +∞, moreover

∞∑
i=1

b∫
a

|ai(t)|p
′
dt ≤ M

2−p
p

·p′
b∫

a

⎛
⎝ d∫

c

|f(t, s)|p ds

⎞
⎠

p′/p

dt. (4)
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Obviously, (1) follows from (4).

Now prove validity of statement 2). Let {ai(t)} be such that
∞∑
i=1

b∫
a

|ai(t)|p dt <

+∞ (1 < p ≤ 2). Then, according to the corollary of B. Levi theorem (see

[12]) for almost all t ∈ [a, b]:
∞∑
i=1

|ai(t)|p < +∞. Applying theorem 1.1, we get

that almost everywhere on [a, b] there exists a function f (t, ·) ∈ Lp [c, d] for

which ai (t) =
d∫
c

f(t, s)ϕi(s)ds and

(∫ d

c

|f (t, s)|p′ ds

)1/p′

≤ M
2−p

p

( ∞∑
i=1

|ai (t)|p
)1/p

. (5)

Further, raise the both hand sides of (5) in p-th degree and integrate with
respect to t on the segment [a, b]. We have

b∫
a

⎛
⎝ d∫

c

|f(t, s)|p′ ds

⎞
⎠

p′/p

dt ≤ Mp−2
∞∑
i=1

b∫
a

|ai(t)|p dt. (6)

(2) follows from (6). The theorem is proved.

Theorem 3.2. Let {ϕn(t)} be an orthonormed system on [c, d] such that
almost everywhere on [c, d] : |ϕn (t)| ≤ M (n ∈ N), M is independent of n.
Then:

1) if f ∈ Lp(Π) (1 < p ≤ 2), then

∞∑
i=1

ip−2

b∫
a

|ai(t)|p dt ≤ Mp

b∫
a

d∫
c

|f(t, s)|p dsdt, (7)

where Mp is independent of f and ai(t) =
d∫
c

f(t, s)ϕi(s)ds;

2) if {ai(t)} is such that
∞∑
i=1

iq−2
b∫

a

|ai(t)|q dt < +∞ (q ≥ 2), then there

exists a function f ∈ Lq(Π) for which ai(t) =
d∫
c

f(t, s)ϕi(s)ds and

b∫
a

d∫
c

|f(t, s)|q dsdt ≤ Mq

∞∑
i=1

iq−2

b∫
a

|ai(t)|q dt, (8)

where Mq is independent of {ai(t)}.



1808 M. I. Ismailov and T. Z. Garayev

At first prove validity of 1). According to Foubini theorem, it follows from
f ∈ Lp(Π) that for almost all t ∈ [a, b] the function f(t, ·) ∈ Lp[c, d]. Then,

it follows from theorem 2.2 that for {ai(t)}, ai(t) =
d∫
c

f(t, s)ϕi(s)ds, almost

everywhere on [a, b] it holds

∞∑
i=1

|ai(t)|p ip−2 ≤ Mp

d∫
c

|f(t, s)|p ds. (9)

Having integrated the both hand sides of (9) in the segment [a, b], we get
validity of (7).

Show validity of 2). Let {ai(t)}:
∞∑
i=1

iq−2
b∫

a

|ai(t)|q dt < +∞ (q ≥ 2). It is

clear that almost everywhere on [a, b]:
∞∑
i=1

|ai(t)|q iq−2 < +∞. Therefore, by the-

orem 2.2. there exists a function f ∈ Lq[c, d] for which ai(t) =
d∫
c

f(t, s)ϕi(s)ds

and

b∫
a

|f (t, s)|q ds ≤ Mq

∞∑
i=1

|ai (t)|q iq−2. (10)

Integrating the both hand sides of (10) in the segment [a, b], we get validity of
(8). The theorem is proved.

Give the analogue of the known result on the relation between the smooth-
ness degree of the function and convergence rate of its Fourier series by the
system {eint}+∞

n=−∞.

Theorem 3.3. Let f ∈ W 0,m+1
(p′,p) ((−π, π) × (−π, π)) (1 < p ≤ 2) and

∂kf(t,−π)
∂sk = ∂kf(t,π)

∂sk (k = 0, .., m) almost everywhere on (−π, π). Then, the

series
+∞∑

n=−∞
|n|m

π∫
−π

|cn(t)| dt converges, where

cn(t) =

π∫
−π

f(t, s)e−insds, n = 0,±1,±2, ...., (11)

moreover,

+∞∑
n=−∞

|n|m
∫ π

−π

|cn (t)| dt ≤ (2π)1/p

⎛
⎜⎝ +∞∑

n=−∞
n�=0

1

|n|p

⎞
⎟⎠

1/p ∥∥∥∥∂m+1f

∂sm+1

∥∥∥∥
L(p′,p)

. (12)
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Proof. Integrate expression (11) by parts. We have

cn (t) =

∫ π

−π

f (t, s) e−insds = − 1

in
f (t, s) e−ins

∣∣s=π
s=−π +

1

in

∫ π

−π

∂f (t, s)

∂s
e−insds =

=
1

in

∫ π

−π

∂f (t, s)

∂s
e−insds = − 1

(in)2

∂f

∂s
e−ins

∣∣s=π
s=−π +

+
1

(in)2

∫ π

−π

∂2f (t, s)

∂s2
e−insds = ... =

1

(in)m+1

∫ π

−π

∂m+1f (t, s)

∂sm+1
e−insds =

cm+1
n (t)

(in)m+1 .

So, almost everywhere cn (t) = cm+1
n (t)

(in)m+1 , where

cm+1
n (t) =

∫ π

−π

∂m+1f (t, s)

∂sm+1
e−insds (n = 0,±1,±2, ....) .

Since by the condition ∂fm+1(t,s)
∂sm+1 ∈ L(p′,p)((−π, π) × (−π, π)), then by theorem

3.1 we get {cm+1
n (t)}n∈N ∈ lp′(a, b) and

∥∥{cm+1
n (t)

}∥∥
lp′ (−π,π)

≤
∥∥∥∥∂m+1f

∂sm+1

∥∥∥∥
L(p′,p)

. (13)

Further, using the Holder inequality, we get

+∞∑
n=−∞

|n|m |cn (t)| =

+∞∑
n=−∞

n�=0

|cm+1
n (t)|
|n| ≤≤

⎛
⎝ +∞∑

n=−∞
n�=0

1
|n|p

⎞
⎠

1/p(
+∞∑

n=−∞
|cm+1

n (t)|p′
)1/p′

.

(14)

Hence, integrating the both hand sides of (14) with respect to t from −π to π,
we get

+∞∑
n=−∞

|n|m
∫ π

−π

|cn (t)| dt ≤

⎛
⎜⎝ +∞∑

n=−∞
n�=0

1

|n|p

⎞
⎟⎠

1/p

×

×
∫ π

−π

(
+∞∑

n=−∞

∣∣cm+1
n (t)

∣∣p′)1/p′

dt. (15)
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Applying in (15) the Holder inequality, we have

∫ π

−π

(
+∞∑

n=−∞

∣∣cm+1
n (t)

∣∣p′)1/p′

dt ≤ (2π)1/p

(
+∞∑

n=−∞

∫ π

−π

∣∣cm+1
n (t)

∣∣p′ dt

)1/p′

. (16)

Thus, it follows from (15), (16) and (13) that

+∞∑
n=−∞

|n|m
∫ π

−π

|cn (t)| dt ≤ (2π)1/p

⎛
⎜⎝ +∞∑

n=−∞
n�=0

1

|n|p

⎞
⎟⎠

1/p

×

×
(

+∞∑
n=−∞

∫ pi

pi

∣∣cm+1
n (t)

∣∣p′ dt

)1/p′

≤

≤ (2π)1/p

⎛
⎜⎝ +∞∑

n=−∞
n�=0

1

|n|p

⎞
⎟⎠

1/p ∥∥∥∥∂m+1f

∂sm+1

∥∥∥∥
L(p′,p)

.

The theorem is proved.

Theorem 3.4. Let f ∈ W 0,m
(p′,p) ((−π, π) × (−π, π)), and

∂kf (t,−π)

∂sk
=

∂kf (t, π)

∂sk
(k = 0, ..., m − 1)

almost everywhere on (−π, π). Then the series
+∞∑

n=−∞
|n|mp′

π∫
−π

|cn(t)|p′ dt con-

verges, where

cn(t) =

π∫
−π

f(t, s)e−insds, n = 0,±1,±2, ...., (17)

moreover,

(
+∞∑

n=−∞
|n|mp′

∫ π

−π

|cn (t)|p′ dt

)1/p

≤
∥∥∥∥∂mf

∂sm

∥∥∥∥
L(p′,p)

. (18)
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Proof. Having integrated by parts in (17), as in the proof of theorem 3.3
for cn(t) we get

cn(t) =
cm
n (t)

(in)m
, cm

n (t) =

π∫
−π

∂mf(t, s)

∂sm
e−insds (n = 0,±1,±2, ....).

Consequently,

cm
n (t) = (in)mcn(t). (19)

Since ∂fm(t,s)
∂sm ∈ L(p′,p)((−π, π)×(−π, π)), then it follows from theorem 3.1 that

{cm
n (t)}n∈N ∈ lp′(a, b) and as a result of (1) we get

(
+∞∑

n=−∞

∫ π

−π

|cm
n (t)|p′ dt

)1/p′

≤
∥∥∥∥∂mf

∂sm

∥∥∥∥
L(p′,p)

. (20)

Substituting (19) into (20), we get inequality (18). The theorem is proved.
Remark. The obtained results may be used in grounding the Fourier

method for the solution of partial equations.
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