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ABSTRACT 
 Many individuals infected with the novel Coronavirus (SARS-CoV-2) suffer from intestinal 

infection as well as respiratory infection.  These COVID-19-suffering individuals 

shed virus in their stool, resulting in municipal sewage systems carrying the virus and its genetic 

remnants.  These viral traces can be detected in the sewage entering a wastewater treatment 

plant (WTP), often resulting in accurate estimates of the extent of infections over a community.  

In this paper, we develop algorithmic procedures that home in on locations and/or 

neighborhoods within the community that are most likely to have infections.  Our novel data 

source is wastewater sampled and real-time tested from selected manholes.  Our algorithms 

dynamically and adaptively point to a sequence of manholes to sample and test.  The 

algorithms are often finished after 5 to 10 manhole samples, meaning that - in the field - the 

procedure can be carried out within one day.  The goal is to provide timely information that will 

support faster more productive human testing for viral infection and thus reduce community 

spread of the disease.  Leveraging the tree graph structure of the sewage system, we develop 

two algorithms, the first designed for a community that is certified at a given time to have zero 

infections and the second for a community known to have many infections.  For the first, we 

assume that wastewater at the WTP has just revealed traces of SARS-CoV-2, indicating 

existence of a “Patient Zero” in the community.  Our first algorithm identifies the city block in 

which the infected person resides.  For the second, we home in on a most infected 

neighborhood of the community, where a neighborhood is usually several city blocks. We 

present computational results, some applied to the sewer system map of a New England town.  

The next step is to test our algorithmic procedures in the field, and to make appropriate 

adjustments. 
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1. Introduction 

From its origins in Wuhan, China in December 2019, the novel Coronavirus (SARS-CoV-2) has 

spread ferociously around the world, creating a disease in humans - COVID-19 - that has 

infected millions and killed hundreds of thousands.  The virus has many unusual properties that, 

as we write this, are still be researched and discovered.  One distressing property is that 40 to 

perhaps 80 percent of infected and virus-shedding individuals are asymptomatic [1][2].  

Another is a relatively long incubation time from becoming infected to showing physical 

symptoms, up to 14 days with a median time of about 5 days. [3] 

 

1.1. SARS-CoV-2 in Human Wastewater 

We are focusing on a third unusual property:   SARS-CoV-2 not only attacks human lungs, but it 

can also reside and present symptoms in other parts of the body, including the human digestive 

track and particularly the intestines [4]. As a result, the SARS-CoV-2 virus and/or related genetic 

remnants (viral RNA - ribonucleic acid) often appear in the fecal matter of COVID-19 patients.  

These genetic materials, excreted in stool, positively affirm that the patient is infected with 

COVID-19.  Not all COVID-19 patients present such in-stool markers, only about 50% [5] [6]. 

 

Since human waste is flushed down the toilet, any included genetic markers and/or chemicals 

are detectable in raw sewage.   Much of the health condition of the human body can be 

determined by analyses of sewage, leveraging an emerging field called “Wastewater-Based 

Epidemiology” (WBE).  Quoting a recent paper,  
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“Wastewater-Based Epidemiology (WBE) is a new epidemiology tool that has potential to act as 

a complementary approach for current infectious disease surveillance systems and an early 

warning system for disease outbreaks. WBE postulates that through the analysis of population 

pooled wastewater, infectious disease and resistance spread, the emergence of new disease 

outbreak to the community level can be monitored comprehensively and in real-time.” [7]   

 

With COVID-19, while only about 50 per cent of infected individuals excrete remnants of the 

virus in their stool, any COVID-19-infected population of 20 or more will, almost certainly by the 

laws of probability, contain such remnants.  A population of 1,000 will have virus remnants 

from about 500 contributors.  Amazingly, very recent research [8] has asserted that detailed 

analysis of a community’s sewage flowing into its sewage treatment plant (the ending terminal 

for the community’s sewage system) can now theoretically detect the presence of virus 

remnants emanating from just one infected person in a contributing population of up to 

2,000,000.  Thus, the potential sensitivity of sewage testing is remarkably high. 

 

Testing for COVID-19 is vital for adjusting public policies related to its control, such as 

“flattening the curve”, “putting out local fires,” and ultimately reducing greatly the incidence of 

the disease.  But testing each human in a population is a time-consuming, expensive, arduous 

and often impossible task.  Sewage testing is relatively inexpensive and can track accurately the 

ups and downs of COVID-19 prevalence in a community.  Importantly, a Parisian study [9] 

suggests that a population newly experiencing a rise in COVID-19 infections will exhibit that rise 

in excreted virus-containing stool about one week before showing visible symptoms of 

infection. If the Parisian study is confirmed by others, timely sewage testing may provide a One-
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Week (approximately) Early Warning System of population infection.  Authorities acting on that 

information early could act to avert exponential rise in future infections. While testing sewage 

is not the same as testing individuals, it is fast, inexpensive and informative to public decision 

makers. 

 

1.2.  Wastewater Testing 

As we write this, during the past few weeks there has been a virtual explosion of sewage testing 

“proof-of-concept” projects reported in the literature, many papers available in online pre-

prints and still awaiting formal reviews.  In addition to the aforementioned Parisian study [9], 

these include projects in Arizona [8], Montana [10], New Haven Conn. [11], Boston 

Massachusetts [12], Italy [13], the Netherlands [14] and many more.  These reports 

demonstrate that the ups and downs of virus loads in the sewage track well the ups and downs 

of known cases in the population, and often with a one-week early warning.  The theory is 

proving to be correct. 

 

Testing sewage for COVID-19 is even a new business opportunity.  MIT spinoff Biobot claims to 

be “the first company in the world to commercialize data from sewage.” [15].  As we write this, 

Biobot is working with about 330 facilities in 40 states, returning analyses of sewage samples 

sent to them.  Currently the service is pro bono.  The University of Arizona and others are also 

performing tests for participating communities.   
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All of these activities are now evolving, with current test turn-around times disappointingly 

long, ranging from two weeks in one case to one week in another.  Biobot claims to be headed 

for a 24-hour test in its Boston-area headquarters, which means perhaps a 3-day turnaround 

time total (two days for shipping back and forth and one for testing); that would get us closer to 

what is needed to have a true Early Warning System.  There is another approach, building from 

tests successfully developed for other diseases in Africa, using only paper as the testing 

material to create what is being described as an instant “two-dollar test” [16].  The researcher 

is Dr. Zhugen Yang, a biomedical engineer at Cranfield University’s Water Science Institute in 

the U.K., and he hopes to have a working system within two or three months.   

 

In reviewing all of these current developments, we see that Wastewater-Based Epidemiology 

provides to us with an up to one week early warning system of an impending rise in cases of 

COVID-19 from a given community.  But, even if these techniques – when refined and further 

tested – are proven correct, all we have is community-averaged predictions.  There is no finer 

grain resolution relating to the likely locations within the community of the rising virus.   

 

1.3. Framing of Our Contribution  

The focus on this paper is to gain new information about locations within the community of 

new COVID-19 infections. To do this, we need a new data source.  And that is derived from 

sampling sewage flows within the underground sewage pipeline network, prior to the final 

entrance of sewage into the sewage treatment plant.  These samples are obtained from 

selected manholes within the system.  Any sewage system can be modeled as a tree network, 
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with individual homes and businesses representing the input nodes with their corresponding 

input flows into the system. Any sewage will flow in one given path from origin towards the 

single terminal node of the tree graph, the local water treatment plant.  Our research aims at 

finding a good limited sequence of manholes to sample and test in order to home in on the 

location of greatest new infection.   

 

We provide two algorithms. Algorithm 1 represents the case of a community known to have 

zero infections at time zero. Eventually, monitoring of the community’s sewage at its sewage 

treatment plant indicates a new presence of COVID-19, likely from a “Patient Zero” within the 

community.  Our algorithm dynamically selects a sequence of manholes to test for COVID-19, 

each selection dependent on the test results of the previous manholes.  Eventually we converge 

to Patient Zero’s neighborhood, often to within 100 feet or so of his/her address. With just a 

handful of manhole tests, we find the closest manhole to the address of Patient Zero.  

Algorithm 1 is applicable in a variety of settings.  Being academics, our favorite is a large 

university campus that has been locked down and thus empty for months due to COVID-19.  

This university is now opening a new semester to students, faculty and staff, all of whom who 

must be tested to assure they are not ‘positive’ to COVID-19 upon their return.  Later, after 

everyone returns, a Patient Zero becomes infected off campus, and he/she brings that infection 

onto the campus.  Our algorithm helps to pinpoint the university location of that individual. If 

the infected person is a student, the likely locations are living quarters such as dormitories, 

fraternities or sororities.  If faculty or staff, the likely location is a building having the office of 
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the individual.  The algorithm also applies to various industrial parks, shopping centers, vacation 

communities, etc. 

 

Moving now from one to many, Algorithm 2 takes the other extreme. There are assumed to be 

scores of infected individuals in the community, analogous to the situations of virtually all of 

the previously cited proof-of-concepts tests.  Thus, the aggregate sewage-treatment-plant 

testing procedures previously described may be used to obtain community-averaged estimates 

on numbers of infections. Again, our concern is moving beyond the community average, to 

identify that neighborhood within the community that may be considered to be a “Hot Spot,” 

that is, an area having infection rates significantly above the community average.  Such 

information is again useful to those who seek to do high-productivity testing to identify, treat, 

and isolate infected individuals.  This algorithm still uses data from manhole testing of sewage, 

sequentially selects the manholes to be tested, and stops once a presumed high-incidence 

neighborhood has been identified. 

 

1.4.  More on Manholes and their Testing 

Each home in a community having a central sewer system has an underground pipe connecting 

the home’s wastewater plumbing to the under-street local sewer system. In naming various 

connections, we use the descriptive phrasings of the Town of Surprise, Arizona [17].  The 

building’s pipe to the property line is “the building sewer,” which then connects directly to the 

“lateral sewer,” which then connects to the community’s sewer pipe network.  That network, 

which we model as a tree graph, has at least three types of pipes, each is ascending diameter 
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for increased flows:  branch sewer, main sewer and trunk sewer.  The branch sewer, usually 

serving a limited number of buildings in a small geographic area, collects sewage from lateral 

sewers and conveys it to a main or trunk sewer.  A main sewer collects sewage from two or 

more branch sewers acting as tributaries. The trunk sewer conveys sewage from many tributary 

main and branch sewers over large areas to the sewage treatment plant.   

 

The sewage, once in the community-owned system, flows in a unique path “downward,” 

leading to the sewage treatment plant.  A typical town will have hundreds of miles of under-

street sewage pipes, the pipes accessible by manholes that are typically 100 to 500 feet apart.  

The sewer system map of Surprise, Arizona [18] reveals that a typical sewer-equipped street 

has about 12 manholes per one-mile street segment, meaning about 440 feet between 

manholes.  In contrast, the more densely populated Town of Lexington, Massachusetts has 

4,924 manholes distributed of its 171-mile sewer network, corresponding to about 183 feet 

between manholes [19].   The U.S. EPA estimates the number of sewer manholes nationwide to 

be about 12 million, averaging approximately 300 feet apart [20].  

 

One final word before we describe the two algorithms:  We have verified that manhole 

sampling is feasible and reasonably priced.  In Lexington, Massachusetts, to test four manholes, 

gathering up to one liter of fluid at each location, takes at most four hours of a two-person 

crew, from start to finish.  Quoted cost: $350. If either of our algorithms should find a sequence 

of say eight or fewer manholes to test, such tests could easily be carried out in one day, 

assuming there is a fast, on-site test for COVID-19 that could be carried out by the crew.  The 
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“two-dollar” paper test being developed by Dr. Zhugen Yang, if successful, would be perfect for 

this purpose.  As one can see, our algorithmic work is currently a bit ahead of the curve in terms 

of all the ingredients to make location-specific identification feasible. 

 

2. Methods 

As discussed above, Algorithm 1 deals with a community with no known cases of COVID-

19.  Then, one day analysis of the inflow to the water treatment plant reveals the first presence 

of COVID-19, likely a single Patient Zero or household "Patients Zero."  The goal is to act 

immediately to home in on the address of the infected person(s).  Once the alarm is sounded, 

we go into action by opening a directed sequence of manholes, obtaining sewage fluid samples, 

testing them, and then extending our manhole testing, in a way that converges close to the 

address of Patient(s) Zero. 

 

The home of Patient(s) Zero is likely to have two closest manholes, one “upstream” from the 

residence and the other “downstream.”  Any test of the upstream manhole, if it exists, would 

not reveal any COVID-19 from the residence of the infected person(s).  But the closest 

downstream manhole would provide that evidence.  We seek to find that closest downstream 

manhole.  If successful, we can then reduce our search for the infected person(s) to residences 

of only a few houses (i.e., all those houses inputting to the same downstream manhole).  In that 

way, we may be able to stop any spread from Patient Zero to the rest of the community. Our 

approach also extends in Algorithm 2 to cases where the virus has infected multiple residences 
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in different neighborhoods. In such a scenario, the objective is the find the Hot Spot 

neighborhood with the highest number of infected homes.  

 

We use algorithms to dynamically select the sequence of manholes to test.  Our task is made 

easier by the fact that the municipal sewage system pipe network is a directed tree network, 

comprising nodes and directed links, with inputs from homes and businesses and the output all 

converging to one single “terminal node" to the network, the wastewater treatment plant.    

 

For ease of exposition in this paper, we are algorithmically more interested in showing how to 

exploit network tree topology than in searching straight-line multiple manholes along a given 

link.   In examples, using our “stylized networks,” we use exact topology but place only one 

manhole on each link, that manhole being eligible for opening and sampling flow contents on 

that link.  But our algorithmic methods are general and can handle any number of manholes on 

a link. 

 

In Algorithm 1, the single downstream manhole closest to the infected residence is called the 

source manhole or source node.  It is the only source of SARS-CoV-2 remnants entering the 

sewage tree network.  This is the manhole we seek to identify.  In Algorithm 2, there will be 

multiple source nodes, each being a closest downstream manhole to an infected neighborhood. 

 

 We start by assigning Bayesian probabilities [21] to all possible source manholes, each 

probability reflecting our initial belief that the infected address is assigned to that manhole. 
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These probabilities reflect professional beliefs and need not be created by detailed data 

analysis, as the results are not that sensitive to their exact values.  One could even use a simple 

heuristic, such as assigning each probability associated with a given manhole as proportional to 

the number of residents in that manhole's “catchment” zone.  

 

Marlborough, Massachusetts in Middlesex County is a typical charming New England small city, 

covering 22.2 square miles with a population of 38,500.  After describing the logic of our 

algorithms first with small “toy problems,” we will utilize a portion of the sewer system network 

of Marlborough to illustrate a realistic application of the algorithms.  Figure 1 depicts a portion 

of the sewer pipe network for the city of Marlborough, which has one water treatment plant 

and more than 3,000 manholes.   In our stylized modeling of the Marlborough system, we 

consider a subset of the system having a reduced 844 manholes, each a possible source node.  

The wastewater treatment plant is denoted “WTP”, the terminal node of the tree network. 

While a tree-network structure is not readily apparent by viewing the sewage system when 

superimposed on the town’s map (Figure 1(a)), we can redraw its pipe network to reveal the 

tree structure as shown in Figure 1(b).  We will operate on the tree network depiction of Figure 

1(b).  

 

We now explain Algorithms 1 and 2 that find Patient Zero and the Hot Spot neighborhood 

respectively. We present two simple “toy” examples to illustrate the steps of each algorithm, 

each step representing the opening of a manhole and testing its contents. We then apply the 
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algorithms on the stylized network of Marlborough, Massachusetts, and report the required 

number of manhole-opening steps to find the source(s) of infection in the city.     

 

Figure 1- Top panel depicts a map of the Marlborough, Massachusetts wastewater removal 
system; the red arrows represent the direction of flow. The green circles are the manholes 
of the sewage pipe system. Bottom panel is a reduced stylized network depiction of 
Marlborough’s sewage network. “WTP” in both panels represents the wastewater 
treatment plant.   
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  2.1 Algorithm 1: Finding Patient Zero 
 
Iteration 1.  We use a variant of “binary search” [22], an algorithm that finds the position of a 

target value within a sorted array.  Binary search has the property that it “throws away” about 

half of the remaining solution space at each iteration.  We seek to do the same, to throw away 

about half of the manholes at each iteration, none of them possibly being the desired source 

node. For each link we derive the “flow probability” as the probability that the infection is 

upstream of the link. The flow probability of each link is the sum of Bayesian probabilities of 

source nodes upstream of that link.  

 

 At Iteration 1 we seek a link in the tree that has about 50% of the Bayesian probabilities 

upstream from the link and the remaining Bayesian probabilities downstream from the 

link.  Since it is unlikely that any subset of Bayesian probabilities will sum exactly to 0.5, we 

settle for the link whose probability is closest to 0.5. We identify a physical manhole within this 

link, open it, obtain a sewage sample, and then test it.  If positive for SARS-CoV-2, then we 

know for sure that the residence we are seeking and its associated closest downstream 

manhole are upstream from this point; as a consequence, we throw away all downstream 

nodes of the network.  Else we know the reverse and throw away all the upstream nodes. 

 

Iteration 2.  We are left with a tree network that is a subgraph of the original network, now 

with fewer nodes than the previous iteration. We readjust the Bayesian probabilities on the 

surviving subgraph so that they sum to 1.0. We repeat the logic of Iteration 1: We find a link on 

this subgraph that has about half of the Bayesian probabilities upstream from the link and the 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631095



 15

remaining downstream.  We identity a physical manhole on this “50-50” link, open it, obtain a 

sewage sample, and then test it.  This is Test #2. If positive for SARS-CoV-2, then we know for 

sure that the residence we are seeking and its associated closest downstream manhole are 

upstream from this point; as a consequence, we throw away all downstream nodes of the 

network.  Else we know the reverse and throw away all the upstream nodes. The above process 

continues until we have found Patient Zero. The algorithm always converges to Patient Zero.   

 

We present the steps of Algorithm 1 with a simple example of Figure 2. As mentioned above, 

each source node is assigned a Bayesian probability as shown in Figure 2(a). For each link of the 

tree we now assign a corresponding probability flow as shown in Figure 2(b). Our algorithm 

sequentially samples a set of links using Bayesian-induced probability flows as a measure of the 

virus intensity in each link. Note that the sum of probability flows into the wastewater 

treatment plant is one.   

 

 
Figure 2- Bayesian probabilities and probability flows of a simple network. 

 
 
We demonstrate the iterations of Algorithm 1 in the example of Figure 3. The infected node 

(which is not known to the algorithm) is depicted with a red “X”. In Iteration 1 we choose to 
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sample the link depicted with a blue circle in Figure 3a since it has probability flow of 0.5 and all 

other probability flows are less than 0.5. Because the sample tells us that the infection is 

upstream of the left link, we can discard the central and right links (Figure 3(b)). In Iteration 2 

we normalize the probabilities (Figure 3(b)), recalculate the probability flows. Now we have a 

tie in the proximity to 0.5, and we choose to sample the link with the larger flow (i.e., 0.6 

instead of 0.4), as shown in Figure 3(c). Because the sample tells us that the infection is 

downstream of the left link, we throw away the left-most link. We can now terminate the 

search since the infected link is identified (Figure 3(d)).  

 
Figure 3- Bayesian probabilities and associated probability flows of a simple network. The 
infected node is depicted with a red “X” and the sample link is depicted with a blue circle. The 
dashed lines depict eliminated links. 
 
 
 
 
 

0.6 0.4 0 0 0 0

Wastewater Treatment Plant

0.3 0.2 0.2 0.1 0.1

Wastewater Treatment Plant

0.1

0.5 0.3

(a) Iteration 1: Choose a sample link (b) Iteration1: Update source probabilities

0 1 0 0 0 0

Wastewater Treatment Plant

0.6 0.4 0 0 0

Wastewater Treatment Plant

0

1 0

(c) Iteration 2: Choose a sample link (d) Algorithm Termination

1.0

1.0

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631095



 17

2.2 Algorithm 2: Finding the Hot Spot neighborhood 
 
As mentioned above, Algorithm 2 is designed to find a neighborhood with the highest level of 

viral infection. We consider two or more nearby nodes as comprising a neighborhood, the exact 

definition is left to the operator of the algorithm. As a preliminary step in Algorithm 2, we first 

sample and record the virus load in the intake sewage flow at the stem link of the tree, the 

single link that connects the tree network to the wastewater treatment plant. This sample gives 

us the overall total virus load in the city. Our algorithm seeks to find the neighborhood with the 

largest contribution to total system viral load. The goal now is to sample the interior links of the 

sewage network to find the Hot Spot neighborhood. We now explain the steps of Algorithm 2. 

  

Iteration 1.  We use binary search to reduce the network until we are left with the Hot Spot 

neighborhood. We first record the total Coronavirus in-flow F entering the wastewater 

treatment plant and multiply all node probabilities and link probability flows by F. Given the 

Bayesian probabilities and total virus load F, the revised flow f on any given link is now the 

expected virus load on that link.  The actual viral flows will differ, as to be revealed by sampling. 

We then sample the branch having expected virus flows upstream and downstream closest to a 

virus flow of F/2. We identify this link and obtain a sewage sample.  This step is the same as 

Step 1 in Algorithm 1.  If the recorded network viral load at the sampled link from upstream 

exceeds F/2, we through away the downstream nodes. Else we know the reverse and throw 

away all the upstream nodes. 
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Iteration 2.  We now have a tree network that is a subgraph of the original network, usually 

with significantly fewer nodes. We re-normalize the Bayesian probabilities on the subgraph and 

repeat the logic of Iteration 1 to open and test a physical manhole on a new “50-50” link. We 

throw away upstream or downstream nodes of the tree in the same way as Iteration 1. The 

process continues until we are within a reasonable vicinity of the Hot Spot neighborhood.  The 

stopping rule is human-based, subjective, depending on the size of the neighborhood and other 

considerations.  By the viral-load-comparison mechanism of selection, we see that at each 

iteration the surviving subgraph has a higher average level of viral load per node than in any 

previous and now discarded subgraph. We can view the logic as a steepest ascent heuristic, 

always obtaining a subgraph with higher average viral load.  Being a greedy algorithm, we are 

not guaranteed to find the hottest “Hot Spot,” as there may exist a small neighborhood in a 

now-discarded subgraph having more viral intensity than that which we find with the algorithm. 

 

We present the steps of Algorithm 2 with a simple example that has three infected nodes as 

shown in Figure 4(a). The total level of infection at the stem link is 𝐹 = 1.  The infected nodes 

(which are not known to the algorithm) are depicted with a red “X”. In Iteration 1 we choose to 

sample the link depicted with a blue circle in Figure 4(a) since it has probability flow 0.4 (closest 

to 0.5) and all other flows are less than 0.4. We discard the right branch because the sample 

point detected only 1/3 of the total recorded viral load, F = 1 (Figure 4(b)). In Iteration 2 we re-

normalize the probabilities (Figure 4(b)) and choose to sample the left branch which has a 

probability flow of 0.5. This sample tells us that 2/3 of the stem link infection is from the 
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upstream nodes. As there are only two nodes upstream of the sample point, we terminate the 

algorithm as we have found the Hot Spot neighborhood (Figure 4(d)). 

 

 
 
Figure 4- Bayesian probabilities and probability flows of a simple network. The infected nodes 
are depicted with a red “X” and the sample link is depicted with a blue circle. The dashed lines 
depict discarded links. The yellow box depicts the Hot Spot neighborhood.  
 
 

2.3 Returning to Marlborough, Massachusetts 
 

We now implement the two algorithms on our stylized model of the Marlborough sewage 

network. To generate the nodal Bayesian probabilities, we independently draw random 

numbers from a unit uniform probability distribution for each potential source manhole and 

normalize the random draws so that the Bayesian probabilities sum to one. We first consider 

the Patient Zero scenario where only a single residence is infected, as shown by the red X near 

0.17 0.33 0.5 0 0 0

Wastewater Treatment Plant

0.1 0.2 0.3 0.1 0.2

Wastewater Treatment Plant

0.1

0.3 0.4

(a) Iteration 1: Choose a sample link (b) Iteration1: Update source probabilities

0.34 0.66 0 0 0 0

Wastewater Treatment Plant

0.17 0.33 0.5 0 0

Wastewater Treatment Plant

0

0.5 0

(c) Iteration 2: Choose a sample link (d) Algorithm Termination 

1.0

1.0

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631095



 20

the city center in Figure 5(a). We later vary the locations of the single infection and evaluate 

Algorithm 1’s performance in finding many different infected nodes. In selecting the various 

different locations, we use Monte-Carlo sampling (without replacement) from the Bayesian 

probability distribution.  In practice, municipal data sources can provide more accurate 

estimations of these Bayesian probabilities.  

 

As shown in Figure 5(a), Algorithm 1 required only 7 samples to locate the infected source 

node. Sample 1 divided the network into two relatively equal size sub-graphs. Samples 2 and 3 

helped us to determine the general whereabouts of the infected zone. Samples 4, 5, 6, 7 

pinpointed the exact location of the infection.  

 

Switching to Algorithm 2, we next consider the Hot Spot neighborhood scenario where several 

nodes are infected as shown in Figure 5(b). We have randomly generated the locations of 

infected nodes by taking random draws from the Bayesian probability distribution. As shown in 

Figure 5(b), the algorithm converged in five samples to the neighborhood having the largest 

number of infected nodes.     
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Figure 5- Left and right panels depict the Patient Zero and the Hot Spot neighborhood 
scenarios, respectively. In the right panel, each red X is an infected manhole and the Hot Spot 
neighborhood is depicted in yellow.  
  
 
We now discuss the performance of the two algorithms for Marlborough, assuming widely 

different locations of infection. Our previous analysis shown in Figure 5(a) depicted a single 

scenario of the problem.  Subsequently, we randomly generated 100 scenarios, each having a 

new set of Bayesian probabilities.  For each scenario, the infected node is randomly selected by 

taking a Monte Carlo random draw from the Bayesian probability distribution. For each 

scenario, we then use Algorithm 1 to find the infected node.  The frequency distribution of the 

number of required samples is shown in Figure 6(a), ranging from a minimum of 7 to a 

maximum of 11 samples being required over 100 generated scenarios. This is a surprisingly 

small number of samples considering the size of the network with its 844 manholes.  

 

We use a similar approach to generate scenarios for the case of finding the Hot Spot 

neighborhood. Recall that each source manhole has an assigned Bayesian probability. For each 
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scenario, we use Monte Carlo Sampling of the Bayesian probabilities to determine whether or 

not any given node is infected, iterating over all nodes. We adopt a stopping rule that 

terminates the algorithm if the detected viral load divided by the number of upstream source 

nodes from two consecutive samples is less than a predefined threshold.  (In practice, we 

believe that the stopping rule would be subjectively human created.)  We generated 100 

different scenarios. In Figure 6(b), we present the number of samples to find the Hot Spot 

neighborhood, showing a minimum of 4 and maximum of 7 samples.  Algorithm 2 requires 

fewer samples because it does have to zero in on a single infected node, instead it finds the 

vicinity of the Hot Spot neighborhood.  

 
Figure 6. The number of sampled manholes to find (a) Patient Zero, and (b) the Hot Spot 

neighborhood in a stylized Marlborough, Massachusetts.  
 

We now consider a scenario where we have prior information that two geographical areas of 

Marlborough have a higher chance of being infected. We consider two clusters as likely Hot 

Spots shown in Figure 7. The sum of Bayesian probabilities of the source nodes in Clusters 1 and 

2 is 0.5 and 0.25, respectively. The sum of Bayesian probabilities over the rest of the city is 0.25.  

We generate the Bayesian probabilities in the same way as above but ensure that the sum of 
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probabilities in Cluster 1 is 0.5, Cluster 2 -- 0.25, and the remainder of the city -- 0.25. Similar to 

above, we randomly generate 100 scenarios, each having a new set of Bayesian probabilities, 

and use Monte Carlo sampling of the Bayesian probabilities to choose the infected nodes.  

 

We present the number of required samples for the two algorithms in Figure 8. Algorithm 1 in 

Figure 8(a) has two peaks in the distribution of the required number of samples. The left peak is 

associated with Cluster 2 which has fewer source nodes and is less intricate to search than 

Cluster 1. It is easier to find the infected node in Cluster 2. The right peak is associated with 

Cluster 1 which typically required more samples to find Patient Zero. Algorithm 2 in Figure 8(b) 

also has two peaks for the two clusters.  

 

We note that the maximum number of samples of Algorithm 1 with clusters is 13 (Figure 8(a)), 

in contrast to 11, its counterpart without clusters (Figure 6(a)). The cluster scenario may require 

more samples than the no-cluster scenario in cases when the infected node (or the infected 

neighborhood in the Hot Spot case) is outside of the clusters. In such cases, one might say that 

the Bayesian probabilities give misleading information on the whereabouts of the infection, 

thus, more samples are required.  

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3631095



 24

 

Figure 7. Marlborough, Massachusetts, with two infection clusters.  Sum of source node 
Bayesian probabilities in Clusters and 1 and 2 is 0.5 and 0.25, respectively. For the remainder of 

the city, the sum of source node probabilities is 0.25. 
 

We compare the two algorithms in the cluster and no-cluster scenarios in Table 1. The mean 

number of samples is smaller in the cluster compared to the no-cluster scenario. In Algorithms 

1 and 2, the cluster scenario reduces the mean number of samples by 14% and 22%, 

respectively. However, the cluster scenario has a larger variance in the number of samples, 

which, as explained above, is predominantly due to cases where the infected nodes are outside 

of the clusters. According to Table 1, we have a larger right-tailed skew in the number of 

samples when the infection is clustered, showing that we can find the Hot Spots with fewer 

number of samples compared to the no-cluster scenario.  

 

WTP

Cluster 1 

Cluster 2 
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Figure 8. The number of sampled manholes to find (a) Patient Zero, and (b) the Hot Spot 
neighborhood in a stylized Marlborough, Massachusetts, when there are clustered infections. 

 

Table 1. Mean, variance, and skewness of the number of samples required to find Patient Zero 
or the Hot Spot neighborhood with and without infection clusters.  

 Mean Variance Skewness 

Random Infections: Patient Zero 8.98 0.75 0.42 

Clustered infections: Patient Zero 7.71 3.39 1.09 

Random Infections: Hot Spot 5.96 0.75 -0.31 

Clustered Infections: Hot Spot 4.66 1.48 1.42 

 

Finally, moving away from clusters, the two algorithms work well in large as well as small 

networks.  As an example, in a test of Algorithm 1 on randomly generated networks with 

approximately 3,000 links and 1,000 source nodes, we found typically that only 11 manhole 

samples were required to home in on the desired location.  Applying to both simulated and 

actual sewer networks, we perform extensive computational and complexity analysis in [24].  
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3. Reflections 

We have presented two algorithms that utilize viral markers of SARS-CoV-2 contained in human 

stool, and thus also present in human sewage, to help identify location(s) in a community of 

individuals currently infected.  Each algorithm recommends a dynamically-dependent sequence 

of manholes to sample in order to home in on the locations(s) of the infected individuals.  In the 

first case, we are seeking one or a small number of persons with COVID-19 living at the same 

address. In the second we are seeking a Hot Spot neighborhood within the community.   

 

The programmed algorithms are very fast on any computer, and they suggest only a small 

fraction of a community’s manholes need to be sampled and tested.  For Algorithm 1, for 

instance, one could double the size of the community being analyzed and typically only add one 

extra manhole to sample and test!  This important property derives from the binary search logic 

that attempts to cut away half of the eligible manholes at each iteration. 

 

As mentioned earlier, our work is a bit ahead of the current science and technology of COVID-

19 tracing within a community.  Here are the major issues ahead of us, for our algorithmic 

approach to work well in practice. 

 

       3.1.       Fast Testing.   

For our methods to work, we need rapid testing on the spot at the manholes, each test 

administered to the newly obtained sewage sample.  There are current efforts to create such 

tests, including one being labeled as the “fast two-dollar test.” 
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3.2. Sewage system realities.   

Municipal sewage systems are not pristine like hospital or university labs.  They are notoriously 

under-maintained.  Foreign substances other than human waste can occupy these systems.  

Thus, it remains to be seen how well these systems can accurately maintain and convey virus 

remnants during the winding tributary-and-main-line journey to the sewage treatment plant. 

 

3.3. Lack of Time Averaging.   

Most of the recent sewage content analysis by researchers cited in the opening of this paper 

uses time-averaged measurements of SARS-CoV-2 remnants.  We do not have the luxury of 

time averaging with our fast testing and quick identification of the next manhole to test.  This 

should not be a problem for Algorithm 2, since it focuses on a populated neighborhood of 

infected individuals and does not seek to estimate full viral load, only relative viral load in 

contrast to other neighborhoods.  But it can be a problem with Algorithm 1 since we are dealing 

there with one or a small number of individuals.  The viral signature they input to the sewage 

system at 9:00 AM is likely to be a burst of viral load, perhaps then followed by no input until 

later in the day or perhaps even the next day.  So, there is a reasonable chance that this 

individual’s viral signature in the sewage flow varies up and down during the day, possibly 

causing our sequential sampling system to miss the signature.   The science of fluid dynamics 

suggests that the initial burst should dissipate and spread out over the journey through the 

system, thus smoothing the signature in the sewage flow. Such smoothing, if it occurs, could 

help our analysis.  Also, many people having COVID-19 also have persistent diarrhea, and that 
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unfortunate condition would tend to even the signature flows over the course of a day.  Finally, 

in private conversations with a senior hydraulic engineering research professor, we learn that 

no real-time sewage flow is required in our testing to reveal remnants of COVID-19.  With no 

current flow, we sample and test the sludge in the manhole to verify (or not verify) upstream 

presence of the virus.  Operationally, we see many question marks going forward.  Only future 

research will help clarify these nontrivial issues. 

 

3.4. Privacy.   

The focus of each algorithm is to speed testing of residents in a community by identifying “most 

likely” addresses of infection.  Algorithm 1 homes in on a few houses on one street, while 

Algorithm 2 focuses on identifying a likely neighborhood, say comprising several city or town 

blocks.  Residents who are subsequently selected for testing by our focused new means may 

object on privacy worries. In the context COVID-19, privacy concerns have been expressed over 

use of cell phone tracking, in-house monitoring devices, facial recognition software and more 

[23]. It is too early to know if tracking of virus-laden sewage would spark similar concerns. 

 

          3.5.        More Methodological Research Needed.   

This is the first paper to offer a way to test manholes sequentially to home in on locations of 

individuals having COVID-19.  Refinements to each algorithm can be made, and we have already 

begun their study.   
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We did not devote attention to evaluating the relative Bayesian probabilities.  Their careful 

estimation for this procedure could be an entirely separate paper, and in practice, could result 

in much-improved performance.  For instance, a neighborhood in which the majority of people 

have jobs that require leaving the house and working in an environment with substantial 

human interaction is likely to generate more COVID-19 cases than one in which most residents 

can work from home via the Internet.  These differences can be expressed by markedly 

different values of the Bayesian probabilities assigned to neighborhoods.   

 

Finally, once our algorithmic procedures are tried in practice, building a database of results 

along with practical problems, there undoubtedly will be a need to revise the algorithms and 

related procedures to adapt to the realities in the field.  

 

3.6.  Breaking News from Italy 

As we submit this paper, we learn that analysis of wastewater in Italy has revealed the presence 

of SARS-CoV-2 in December, more than two months before known cases arose there [25].  

Researchers at Italy’s National Institute of Health (ISS) reported that recent re-analysis revealed 

remnants of SARS-CoV-2 in the wastewater of Milan and Turin in December 2019.  These 

findings point to the invaluable attribute of wastewater as an early warning system for 

impending SARS-CoV-2 community infection.  Given such early warnings, tracing methods such 

as our Algorithm 2 could help identify regions within cities having the highest likelihood of 

serous outbreak. 
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