Telman B. GASYMOV, Tarlan Z. GARAYEV

ON NECESSARY AND SUFFICIENT CONDITIONS FOR OBTAINING THE BASES OF BANACH SPACES

Abstract

In the paper we cite necessary and sufficient conditions for completeness, minimality and basicity of systems in a Banach space that are obtained from initial system by changing the finite number of elements.

In the paper [1] the criteria of basicity of systems obtained by excepting finite number of elemetns from over complete systems are cited. In the present paper similar criteria are cited for the system that are obtained from initial one by changing the finite number of elements.

Remind some definitions and facts stated for example in [2]. Let \mathfrak{X} be a Banach space, \mathfrak{X}^{*} be it's adjoint space. For $x \in \mathfrak{X}$ and $x^{*} \in \mathfrak{X}^{*}$ by $\left\langle x, x^{*}\right\rangle$ we denote the value of the functional x^{*} on the element x. For the system $\left\{x_{n}\right\}_{n \in N} \subset \mathfrak{X}$, where N is a set of natural numbers, the system for which $\left\langle x_{n}, x_{k}^{*}\right\rangle=\delta_{n k}$, where $\delta_{n k}$ is a Kronecker symbol, is said to be an adjoint system $\left\{x_{n}^{*}\right\}_{n \in N} \subset \mathfrak{X}^{*}$.

The system $\left\{x_{n}\right\}_{n \in N}$ is said to be minimal, if no element of this system belongs to a closed linear span of remaining elements. Minimality of the system is equivalent to the existence of the adjoint system.

The system is said to be complete in \mathfrak{X} if closure of a linear span of this system concides with \mathfrak{X}. Completeness of the system $\left\{x_{n}\right\}_{n \in N}$ in \mathfrak{X} is equivalent to the following condition: if for some $x^{*} \in \mathfrak{X}^{*}\left\langle x_{n}, x^{*}\right\rangle=0$ for all $n \in N$, then $x^{*}=0$.

Two systems of the Banach space \mathfrak{X} are said to be equivalent, if there exists a bounded and boundedly invertible operator, transferring one of these systems to another one.

Let $J_{m}=\left\{n_{1}, \ldots, n_{m}\right\}$ be some collection of different natural numbers

$$
N_{m}=N \backslash J_{m}
$$

Theorem 1. Let $\left\{x_{n}\right\}_{n \in N} \subset \mathfrak{X}$ be a minimal system, and be $\left\{x_{n}^{*}\right\}_{n \in N} \subset \mathfrak{X}^{*}$ its adjoint one. If for some system $\left\{u_{n}\right\}_{k=1}^{m} \subset \mathfrak{X}$ it is fulfilled the condition $\Delta_{m}=$ $\operatorname{det} A_{m} \neq 0$, where

$$
\begin{equation*}
A_{m}=\left\|\left\langle u_{k}, x_{n_{j}}^{*}\right\rangle\right\|_{k, j=1}^{m} \tag{1}
\end{equation*}
$$

the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$ is minimal as well. Therewith the adjoint system $\left\{u_{n}^{*}\right\}_{n \in N}$ is determined in the following way:

$$
u_{n_{k}}^{*}=\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
0 & x_{n_{1}}^{*} & \ldots & x_{n_{m}}^{*} \tag{2}\\
0 & \left\langle u_{1}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{1}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
1 & \left\langle u_{k}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{k}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
0 & \left\langle u_{m}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{m}, x_{n_{m}}^{*}\right\rangle
\end{array}\right|
$$

for $k=\overline{1, m}$;

$$
u_{n}^{*}=\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
x_{n}^{*} & x_{n_{1}}^{*} & \ldots & x_{n_{m}}^{*} \tag{3}\\
\left\langle u_{1}, x_{n}^{*}\right\rangle & \left\langle u_{1}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{1}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
\left\langle u_{m}, x_{n}^{*}\right\rangle & \left\langle u_{m}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{m}, x_{n_{m}}^{*}\right\rangle
\end{array}\right|
$$

for $n \in N_{m}$.
Proof. Really, acting by the functional $u_{n_{k}}^{*}$ on the element u_{j} from (2) we get

$$
\left\langle u_{j}, u_{n_{k}}^{*}\right\rangle=\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
0 & \left\langle u_{j}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{j}, x_{n_{m}}^{*}\right\rangle \\
0 & \left\langle u_{1}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{1}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
1 & \left\langle u_{k}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{k}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
0 & \left\langle u_{m}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{m}, x_{n_{m}}^{*}\right\rangle
\end{array}\right|
$$

Revealing the last determinant with respect to the elements of the first column we get

$$
\left\langle u_{j}, u_{n_{k}}^{*}\right\rangle=\delta_{j k}, \quad j, k=\overline{1, m}
$$

Now let $k, n \notin J_{m}$, i.e $k, n \neq n_{j}, j=\overline{1, m}$. Then, from (3) we have

$$
\begin{aligned}
& \left\langle x_{k}, u_{n}^{*}\right\rangle=\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
\left\langle x_{k}, x_{n}^{*}\right\rangle & \left\langle x_{k}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle x_{k}, x_{n_{m}}^{*}\right. \\
\left\langle u_{1}, x_{n}^{*}\right\rangle & \left\langle u_{1}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{1}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
\left\langle u_{m}, x_{n}^{*}\right\rangle & \left\langle u_{m}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{m}, x_{n_{m}}^{*}\right\rangle
\end{array}\right|= \\
& =\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
\delta_{k n} & 0 & \ldots & 0 \\
\left\langle u_{1}, x_{n}^{*}\right\rangle & \left\langle u_{1}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{1}, x_{n_{m}}^{*}\right\rangle \\
\cdot & \cdot & \ldots & \cdot \\
\left\langle u_{m}, x_{n}^{*}\right\rangle & \left\langle u_{m}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle u_{m}, x_{n_{m}}^{*}\right\rangle
\end{array}\right|
\end{aligned}
$$

Revealing we last determinant with respect to the element of the first row we get $\left\langle x_{k}, u_{n}^{*}\right\rangle=\delta_{k n}$ for $k, n \notin J_{m}$.

It is similarly verified that $\left\langle u_{j}, u_{n}^{*}\right\rangle=0$ for $n \notin J_{m}, j=\overline{1, m}$ and $\left\langle x_{k}, u_{n_{j}}^{*}\right\rangle=0$ for $k \notin J_{m}, j=\overline{1, m}$. The obtained relations show that the system $\left\{u_{k}\right\}_{k=1}^{m} \cup$ $\left\{x_{n}\right\}_{n \in N_{m}}$, is adjoint to the system $\left\{u_{n}^{*}\right\}_{n \in N}$ that is equivalent to the minimality of the last system.

Theorem 2. If in the denotation of theorem 1 the system $\left\{x_{n}\right\}_{n \in N}$ is complete and minimal and $\Delta_{m}=0$, the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$ is not complete in \mathfrak{X}.

Proof. Let for the system $\left\{u_{k}\right\}_{k=1}^{m}$ and for the collection $J_{m}=\left\{n_{1}, \ldots, n_{m}\right\}$

$$
\Delta_{m}=\operatorname{det} A_{m}=0
$$

where the matrix A_{m} is determined by (1). Then there exists a non-zero vector $C=\left(\begin{array}{c}c_{1} \\ \ldots \\ c_{m}\end{array}\right)$ such that $A_{m} C=0$. Assume $x_{0}^{*}=\sum_{k=1}^{n} c_{k} x_{n_{j}}^{*}$. Since, even if one of the numbers c_{j} doesn't equal zero, then $x_{0}^{*} \neq 0$ and for $n \notin J_{m}$

$$
\left\langle x_{n}, x_{0}^{*}\right\rangle=\sum_{j=1}^{m} c_{j}\left\langle x_{n}, x_{n_{j}}^{*}\right\rangle=0
$$

[On necessary and sufficient conditions]

$$
\left\langle u_{k}, x_{0}^{*}\right\rangle=\sum_{j=1}^{m} c_{j}\left\langle u_{k}, x_{n_{j}}^{*}\right\rangle=0, \quad k=\overline{1, m} .
$$

Thus, the non-zero vector x_{0}^{*} is orthogonal to all the vectors of the system $\left\{u_{k}\right\}_{k=1}^{m} \cup$ $\left\{x_{n}\right\}_{n \in N_{m}}$, and this means that the system is not complete in \mathfrak{X}.

Theorem 3. Let the system $\left\{x_{n}\right\}_{n \in N}$ be a basis of the space \mathfrak{X}, and $\left\{u_{k}\right\}_{k=1}^{m}$ be some system of vectors from \mathfrak{X}. Then for the basicity of the system $\left\{u_{k}\right\}_{k=1}^{m} \cup$ $\left\{x_{n}\right\}_{n \in N_{m}}$ in the space \mathfrak{X} it is necessary and sufficient to fulfill the condition $\Delta_{m} \neq 0$. For $\Delta_{m}=0$ the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$ is not complete and is not minimal.

Proof. Let $\left\{x_{n}\right\}_{n \in N}$ be a basis of the space \mathfrak{X} and for thesystem $\left\{u_{k}\right\}_{k=1}^{m} \subset \mathfrak{X}$ and the collection $J_{m}=\left\{n_{1}, \ldots, n_{m}\right\}$ the condition

$$
\Delta_{m}=\operatorname{det}\left\|\left\langle u_{k}, x_{n_{j}}^{*}\right\rangle\right\|_{k, j=1}^{m} \neq 0 .
$$

be fulfilled. Take any $x \in \mathfrak{X}$, expand it and also each vector $u_{k} \in \mathfrak{X}, k=\overline{1, m}$ in a biorthogonal series

$$
\begin{gather*}
x=\sum_{n \in N}\left\langle x, x_{n}^{*}\right\rangle x_{n}, \tag{4}\\
u_{k}=\sum_{n \in N}\left\langle u_{k}, x_{n}^{*}\right\rangle x_{n}, \quad k=\overline{1, m} . \tag{5}
\end{gather*}
$$

Assume

$$
b_{k}=\sum_{n \in N_{m}}\left\langle u_{k}, x_{n}^{*}\right\rangle x_{n}
$$

and rewrite (5) in the following form:

$$
\begin{equation*}
\sum_{j=1}^{m}\left\langle u_{k}, x_{n_{j}}^{*}\right\rangle x_{n_{j}}=u_{k}-b_{k}, \quad k=\overline{1, m} . \tag{6}
\end{equation*}
$$

Solving the last system of linear algebraic equations with respect to the unknown $x_{n_{j}}$ we find

$$
x_{n_{j}}=\frac{\Delta_{m}^{j}(u-b)}{\Delta_{m}},
$$

where $\Delta_{m}^{j}(u-b)$ is a determinant obtained from the determinant Δ_{m} replacing the $j-$ column by the column with elements $u_{k}-b_{k}, k=\overline{1, m}$. Represent it in the form

$$
\Delta_{m}^{j}(u-b)=\Delta_{m}^{j}(u)-\Delta_{m}^{j}(b)=\sum_{k=1}^{m} \Delta_{m}^{j k} u_{k}-\sum_{k=1}^{m} \Delta_{m}^{j k}\left(\sum_{n \in N_{m}}\left\langle u_{k}, x_{n}^{*}\right\rangle x_{n}\right),
$$

where $\Delta_{m}^{j k}$ is an algebraic complement of the elements with the numbers (j, k) of the determinant Δ_{m}. Then

$$
x_{n_{j}}=\frac{1}{\Delta_{m}} \sum_{k=1}^{m} \Delta_{m}^{j k} u_{k}-\sum_{n \in N_{m}}\left(\frac{1}{\Delta_{m}} \sum_{k=1}^{m}\left\langle u_{k}, x_{n}^{*}\right\rangle \Delta_{m}^{j k}\right) x_{n} .
$$

Substitute the obtained expression for $x_{n_{j}}$ in (4) :

$$
x=\sum_{j=1}^{m}\left\langle x, x_{n_{j}}^{*}\right\rangle x_{n_{j}}+\sum_{n \in N_{m}}\left\langle x, x_{n}^{*}\right\rangle x_{n}=\sum_{j=1}^{m}\left\langle x, x_{n_{j}}^{*}\right\rangle \frac{1}{\Delta_{m}} \sum_{k=1}^{m} \Delta_{m}^{j k} u_{k}-
$$

$$
\begin{gathered}
-\sum_{j=1}^{m}\left\langle x, x_{n_{j}}^{*}\right\rangle \sum_{n \in N_{m}}\left(\frac{1}{\Delta_{m}} \sum_{k=1}^{m}\left\langle u_{k}, x_{n}^{*}\right\rangle \Delta_{m}^{j k}\right) x_{n}+\sum_{n \in N_{m}}\left\langle x, x_{n}^{*}\right\rangle x_{n}= \\
=\sum_{k=1}^{m}\left\langle x, \frac{1}{\Delta_{m}} \sum_{j=1}^{m} \Delta_{m}^{j k} x_{n_{j}}^{*}\right\rangle u_{k}+\sum_{n \in N_{m}}\left\langle x, x_{n}^{*}-\frac{1}{\Delta_{m}} \sum_{j=1}^{m} \sum_{k=1}^{m}\left\langle u_{k}, x_{n}^{*}\right\rangle \Delta_{m}^{j k}\right\rangle x_{n}= \\
=\sum_{k=1}^{m}\left\langle x, u_{n_{k}}^{*}\right\rangle u_{n}+\sum_{n \in N_{m}}\left\langle x, u_{n}^{*}\right\rangle x_{n}
\end{gathered}
$$

here $u_{n_{k}}^{*}$ and u_{n}^{*} are determined by formulae (2) and (3), respectively.
Thus, we showed that we can expand any element $x \in \mathfrak{X}$ in biorthogonal series by the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$, that means the basicity of this system. Sufficiency of the theorem is proved.

Necessity of the theorem follows from theorem 2 , since for $\Delta_{m}=0$ the system is not complete and all the more is not a basis. Now, let's show that for $\Delta_{m}=0$ the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$ is not minimal. Let $C=\left(\begin{array}{c}c_{1} \\ \ldots \\ c_{m}\end{array}\right)$ be a non-zero vector for which $A_{m} C=0$. Assume

$$
u_{0}=\sum_{k=1}^{m} c_{k} u_{k}
$$

and expand the vector u_{0} in the basis of $\left\{x_{k}\right\}_{k \in N}$:

$$
\begin{align*}
& u_{0}=\sum_{n \in N}\left\langle u_{0}, x_{n}^{*}\right\rangle x_{n}=\sum_{j=1}^{m}\left\langle u_{0}, x_{n_{j}}^{*}\right\rangle x_{n_{j}}^{*}+\sum_{n \in N_{m}}\left\langle u_{0}, x_{n}^{*}\right\rangle x_{n}= \\
= & \sum_{j=1}^{m}\left(\sum_{k=1}^{m} c_{k}\left\langle u_{k}, x_{n_{j}}^{*}\right\rangle\right) x_{n_{j}}+\sum_{n \in N_{m}}\left\langle u_{0}, x_{n}^{*}\right\rangle x_{n}=\sum_{n \in N_{m}}\left\langle u_{0}, x_{n}^{*}\right\rangle x_{n} \tag{7}
\end{align*}
$$

Let $c_{k_{0}} \neq 0$. Then from (7) we get

$$
u_{k_{0}}=-\sum_{\substack{k=1 \\ k \neq k_{0}}}^{m} \frac{c_{k}}{c_{k_{0}}} u_{k}+\sum_{n \in N_{m}} \frac{\left\langle u_{0}, x_{n}^{*}\right\rangle}{c_{k_{0}}} x_{n}
$$

i.e. the element $u_{k_{0}}$ belongs to the closure of a linear span of other elements of the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$, that means non-minimality of the last system.

Corollary 1. If in the conditions of theorem $3 \Delta_{m} \neq 0$ then the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$ is equivalent to the system $\left\{x_{n}\right\}_{n \in N}$.

Proof. Let $\left\{x_{n}\right\}_{n \in N}$ be a basis of the space \mathfrak{X}. Take an arbitrary $x \in \mathfrak{X}$ and expand it in series

$$
x=\sum_{n \in N}\left\langle x, x_{n}^{*}\right\rangle x_{n}
$$

We determine the operator T in the following way:

$$
\begin{equation*}
T x=\sum_{k=1}^{m}\left\langle x, x_{n_{k}}^{*}\right\rangle u_{k}+\sum_{n \in N_{m}}\left\langle x, x_{n}^{*}\right\rangle x_{n} \tag{8}
\end{equation*}
$$

[On necessary and sufficient conditions]
The operator T is determined on the whole of the space \mathfrak{X} and is bounded.
Really,

$$
\begin{gathered}
\|T x\|=\left\|\sum_{k=1}^{m}\left\langle x, x_{n_{k}}^{*}\right\rangle\left(u_{k}-x_{n_{k}}\right)+\sum_{n \in N}\left\langle x, x_{n}^{*}\right\rangle x_{n}\right\| \leq \\
\leq \sum_{k=1}^{n}\left|\left\langle x, x_{n_{k}}^{*}\right\rangle\right|\left\|u_{k}-x_{n_{k}}\right\|+\|x\| \leq(M+1)\|x\|,
\end{gathered}
$$

where

$$
m=\max _{1 \leq k \leq m}\left\|x_{n_{k}}\right\|\left\|u_{k}-x_{n_{k}}\right\| .
$$

Besides, the operator T has the inverse for which

$$
x=\sum_{k=1}^{n}\left\langle x, u_{n_{k}}^{*}\right\rangle u_{k}+\sum_{n \in N_{m}}\left\langle x, u_{n}^{*}\right\rangle x_{n}
$$

is given by the formula

$$
T^{-1} x=\sum_{k=1}^{m}\left\langle x, u_{n_{k}}^{*}\right\rangle x_{n_{k}}+\sum_{n \in N_{m}}\left\langle x, u_{n}^{*}\right\rangle x_{n} .
$$

Obviously, T^{-1} is also a bounded operator. Since by definition (8) $T x_{n_{k}}=u_{k}, k=\overline{1, m}$ and $T x_{n}=x_{n}, n \in N_{m}$, hence we get the equivalence of the systems $\left\{u_{k}\right\}_{k=1}^{m} \cup$ $\left\{x_{n}\right\}_{n \in N_{m}}$ and $\left\{x_{n}\right\}_{n \in N}$.

Corollary 2. If in the conditions of the theorem $3 \mathfrak{X}$ is a Hilbert space, $\left\{x_{n}\right\}_{n \in N}$ is a Riesz basis in \mathfrak{X}, and $\Delta_{m} \neq 0$ the system $\left\{u_{k}\right\}_{k=1}^{m} \cup\left\{x_{n}\right\}_{n \in N_{m}}$ is also a Riesz basis in \mathfrak{X}.

Now, let's apply the obtained results to the spaces of the form $\mathfrak{X}=\mathfrak{X}_{0} \oplus C^{m}$, where \mathfrak{X}_{0} is some Banach space, and C^{m} is m copy of a complex plane C. Let $\left\{e_{k}\right\}_{k=1}^{m}$ be a natural basis in C^{m}, i.e $e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{m}=(0,0, \ldots, 1)$ and assume $\widehat{e}_{k}=\left(0, e_{k}\right) \in \mathfrak{X}$.

Theorem 4. Let $\widehat{x}_{n}=\left(x_{n}, \alpha_{n 1}, \ldots, \alpha_{n m}\right), n \in N$, be a basis of the space \mathfrak{X}, $\widehat{x}_{n}^{*}=\left(x_{n}^{*}, \beta_{n 1}, \ldots, \beta_{n m}\right), n \in N$, be an adjoint system. For the basicity of the system $\left\{\widehat{e}_{k}\right\}_{k=1}^{m} \cup\left\{\widehat{x}_{n}\right\}_{n \in N_{m}}$ in the space \mathfrak{X} it is necessary and sufficient to fulfill the condition

$$
\Delta_{m}=\operatorname{det}\left\|\beta_{n_{k j}}\right\|_{k, j=1}^{m} \neq 0
$$

If $\Delta_{m}=0$ the system $\left\{\widehat{e}_{k}\right\}_{k=1}^{m} \cup\left\{\widehat{x}_{n}\right\}_{n \in N_{m}}$ is not complete and minimal.
The proof of the theorem directly follows from theorem 3, if as the system $\left\{u_{k}\right\}_{k=1}^{m}$ we take the system $\left\{e_{k}\right\}_{k=1}^{m}$, since in this case $\left\langle\widehat{e}_{k}, \widehat{x}_{n_{j}}^{*}\right\rangle=\beta_{n_{j} k}$.

Theorem 5. In the conditions of theorem 4 for the basicity of the system $\left\{x_{n}\right\}_{n \in N_{m}}$ in the space \mathfrak{X}_{0} it is sufficient and necessary to fulfill the condition

$$
\Delta_{m}=\operatorname{det}\left\|\beta_{n_{k j}}\right\|_{k, j=1}^{m} \neq 0
$$

Therewith the adjoint system has the form

$$
u_{n}^{*}=\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
x_{n}^{*} & x_{n_{1}}^{*} & \ldots & x_{n_{m}}^{*} \tag{9}\\
\beta_{n 1} & \beta_{n_{1} 1} & \ldots & \beta_{n_{m} 1} \\
. & . & \ldots & n_{n} \\
\beta_{n m} & \beta_{n_{1} m} & \ldots & \beta_{n_{m} m}
\end{array}\right|, \quad n \in N_{m}
$$

For $\Delta_{m}=0$ the system $\left\{x_{n}\right\}_{n \in N_{m}}$ is not complete and minimal.
Proof. By theorem 4 for $\Delta_{m} \neq 0$ the sysyem $\left\{\widehat{e}_{k}\right\}_{k=1}^{m} \cup\left\{\widehat{x}_{n}\right\}_{n \in N_{m}}$ is a basis in $\mathfrak{X}=\mathfrak{X}_{0} \oplus C^{m}$. Take an arbitrary $x \in \mathfrak{X}_{0}$ and put $\widehat{x}=(x, 0, \ldots, 0)$ and expand \widehat{x} by basis $\left\{\widehat{e}_{k}\right\}_{k=1}^{m} \cup\left\{\widehat{x}_{n}\right\}_{n \in N_{m}}$:

$$
\widehat{x}=\sum_{k=1}^{m}\left\langle\widehat{x}, u_{n_{k}}^{*}\right\rangle \widehat{e}_{k}+\sum_{n \in N_{m}}\left\langle\widehat{x}, \widehat{u}_{n}^{*}\right\rangle \widehat{x}_{n}
$$

Passing to the first coordinates we get

$$
\begin{equation*}
x=\sum_{n \in N_{m}}\left\langle x, u_{n}^{*}\right\rangle x_{n} \tag{10}
\end{equation*}
$$

where u_{n}^{*} is the first coordinate of the vector \widehat{u}_{n}^{*}. By formulae (2) and (3) \widehat{u}_{n}^{*} is of the form:

$$
\widehat{u}_{n}^{*}=\frac{1}{\Delta_{m}}\left|\begin{array}{cccc}
\widehat{x}_{n}^{*} & \widehat{x}_{n_{1}}^{*} & \ldots & \widehat{x}_{n_{m}}^{*} \tag{11}\\
\left\langle\widehat{e}_{1}, x_{n}^{*}\right\rangle & \left\langle\widehat{e}_{1}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle\widehat{e}_{1}, x_{n_{m}}^{*}\right\rangle \\
\left.\widehat{e}_{m}, x_{n}^{*}\right\rangle & \left\langle\widehat{e}_{m}, x_{n_{1}}^{*}\right\rangle & \ldots & \left\langle\widehat{e}_{m}, x_{n_{m}}^{*}\right\rangle
\end{array}\right|, \quad n \in N_{m}
$$

On the other hand,

$$
\begin{aligned}
\left\langle\widehat{e}_{k}, x_{n}^{*}\right\rangle & =\beta_{n k}, \quad k=\overline{1, m} \\
\left\langle\widehat{e}_{k}, x_{n_{j}}^{*}\right\rangle & =\beta_{n_{j} k}, \quad j, k=\overline{1, m} .
\end{aligned}
$$

Taking into account the last equalities in (11) and passing to the first components we get (9). Biorthogonality conditions are verified immediately.

Now, all the statements of the theorem follow from expansion (10) and appropriate statements of theorem 4.

Remark. Statement of theorem 4 by another method is shown in the paper [1] as well.

We note also the papers $[3,4]$ concerning the theme of the paper.

References

[1]. Gasymov T. B. On necessary and sufficient conditions of basicity of some defective systems in Banach spaces // Trans. of NAS of Azerb., 2006, v. XXVI, No 1, p. 65-70.
[2]. Functional analysis. Editor: S. G. Krein. M., "Nauka", 1972, p. 544
[3]. Bilalov B. T., Muradov T. R. Defect bases of banach spaces // Proc. IMM of NASA, 2005, v. XXII (XXX), p. 23-26.
[4]. Domasheva Yu. V. Karakash M. Kh. Some remarks to Paley-Wiener and N. K. Bari Theorems. Abstracts of X International Conference in mat. and mech. devoted to the 45 auniversary of IMM, Baku, 2004, p. 72

Telman B. Gasymov, Tarlan Z. Garayev

Institute of Mathematics and Mechanics of NAS of Azerbaijan.
9, F. Agayev str., AZ1141, Baku, Azerbaijan.
Tel.: (99412) 439-47-20 (off.).
Received November 22, 2006 ; Revised February 15, 2007.

