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Lp;r spaces: Cauchy Singular Integral, Hardy Classes and

Riemann-Hilbert Problem in this Framework

Ali Huseynli1∗ and Asmar Mirzabalayeva2

Abstract. In the present work the space Lp;r which is continu-
ously embedded into Lp is introduced. The corresponding Hardy
spaces of analytic functions are defined as well. Some properties of
the functions from these spaces are studied. The analogs of some
results in the classical theory of Hardy spaces are proved for the
new spaces. It is shown that the Cauchy singular integral oper-
ator is bounded in Lp;r. The problem of basisness of the system{
A (t) eint;B (t) e−int

}
n∈Z+

, is also considered. It is shown that

under an additional condition this system forms a basis in Lp;r if
and only if the Riemann-Hilbert problem has a unique solution in
corresponding Hardy class H+

p;r ×H+
p;r.

1. Introduction

During the last two decades, non-standard function spaces became
an extremely popular subject because of their appearance in modern
problems of analysis and qualitative theory of PDEs. Introduction of
Lebesgue spaces with variable exponents at the end of last century and
variety of extraordinary results obtained therein were the main moti-
vation and the inception of this new tendency in analysis. For origi-
nal results in the theory of Lebesgue spaces with variable exponent the
reader may consult the books [9, 10] and references therein. Another
kind of non-standard function spaces-small and grand Lebesgue spaces
were defined motivated by C.B. Morrey’s seminal work, in which Morrey
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space has been defined and proved to be extremely useful tool in qual-
itative theory of elliptic equations(for further discussions, see, [1, 14]
and references therein). We only mention few recent monographs with
a comprehensive bibliography, where in-depth treatment of these issues
can be found: [1, 9, 14]. We mention the works [3–7, 12] because of their
closeness to the spirit of the present paper.

In [13] Y. Katznelson considered the class of functions, whose Fourier
coefficients are p-th power summable and proved a uniqueness theo-
rem for the Fourier series of the functions of this class. In the present
work equipping this class of Katznelson by a norm, the Lp;r function
space which is continuously embedded into Lp is introduced. The corre-
sponding Hardy spaces of analytic functions are defined as well. Some
properties of the functions from these spaces are studied. The analogs
of some results in the classical theory of Hardy spaces are proved for the
new spaces. It is shown that the Cauchy singular integral operator is
bounded in Lp;r.

2. Lp;r spaces

Let Lp ≡ Lp (−π, π) , 1 ≤ p ≤ +∞ and lr, 1 ≤ r ≤ +∞ be the
usual spaces of p-th power summable functions and r-th power summable
sequences of scalars, respectively; f̂ denotes the sequence of Fourier
coefficients of the functionf :

f̂ ≡ {fn}n∈Z , fn ≡ 1√
2π

∫ π

−π
f (t) e−intdt, n ∈ Z.

Denote the set
{
f ∈ Lp : f̂ ∈ lr

}
by Lp;r. It is evident that Lp;r is a

linear space with respect to pointwise operations and ∥f∥p;r = ∥f∥p +∥∥∥f̂∥∥∥
lr
defines a norm in Lp;r here and thereafter ∥f∥p = ∥f∥Lp

. We show

that the space Lp;r is a Banach space. Indeed, if
{
f̂m

}
m∈N

⊂ Lp;r is

any fundamental sequence, then the sequences {fm}m∈N and
{
f̂m

}
m∈N

are fundamental in the spaces Lp and lr, respectively. Hence there exist

f ∈ Lp and â ∈ lr such that
{
f̂m

}
m∈N

→ {fm}m∈N and f̂m → â, as

m → ∞. It is easy to observe that f̂ = â.

Take any g ∈ Lq

(
1
p + 1

q = 1
)
and consider the linear functional

lg (f) =
1√
2π

∫ π

−π
f (t) g (t)dt

defined in Lp;r. As lg is bounded, Lq ⊂ (Lp;r)
∗. We shall identify

the function from Lq with the linear functional generated by itself. In
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that sense the system E ≡
{
eint
}
n∈Z is biorthogonal to the system

1
2πE =

{
1
2πe

int
}
n∈Z ⊂ Lp;r.

Consider the problem of basicity of E in Lp;r. First, let p ∈ (1,+∞).
It is known that in that case E forms a basis in Lp. Take any f ∈ Lp;r.
We can write

∥f − Tmf∥Lp;r
= ∥f − Tmf∥p +

 +∞∑
|n|≥m+1

|fn|r
 1

r

,

where Tmf =
∑

|n|≤m fne
int. Since E is a basis in Lp, ∥f − Tmf∥ → 0,

as m → ∞. Also, since f̂ ∈ lr, the second term of above sum also has a
zero limit. The uniqueness of expansion is obvious.

Now consider the case when p = 1 and r ∈ [1 , 2]. Take any f ∈ L1;r.

Then f̂ ∈ l2, and therefore, it implies that f ∈ L2. We can write

∥f − Tmf∥Lp;r
=
∥∥∥f̂ − T̂mf

∥∥∥
lr
+ ∥f − Tmf∥1

≤

 +∞∑
|n|≥m+1

|fn|r
 1

r

+ c · ∥f − Tmf∥2 → 0

as m → ∞.
It proves the following

Proposition 2.1. The system E forms a basis in Lp;r for any p ∈
(1,+∞) and r ∈ [1,+∞]; the same property holds in L1;r for any r ∈
[1 , 2].

3. Cauchy Singular Integral

Throughout the paper ω will denote the open unit disc
ω = {z ∈ C : |z| < 1} and γ = ∂ω will denote the unit circle ω =
{z ∈ C : |z| = 1}. Let f ∈ L1 (γ). Consider the Cauchy-type integral

F (z) =
1

2πi

∫
γ

f (τ)

τ − z
dτ, z /∈ γ,

and the singular integral

(Sf) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ

corresponding to it.
It is well known that Sf exists a.e. on γ (see, e.g. [8, 11]). In the

sequel, we will use the following space of analytic functions generalized
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by Lp;ν . Denote

H+
p;ν =

{
f : f is analytic on ω and ∥f∥H+

p;ν
= sup

0<r<1
∥fr (·)∥Lp;ν

< +∞
}
,

where fr (t) = f
(
reit
)
.

Let f ∈ H+
p;ν , 1 < p < +∞, 1 ≤ ν ≤ +∞, and

f
(
reit
)
=

∞∑
n=0

fnr
neint.

Then we have

∥f∥H+
p;ν

= sup
0<r<1

( ∞∑
n=0

|fn|ν rνn
) 1

ν

+ ∥fr (·)∥Lp

 .

Denote by f+ (τ) the nontangential boundary values of f (τ) on γ.
By a classical theorem f+ (τ) exists a.e. on γ and sup

0<r<1
∥fr (·)∥Lp

=

∥f+ (·)∥Lp
(see, e.g. [15]). As each summand on the right-hand side of

the above equality is monotonic increasing function of r, we get

∥f∥H+
p;ν

=

( ∞∑
n=0

|fn|ν
) 1

ν

+
∥∥f+

∥∥
Lp

=
∥∥f+

∥∥
Lp;ν

.

Now define the set mH−
p;ν for fixed integer m. Let f (z) be a function,

analytic outside ω and

(3.1) f (z) =
k∑

n=−∞
fnz

n

with some k ≤ m . Write f as

f (z) = Pk (z) + f1 (z) ,

where Pk (·) and f1 (·) are the analytic, if any, and principal parts of the
expansion (3.1), respectively. We will say that f (·) belongs to mH−

p;ν if

f1
(
1
z̄

)
∈ H+

p;ν .

Let f ∈ H+
p;ν , 1 ≤ p < +∞, 1 ≤ ν ≤ +∞. It immediately follows that

f ∈ H+
p , and therefore, we have the Cauchy formula

(3.2) f (z) =
1

2πi

∫
γ

f+ (τ)

τ − z
dz, ∀z ∈ ω.

As shown above, f+ (·) ∈ Lp;ν . It is clear that, f (·) ∈ H+
1 .
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Conversely, suppose f (·) ∈ H+
1 and f+ (·) ∈ Lp;ν . From here we have

f+ ∈ Lp, and as a result the representation (3.2) is true. Then, from
the equality

(3.3) ∥f∥H+
p;ν

=
∥∥f+

∥∥
Lp;ν

,

it follows that f ∈ H+
p;ν .

Hence, the following theorem was proved

Theorem 3.1. The function f (·) belongs to H+
p;ν , 1 ≤ p < +∞, 1 ≤

ν ≤ +∞ iff f+ (·) ∈ Lp;ν ; in that case the Cauchy formula (3.2) is valid.

By (3.3), we deduce the following theorem.

Theorem 3.2. H+
p;ν and mH−

p;ν , 1 ≤ p < +∞, 1 ≤ ν ≤ ∞ are Banach
spaces.

Now consider the singular integral S in Lp;ν , for 1 < p < +∞ and
1 ≤ ν ≤ ∞. Let F (z) be the corresponding Cauchy-type integral with
f (·) as its density. Therefore, the following Sokhotski-Plemely formula
is true

F± (τ) = ±1

2
f (τ) + (Sf) (τ) , τ ∈ γ,

where F+ (·) ((F− (·)) is the interior(exterior) non-tangential boundary
values of F (z) along γ. Hence

f (τ) = F+ (τ)− F− (τ) , τ ∈ γ.

Let
f (τ) =

∑
n∈Z

fnτ
n

be the Fourier expansion of f(·) ∈ Lp (γ). Then

F+ (τ) =

∞∑
n=0

fnτ
n, F− (τ) = −

∞∑
n=1

f−nτ
−n.

We have

(Sf) (τ) = F+ (τ)− 1

2
f (τ)

=
∑
n∈Z

gnτ
n,

where

gn =
1

2

{
fn,
−fn,

n ≥ 0,
n < 0.

Then

(3.4) ∥Sf∥Lp;ν
=

(∑
n∈Z

|gn|ν
) 1

ν

+ ∥Sf∥Lp
.
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Since, S is bounded in Lp, from the expressions for coefficients {gn}n∈Z
and (3.4) it immediately follows that ∃A > 0:

∥Sf∥Lp;ν
≤ c ∥f∥Lp;ν

, ∀f ∈ Lp;ν .

Hence, the following theorem was proved

Theorem 3.3. The singular operator S is bounded in Lp;ν , for 1 < p <
+∞,1 ≤ ν ≤ +∞.

The following continuous embedding is true

Lp2;r1 ⊂ Lp1;r2 , 1 ≤ p1 < p2 < +∞,

1 ≤ r1 < r2 ≤ +∞,

that follows from the fact that the embedding Lp2 ⊂ Lp1 , 1 ≤ p1 < p2 <
+∞, is continuous and the inequality

(3.5)

( ∞∑
1

|ak|r2
) 1

r2

≤

( ∞∑
1

|ak|r1
) 1

r1

,

is true for all 1 ≤ r1 < r2 ≤ +∞ (see, e.g. [16, pp. 149]).
The following is an analogue of the classical Smirnov’s theorem.

Theorem 3.4. Let f ∈ H+
p1;r2 and f+ ∈ Lp2;r1 , where 1 ≤ p1 < p2 <

+∞, 1 ≤ r1 < r2 ≤ +∞. Then f ∈ H+
p2;r1.

The proof is a direct consequence of Theorem 3.1.
Thus, each function f from H+

p;ν , 1 ≤ p < +∞, 1 ≤ ν ≤ +∞ is

uniquely determined by its boundary values f+, which belongs to Lp;ν .
It is obvious that this is in case for the space mH−

p;ν as well. Denote by

L+
p;ν and mL−

p;ν the restrictions to the unit circle γ of the functions from

H+
p;ν and mH−

p;ν , respectively. It is easy to see that, L+
p;ν and mL−

p;ν are

subspaces of Lp;ν . Via the restriction isomorphism the spaces H+
p;ν and

L+
p;ν , as well as mH−

p;ν and mL−
p;ν , can be identified.

Theorem 3.5. Let f ∈ H+
δ , for some δ > 0 and f+ ∈ Lp;r for some

1 ≤ p < +∞ and 1 ≤ r ≤ +∞. Then f ∈ H+
p;r.

Indeed, from f+ ∈ Lp;r it follows that f+ ∈ Lp (γ), and then by the
Smirnov theorem we get f ∈ H+

p . Hence, for the function f (·) Cauchy
formula (3.2) is valid. Theorem 3.1 completes the rest of proof.

4. Bases of Parts of the System of Exponents in the
Subspaces L±

p;ν

Let f ∈ H+
p;r, 1 < p < +∞, 1 ≤ r ≤ +∞. Then f ∈ H+

p and

f+ ∈ L+
p . It is clear that the system

{
eint
}
n∈Z+

is minimal in L+
p;r. The
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system
{
eint
}
n∈Z forms a basis in Lp;r and the system

{
1
2πe

int
}
n∈Z is

its biorthogonal. From f ∈ H+
p it follows that, f+ ∈ L+

p , and the last

implies 1
2π

∫ π
−π f

+
(
eit
)
e−intdt = 0, ∀n ≤ −1. From here we get that

f+
(
eit
)
=

∞∑
n=0

fne
int (the equality is understood in Lp;r norm sense).

The uniqueness of above expansion is evident.
The case of the system

{
e−int

}∞
n=m

is considered analogously.
Thus, we proved the following result.

Theorem 4.1. The system
{
eint
}
n∈Z+

({
e−int

}∞
n=m

)
forms a basis in

L+
p;r (mL−

p;r, respectively) for 1 < p < +∞, 1 ≤ r ≤ +∞.

5. The Riemann-Hilbert Problem

Consider the following double exponential system

(5.1)
{
A (t) eint;B (t) e−int

}
n∈Z+

,

here A (·) ;B (·) : [−π, π] → C are some functions. We will assume that
the functions A (·) and B (·) are subjected to the following condition

α) A±1 (·) ;B±1 (·) ∈ L∞ (−π, π) .

Theorem 5.1. Under the condition (α) the system (5.1) forms a basis
in Lp;r, 1 < p < +∞, 1 ≤ r ≤ +∞, iff the Riemann-Hilbert problem

(5.2) a (τ)F+ (τ) + b (τ)Φ+ (τ) = g (τ) , τ ∈ γ,

has a unique solution in H+
p;r × H+

p;r. Here a
(
eit
)
= A (t) , b

(
eit
)
=

B (t) , t ∈ [−π,π].

Proof. Let the system (5.1) forms a basis in Lp;r. Then for any f ∈ Lp;r

there is a unique expansion

A (t)
∞∑
n=0

f+
n eint +B (t)

∞∑
n=0

f−
n e−int = f (t) .

Set

(5.3) f± (τ) =

∞∑
n=0

f±
n τ±n, |τ | = 1.

By the condition (α) and the fact that the system (5.1) is a basis, it
follows that f± ∈ L1 (∂ω).

We have ∫
∂ω

f+ (τ) τndτ =

∞∑
k=0

f+
k i

∫ π

−π
ei(k+n+1)tdt
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= 0, ∀n ≥ 0.

By Privalov’s theorem (see, e.g. [8, 11]), there is F ∈ H+
1 , whose

boundary values coincide a.e. on ∂ω with f+, i.e. F+ (τ) = f+ (τ) a.e..
Similarly, we get∫

∂ω
f− (τ)τndτ =

∞∑
k=0

f−
k i

∫ π

−π
ei(k+n+1)tdt

= 0, ∀n ≥ 0.

From here by the same reasoning it follows that there is Φ ∈ H+
1 , such

that Φ+ (τ) = f− (τ) a.e. on τ ∈ ∂ω. Theorem 3.5 implies that F, Φ ∈
H+

p;r, and from (5.3) we get that

a (τ)F+ (τ) + b (τ)Φ+ (τ) = g (τ) , τ ∈ γ,

where g
(
eit
)
= f (t). Thus, if the system (5.2) forms a basis in Lp;r,

then the problem (5.2) is solvable in H+
p;r ×H+

p;r.
Let’s show that the problem (5.3) has a unique solution. It is enough

to show that the homogeneous problem

(5.4) a+ (τ)F+ (τ) + a− (τ)Φ+ (τ) = 0, τ ∈ γ,

has only trivial solution in H+
p;r ×H+

p;r. Assume the contrary. Let there

are nonzero functions F and Φ in H+
p;r × H+

p;r, whose boundary values

F+ and Φ+ satisfy (5.4). As the system
{
eint
}
n≥0

forms a basis in

L+
p;r, by expanding F+ and Φ+ upon this system, from (5.4) we get that

zero function has a nonzero expansion upon the system (5.2), which
contradicts (5.2) to be a basis in Lp;r. The converse part of the theorem
is proved analogously. The proof is over. □

Note that, analogous result in Lp space case has been obtained earlier
in [2].
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