Inverse scattering problem for a hyperbolic system of first order equations on a semi-axis on a first approximation

Lala N. Atamova • Aynur N. Safarova

Received: . 17.04.2019 / Revised: 23.07.2019 / Accepted: 04.11.2019

Abstract

In this paper for a hyperbolic system of five equations on the semi-axis, by joint consideration of three problems an inverse scattering problem on a first approximation was solved. The coefficients of the considered system are uniquely determined by the scattering operator on the semi-axis.

Keywords. inverse problem, scattering operator, factorization.
Mathematics Subject Classification (2010): 35J25; 35R30, 53C15

1 Introduction

Inverse scattering problems for different linear systems of first order hyperbolic equations on the axis and semi-axis were studied in the papers of L.P. Nizhnik [3], L.P. Nizhnik and V.G. Tarasov [2], A.S. Fokas and L.Y. Sung [1], N.Sh. Iskenderov [4], M.I. Ismailov [5] and others.

In this paper we study direct and inverse scattering problems for a system of five hyperbolic equations of first order on a semi-axis in the case when there are two given incident waves.

When there are three incident and two scattering waves, these problems were studied in [8] when there are four incident and two scattering waves, in [7].

2 Scattering problem on a semi-axis

On the semi-axis $x \geq 0$ consider a system of equations of the form:

$$
\begin{equation*}
\xi_{i} \frac{\partial U_{i}(x, t)}{\partial t}-\frac{\partial U_{i}(x, t)}{\partial x}=\sum_{j=1}^{5} c_{i j}(x, t) U_{j}(x, t), i=\overline{1,5} \tag{2.1}
\end{equation*}
$$

[^0]where $c_{i j}(x, t)$ are complex-valued measurable functions with respect to x and t satisfying the conditions:
\[

$$
\begin{equation*}
\left|c_{i j}(x, t)\right| \leq C[(1+|x|)(1+|t|)]^{-1-\varepsilon} \tag{2.2}
\end{equation*}
$$

\]

moreover

$$
c_{i i}(x, t)=0, i=\overline{1,5}, \xi_{1}>\xi_{2}>0>\xi_{3}>\xi_{4}>\xi_{5},-\infty<t<+\infty
$$

Let us consider system (2.1) on a semi-axis under three different boundary conditions:

$$
\begin{align*}
& \text { 1) }\left\{\begin{array}{l}
U_{3}^{1}(0, t)=U_{1}^{1}(0, t)+U_{2}^{1}(0, t) \\
U_{4}^{1}(0, t)=U_{2}^{1}(0, t) \\
U_{5}^{1}(0, t)=U_{1}^{1}(0, t)
\end{array}\right. \tag{2.3}\\
& 2) \quad\left\{\begin{array}{l}
U_{3}^{2}(0, t)=U_{1}^{2}(0, t) \\
U_{4}^{2}(0, t)=U_{1}^{2}(0, t)+U_{2}^{2}(0, t) \\
U_{5}^{2}(0, t)=U_{2}^{2}(0, t)
\end{array}\right. \tag{2.4}\\
& 3) \quad\left\{\begin{array}{l}
U_{3}^{3}(0, t)=U_{2}^{3}(0, t) \\
U_{4}^{3}(0, t)=U_{1}^{3}(0, t) \\
U_{5}^{3}(0, t)=U_{1}^{3}(0, t)+U_{2}^{3}(0, t)
\end{array}\right. \tag{2.5}
\end{align*}
$$

Any essentially bounded solution $U(x, t)=\left\{U_{1}(x, t), U_{2}(x, t), \ldots, U_{5}(x, t)\right\}$ of the system (2.1) with the coefficients $c_{i j}(x, t), i, j=\overline{1,5}$, satisfying conditions (2.2) admit on the semi-axis $x \geq 0$ the following asymptotic representations:

$$
\left\{\begin{array}{l}
U_{i}(x, t)=a_{i}\left(t+\xi_{i} x\right)+o(1), i=1,2 \tag{2.6}\\
U_{i}(x, t)=b_{i}\left(t+\xi_{i} x\right)+o(1), i=\overline{3,5}, x \rightarrow+\infty
\end{array}\right.
$$

where $a_{i}(s) \in L_{\infty}(-\infty,+\infty) \quad(i=1,2)$ determine the incident waves, while $b_{i}(s) \in L_{\infty}(-\infty,+\infty), i=\overline{3,5}$ the scattering ones.

The scattering problem for system (2.1) is in finding the solution to the system (2.1) by the given incident waves and boundary conditions for $x=0$.

The scattering problem under joint consideration of the first, second and third problems is stated as follows: by the given function $a_{1}(s), a_{2}(s) \in L_{\infty}(R), R=(-\infty,+\infty)$ find the solution

$$
U^{k}(x, t) \in L_{\infty}\left((0,+\infty) \times(-\infty,+\infty), C^{2}\right),(k=1,2)
$$

of the first, second and third problems for which in L_{∞} the following asymptotic representations are valid:

$$
U_{i}^{k}(x, t)=a_{i}\left(t+\xi_{i} x\right)+o(1), x \rightarrow \infty, i=1,2, k=\overline{1,3}
$$

where $U^{k}(x, t)=\left(U_{1}^{k}(x, t), \ldots, U_{5}^{k}(x, t)\right)$.
Theorem 2.1 Let the coefficients $c_{i j}(x, t), i, j=5$ of the system (2.1), satisfy conditions (2.2). Then there exists a unique solution of the scattering problem on the semi-axis $x \geq 0$ for the system (2.1) with arbitrary given incident waves

$$
a_{i}(s) \in L_{\infty}(R), R=(-\infty,+\infty), i=1,2
$$

The proof of this theorem is similar to one in [7].
Note that the scattering problem for the k-th $(k=\overline{1,3})$ problem is equivalent to the following system of integral equations:

$$
\begin{align*}
& U_{1}^{k}(x, t)=a_{1}\left(t+\xi_{1} x\right)+\int_{x}^{+\infty} \sum_{j=1}^{5}\left(c_{1 j} U_{j}\right)\left(y, t+\xi_{1}(x-y)\right) d y \\
& U_{2}^{k}(x, t)=a_{2}\left(t+\xi_{2} x\right)+\int_{x}^{+\infty} \sum_{j=1}^{5}\left(c_{2 j} U_{j}\right)\left(y, t+\xi_{2}(x-y)\right) d y \tag{2.7}\\
& U_{i}^{k}(x, t)=b_{i}\left(t+\xi_{i} x\right)+\int_{x}^{+\infty} \sum_{j=1}^{5}\left(c_{i j} U_{j}\right)\left(y, t+\xi_{i}(x-y)\right) d y, i=\overline{3,5}
\end{align*}
$$

where the functions $b_{3}^{k}(s), b_{4}^{k}(s), b_{5}^{k}(s) k=1,2$ are expressed by $a_{1}(s), a_{2}(s)$ the coefficients $c_{i j}(x, t), i, j=\overline{1,5}$ and the solutions of the first, second and third problems, respectively, in the following way:

$$
\left\{\begin{array}{l}
b_{3}^{1}(t)=a_{1}(t)+a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j\left(y, t-\xi_{1} y\right) U_{j}^{1}\left(y, t-\xi_{1} y\right)}+\right. \tag{2.8}\\
\left.+c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{1}\left(y, t-\xi_{2} y\right)-c_{3 j}\left(y, t-\xi_{3} y\right) U_{j}^{1}\left(y, t-\xi_{3} y\right)\right] d y \\
b_{4}^{1}(t)=a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{\left.2 j\left(y, t-\xi_{2} y\right) U_{j}^{1}\left(y, t-\xi_{2} y\right)-c_{4 j}\left(y, t-\xi_{4} y\right) U_{j}^{1}\left(y, t-\xi_{4} y\right)\right] d y}\right. \\
b_{5}^{1}(t)=a_{1}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{1}\left(y, t-\xi_{1} y\right)-\right. \\
\left.-c_{5 j}\left(y, t-\xi_{5} y\right) U_{j}^{1}\left(y, t-\xi_{5} y\right)\right] d y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
b_{3}^{2}(t)=a_{1}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{2}\left(y, t-\xi_{1} y\right)-\right. \tag{2.9}\\
\left.-c_{3 j}\left(y, t-\xi_{3} y\right) U_{j}^{2}\left(y, t-\xi_{3} y\right)\right] d y \\
b_{4}^{2}(t)=a_{1}(t)+a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{2}\left(y, t-\xi_{1} y\right)+\right. \\
\left.+c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{2}\left(y, t-\xi_{2} y\right)-c_{4 j}\left(y, t-\xi_{4} y\right) U_{j}^{2}\left(y, t-\xi_{4} y\right)\right] d y \\
b_{5}^{2}(t)=a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{2}\left(y, t-\xi_{2} y\right)-\right. \\
\left.-c_{5 j}\left(y, t-\xi_{5} y\right) U_{j}^{2}\left(y, t-\xi_{5} y\right)\right] d y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
b_{3}^{3}(t)=a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{3}\left(y, t-\xi_{2} y\right)-\right. \tag{2.10}\\
\left.-c_{3 j}\left(y, t-\xi_{3} y\right) U_{j}^{3}\left(y, t-\xi_{3} y\right)\right] d y \\
b_{4}^{3}(t)=a_{1}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{3}\left(y, t-\xi_{1} y\right)-\right. \\
\left.-c_{4 j}\left(y, t-\xi_{4} y\right) U_{j}^{3}\left(y, t-\xi_{4} y\right)\right] d y \\
b_{5}^{3}(t)=a_{1}(t)+a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{3}\left(y, t-\xi_{1} y\right)+\right. \\
\left.+c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{3}\left(y, t-\xi_{2} y\right)-c_{5 j}\left(y, t-\xi_{5} y\right) U_{j}^{3}\left(y, t-\xi_{5} y\right)\right] d y
\end{array}\right.
$$

It follows from theorem (2.1) that to each vector-function $a(t)=\left(a_{1}(t), a_{2}(t)\right) \in$ $L_{\infty}(R)$ giving the incident waves there correspond the solutions of three scattering problems of the system (2.1) with boundary conditions (2.3), (2.4), (2.5) and the given asymptotics

$$
\left\{\begin{array}{l}
U_{3}^{k}(x, t)=b_{3}^{k}\left(t+\xi_{3} x\right)+o(1), \tag{2.11}\\
U_{4}^{k}(x, t)=b_{4}^{k}\left(t+\xi_{4} x\right)+o(1), \\
U_{5}^{k}(x, t)=b_{5}^{k}\left(t+\xi_{5} x\right)+o(1), k=\overline{1,3}, x \rightarrow+\infty,
\end{array}\right.
$$

i.e. the vector of scattering waves $b(t)=\left(b^{1}(t), b^{2}(t), b^{3}(t)\right)$, where $b^{k}(t)=\left(b_{3}^{k}(t), b_{4}^{k}(t), b_{5}^{k}(t)\right)(k=\overline{1,3})$. Relation (2.11) follows from (2.7) and conditions (2.2). Thus, in the space of essentially bounded functions, we determined the operator $S=\left(S^{1}, S^{2}, S^{3}\right)$ that takes $a(t)$ to $b(t)$:

$$
S^{k}\binom{a_{1}(t)}{a_{2}(t)}=\left(\begin{array}{c}
b_{3}^{k}(t) \tag{2.12}\\
b_{4}^{k}(t) \\
b_{5}^{k}(t)
\end{array}\right), k=\overline{1,3}
$$

Here,

$$
\begin{gather*}
S=\left(S^{1}, S^{2}, S^{3}\right) \text { and } S^{k}=\left(\begin{array}{c}
S_{11}^{k} S_{12}^{k} \\
S_{21}^{k} \\
S_{22}^{k} \\
S_{31}^{k} S_{32}^{k}
\end{array}\right), k=\overline{1,3} \\
b_{3}^{k}(t)=S_{11}^{k} a_{1}(t)+S_{12}^{k} a_{2}(t), \\
b_{4}^{k}(t)=S_{21}^{k} a_{1}(t)+S_{22}^{k} a_{2}(t), \tag{2.13}\\
b_{5}^{k}(t)=S_{31}^{k} a_{1}(t)+S_{32}^{k} a_{2}(t), k=\overline{1,3 .}
\end{gather*}
$$

From (2.8), (2.9), (2.10) it follows that the elements of the operator have $S^{k}(k=\overline{1,3})$ have the form:

$$
\begin{align*}
& \left\{\begin{array}{l}
S_{11}^{1}=I+F_{11}^{1}, S_{12}^{1}=I+F_{12}^{1}, \\
S_{21}^{1}=F_{21}^{1}, S_{22}^{1}=I+F_{22}^{1}, \\
S_{31}^{1}=I+F_{31}^{1}, S_{32}^{1}=F_{32}^{1},
\end{array}\right. \\
& \left\{\begin{array}{l}
S_{11}^{2}=I+F_{11}^{2}, S_{12}^{2}=F_{12}^{2}, \\
S_{21}^{2}=I+F_{21}^{2}, S_{22}^{2}=I+F_{22}^{2}, \\
S_{31}^{2}=F_{32}^{2}, S_{32}^{2}=I+F_{32}^{2},
\end{array}\right. \tag{2.14}\\
& \left\{\begin{array}{l}
S_{11}^{3}=F_{11}^{3}, S_{12}^{3}=I+F_{12}^{3}, \\
S_{21}^{3}=I+F_{22}^{3}, S_{22}^{3}=F_{22}^{3}, \\
S_{31}^{3}=I+F_{31}^{3}, S_{32}^{3}=I+F_{32}^{3},
\end{array}\right.
\end{align*}
$$

where the operators $F_{i j}^{k}(j=1,2, i, k=\overline{1,3,})$ are Fredholm integral operators.

3 The inverse scattering problem on a semi-axis on a first approximation

The inverse problem for the system (2.1), is in finding the coefficients of the system (2.1), by the given scattering operator S on a semi-axis.

Here the coefficients of the system (2.1), are restored by the scattering operator on a semi-axis constructed on a first approximation. It is constructed in the explicit form.

For the first problem as a zero order approximation we take

$$
\begin{aligned}
U_{k}^{(1,0)}(x, t) & =a_{k}\left(t+\xi_{k} x\right), k=1,2 . \\
U_{3}^{(1,0)}(x, t) & =a_{1}\left(t+\xi_{3} x\right)+a_{2}\left(t+\xi_{3} x\right), \\
U_{4}^{(1,0)}(x, t) & =a_{2}\left(t+\xi_{4} x\right), \\
U_{5}^{(1,0)}(x, t) & =a_{1}\left(t+\xi_{5} x\right) ;
\end{aligned}
$$

for the second problem

$$
\begin{aligned}
& U_{k}^{(2,0)}(x, t)=a_{k}\left(t+\xi_{k} x\right), k=1,2 \\
& U_{3}^{(2,0)}(x, t)=a_{1}\left(t+\xi_{3} x\right) \\
& U_{4}^{(2,0)}(x, t)=a_{1} \cdot\left(t+\xi_{4} x\right)+a_{2}\left(t+\xi_{4} x\right), \\
& U_{5}^{(2,0)}(x, t)=a_{2}\left(t+\xi_{5} x\right)
\end{aligned}
$$

for the third problem

$$
\begin{aligned}
U_{k}^{(3,0)}(x, t) & =a_{k}\left(t+\xi_{k} x\right), k=1,2 \\
U_{3}^{(3,0)}(x, t) & =a_{2}\left(t+\xi_{3} x\right) \\
U_{4}^{(3,0)}(x, t) & =a_{1}\left(t+\xi_{4} x\right) \\
U_{5}^{(3,0)}(x, t) & =a_{1}\left(t+\xi_{5} x\right)+a_{2}\left(t+\xi_{5} x\right)
\end{aligned}
$$

Then in equalities (2.8), (2.9) and (2.10) the first order approximations will be:

$$
\left\{\begin{array}{l}
b_{3}^{1}(t)=a_{1}(t)+a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{1} y\right)+\right. \tag{3.1}\\
\left.+c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{2} y\right)-c_{3 j}\left(y, t-\xi_{3} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{3} y\right)\right] d y \\
b_{4}^{1}(t)=a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{2} y\right)-\right. \\
\left.-c_{4 j}\left(y, t-\xi_{4} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{4} y\right)\right] d y \\
b_{5}^{1}(t)=a_{1}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{1} y\right)-\right. \\
\left.-c_{5 j}\left(y, t-\xi_{5} y\right) U_{j}^{(1,0)}\left(y, t-\xi_{5} y\right)\right] d y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
b_{3}^{2}(t)=a_{1}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{1} y\right)-\right. \tag{3.2}\\
\left.-c_{3 j}\left(y, t-\xi_{3} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{3} y\right)\right] d y \\
b_{4}^{2}(t)=a_{1}(t)+a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{1} y\right)+\right. \\
+c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{2} y\right)- \\
\left.-c_{4 j}\left(y, t-\xi_{4} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{4} y\right)\right] d y \\
b_{5}^{2}(t)=a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{2} y\right)-\right. \\
\left.-c_{5 j}\left(y, t-\xi_{5} y\right) U_{j}^{(2,0)}\left(y, t-\xi_{5} y\right)\right] d y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
b_{3}^{3}(t)=a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{2} y\right)-\right. \tag{3.3}\\
\left.-c_{3 j}\left(y, t-\xi_{3} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{3} y\right)\right] d y, \\
b_{4}^{3}(t)=a_{1}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{1} y\right)-\right. \\
\left.-c_{4 j}\left(y, t-\xi_{4} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{4} y\right)\right] d y, \\
b_{5}^{3}(t)=a_{1}(t)+a_{2}(t)+\int_{0}^{+\infty} \sum_{j=1}^{5}\left[c_{1 j}\left(y, t-\xi_{1} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{1} y\right)+\right. \\
\left.+c_{2 j}\left(y, t-\xi_{2} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{2} y\right)-c_{5 j}\left(y, t-\xi_{5} y\right) U_{j}^{(3,0)}\left(y, t-\xi_{5} y\right)\right] d y ;
\end{array}\right.
$$

respectively.

Taking into account in (2.13) and (2.14), we have:

$$
\begin{gathered}
c_{12}(x, y)=\left(\xi_{2}-\xi_{1}\right)\left[F_{12}^{1}\left(\xi_{1} x+y, \xi_{2} x+y\right)-F_{12}^{2}\left(\xi_{1} x+y, \xi_{2} x+y\right)\right], \\
c_{13}(x, y)=\left(\xi_{1}-\xi_{3}\right)\left[F_{12}^{2}\left(\xi_{1} x+y, \xi_{3} x+y\right)-F_{12}^{1}\left(\xi_{1} x+y, \xi_{3} x+y\right)+\right. \\
\left.+\frac{1}{2}\left[F_{22}^{3}\left(\xi_{1} x+y, \xi_{3} x+y\right)+F_{32}^{1}\left(\xi_{1} x+y, \xi_{3} x+y\right)-F_{21}^{3}\left(\xi_{1} x+y, \xi_{3} x+y\right)\right]\right] \\
c_{14}(x, y)=\frac{\xi_{1}-\xi_{4}}{2}\left[F_{21}^{3}\left(\xi_{1} x+y, \xi_{4} x+y\right)-F_{22}^{3}\left(\xi_{1} x+y, \xi_{4} x+y\right)\right. \\
\left.+F_{32}^{1}\left(\xi_{1} x+y, \xi_{4} x+y\right)\right], \\
c_{15}(x, y)=\left(\xi_{1}-\xi_{5}\right)\left[F_{31}^{1}\left(\xi_{1} x+y, \xi_{5} x+y\right)-F_{12}^{2}\left(\xi_{3} x+y, \xi_{5} x+y\right)+F_{12}^{1^{‘}}\left(\xi_{3} x+y, \xi_{5} x+y\right)+\right. \\
+\frac{1}{2}\left[F_{21}^{3}\left(\xi_{1} x+y, \xi_{5} x+y\right)-F_{22}^{3}\left(\xi_{1} x+y, \xi_{5} x+y\right)-F_{32}^{1}\left(\xi_{1} x+y, \xi_{5} x+y\right)\right], \\
c_{21}(x, y)=\left(\xi_{1}-\xi_{2}\right)\left[F_{11}^{1}\left(\xi_{2} x+y, \xi_{1} x+y\right)-F_{11}^{2}\left(\xi_{2} x+y, \xi_{1} x+y\right)\right], \\
c_{23}(x, y)=\left(\xi_{2}-\xi_{3}\right)\left[F_{22}^{1}\left(\xi_{2} x+y, \xi_{3} x+y\right)-F_{11}^{2}\left(\xi_{2} x+y, \xi_{3} x+y\right)+\right. \\
\left.\quad+F_{12}^{1}\left(\xi_{2} x+y, \xi_{3} x+y\right)\right], \\
c_{24}(x, y)=\left(\xi_{4}-\xi_{2}\right)\left[F_{11}^{2}\left(\xi_{2} x+y, \xi_{4} x+y\right)-F_{12}^{1}\left(\xi_{2} x+y, \xi_{4} x+y\right)\right], \\
c_{25}(x, y)=\left(\xi_{2}-\xi_{5}\right)\left[F_{32}^{2}\left(\xi_{2} x+y, \xi_{5} x+y\right)-F_{11}^{2}\left(\xi_{2} x+y, \xi_{5} x+y\right)+\right. \\
\left.\quad+F_{12}^{1}\left(\xi_{2} x+y, \xi_{5} x+y\right)\right], \\
c_{31}(x, y)=\left(\xi_{3}-\xi_{1}\right) F_{11}^{2}\left(\xi_{3} x+y, \xi_{1} x+y\right), \\
c_{32}(x, y)=\left(\xi_{3}-\xi_{2}\right) F_{12}^{2}\left(\xi_{3} x+y, \xi_{2} x+y\right), \\
c_{34}(x, y)=\left(\xi_{4}-\xi_{3}\right)\left[F_{11}^{3}\left(\xi_{3} x+y, \xi_{4} x+y\right)-F_{12}^{3}\left(\xi_{3} x+y, \xi_{4} x+y\right)+2 F_{12}^{1}\left(\xi_{3} x+y, \xi_{4} x+y\right)-\right. \\
\left.-2 F_{11}^{2}\left(\xi_{3} x+y, \xi_{4} x+y\right)-F_{22}^{1}\left(\xi_{3} x+y, \xi_{4} x+y\right)\right], \\
c_{35}(x, y)=\left(\xi_{5}-\xi_{3}\right)\left[F_{12}^{3}\left(\xi_{3} x+y, \xi_{5} x+y\right)-2 F_{12}^{1}\left(\xi_{3} x+y, \xi_{5} x+y\right)+2 F_{11}^{2}\left(\xi_{3} x+y, \xi_{5} x+y\right)-\right. \\
\left.-F_{32}^{2}\left(\xi_{3} x+y, \xi_{5} x+y\right)-F_{22}^{1}\left(\xi_{3} x+y, \xi_{5} x+y\right)\right], \\
c_{41}(x, y)=\left(\xi_{4}-\xi_{1}\right) F_{21}^{3}\left(\xi_{4} x+y, \xi_{1} x+y\right),
\end{gathered}
$$

$$
\begin{gather*}
c_{42}(x, y)=\left(\xi_{4}-\xi_{2}\right) F_{22}^{2}\left(\xi_{4} x+y, \xi_{2} x+y\right), \\
c_{43}(x, y)=\left(\xi_{4}-\xi_{3}\right)\left[F_{22}^{1}\left(\xi_{4} x+y, \xi_{3} x+y\right)-F_{22}^{2}\left(\xi_{4} x+y, \xi_{3} x+y\right)\right], \\
c_{45}(x, y)=\left(\xi_{5}-\xi_{4}\right)\left[F_{22}^{2}\left(\xi_{4} x+y, \xi_{5} x+y\right)-F_{31}^{3}\left(\xi_{4} x+y, \xi_{5} x+y\right)-F_{12}^{1}\left(\xi_{4} x+y, \xi_{5} x+y\right)+\right. \\
\left.\quad+F_{12}^{2}\left(\xi_{4} x+y, \xi_{5} x+y\right)\right], \\
c_{51}(x, y)=\left(\xi_{5}-\xi_{1}\right)\left[F_{31}^{1}\left(\xi_{5} x+y, \xi_{1} x+y\right)+F_{32}^{2}\left(\xi_{5} x+y, \xi_{1} x+y\right)-F_{32}^{1}\left(\xi_{5} x+y, \xi_{1} x+y\right)\right], \\
c_{52}(x, y)=\left(\xi_{5}-\xi_{2}\right)\left[F_{32}^{3}\left(\xi_{5} x+y, \xi_{2} x+y\right)-F_{32}^{1}\left(\xi_{5} x+y, \xi_{2} x+y\right)+F_{32}^{2}\left(\xi_{5} x+y, \xi_{2} x+y\right)\right], \\
c_{53}(x, y)=\left(\xi_{5}-\xi_{3}\right)\left[F_{32}^{1}\left(\xi_{5} x+y, \xi_{3} x+y\right)-F_{32}^{2}\left(\xi_{5} x+y, \xi_{3} x+y\right)\right], \\
c_{54}(x, y)=\left(\xi_{5}-\xi_{4}\right)\left[F_{32}^{1}\left(\xi_{5} x+y, \xi_{4} x+y\right)-F_{32}^{3}\left(\xi_{5} x+y, \xi_{4} x+y\right)\right] . \tag{3.4}
\end{gather*}
$$

where $F_{i j}^{k}(t, \tau)$-kernel of the operators $F_{i j}^{k}(j=1,2, k=\overline{1,3})$. Note that from the remaining relations we have:

$$
\begin{align*}
& F_{21}^{1}(t, \tau)=F_{21}^{2}(t, \tau), \tau>t, \\
& F_{11}^{1}(t, \tau)=F_{31}^{1}(t, \tau)+F_{12}^{3}(t, \tau), \tau<t, \\
& F_{11}^{1}(t, \tau)=F_{12}^{3}(t, \tau)+F_{12}^{2}(t, \tau)-F_{12}^{1}(t, \tau)+F_{31}^{1}(t, \tau), \tau<t, \\
& F_{12}^{1}(t, \tau)=F_{11}^{3}(t, \tau)-F_{12}^{3}(t, \tau)-F_{11}^{2}(t, \tau)-F_{22}^{1}(t, \tau)+ \\
& +F_{12}^{2}(t, \tau)+F_{32}^{1}(t, \tau), \tau<t, \\
& F_{21}^{1}(t, \tau)=F_{22}^{3}(t, \tau)-F_{31}^{3}(t, \tau)+F_{12}^{2}(t, \tau)+F_{22}^{1}(t, \tau)- \\
& -2 F_{11}^{2}(t, \tau)+F_{32}^{2}(t, \tau)+F_{12}^{1}(t, \tau), \tau<t, \\
& F_{11}^{2}(t, \tau)=F_{11}^{3}(t, \tau)-F_{12}^{3}(t, \tau)+F_{12}^{1}(t, \tau)-2 F_{11}^{2}(t, \tau)- \\
& -F_{22}^{1}(t, \tau)+F_{12}^{2}(t, \tau)+F_{32}^{1}(t, \tau), \tau<t, \\
& F_{12}^{2}(t, \tau)=F_{11}^{3}(t, \tau)-2 F_{22}^{1}(t, \tau)-F_{32}^{2}(t, \tau)+2 F_{12}^{1}(t, \tau)-2 F_{12}^{2}(t, \tau)+ \\
& +F_{21}^{3}(t, \tau)-F_{22}^{3}(t, \tau)+F_{31}^{1}(t, \tau), \tau<t, \\
& F_{21}^{2}(t, \tau)=F_{12}^{2}(t, \tau)+F_{32}^{1}(t, \tau)-F_{12}^{1}(t, \tau)+F_{22}^{1}(t, \tau), \tau<t, \\
& F_{21}^{2}(t, \tau)=F_{21}^{3}(t, \tau)+F_{22}^{1}(t, \tau)-F_{22}^{2}(t, \tau)+F_{11}^{1}(t, \tau)-F_{11}^{2}(t, \tau), \tau>t \\
& F_{31}^{3}(t, \tau)=F_{21}^{3}(t, \tau)-F_{22}^{3}(t, \tau)+F_{31}^{1}(t, \tau)-F_{12}^{2}(t, \tau)- \\
& -F_{12}^{1}(t, \tau)+F_{32}^{2}(t, \tau), \tau<t, \tag{3.5}\\
& F_{31}^{2}(t, \tau)=F_{31}^{1}(t, \tau)+F_{32}^{1}(t, \tau)-F_{32}^{3}(t, \tau)+F_{11}^{1}(t, \tau)-F_{11}^{2}(t, \tau), \tau>t, \\
& F_{11}^{3}(t, \tau)=F_{11}^{1}(t, \tau), \tau>t, \\
& F_{12}^{3}(t, \tau)=F_{12}^{2}(t, \tau), \tau<t \\
& F_{22}^{3}(t, \tau)=F_{22}^{1}(t, \tau), \tau>t, \\
& F_{31}^{3}(t, \tau)=F_{31}^{1}(t, \tau)+F_{32}^{2}(t, \tau)-F_{32}^{3}(t, \tau)+F_{11}^{1}(t, \tau)-F_{11}^{2}(t, \tau), \tau>t \\
& F_{32}^{3}(t, \tau)=F_{12}^{1}(t, \tau)+F_{31}^{1}(t, \tau)-F_{12}^{2}(t, \tau), \tau<t,
\end{align*}
$$

The scattering operator S has 18 elements on the axis or 36 elements on the semi-axis. From 36 elements by formula (3.4) we find 20 coefficients of the system (2.1), 16 unnecessary elements are connected with 8 relations on the axis (16 on the semi-axis with respect to t) by formula (3.5).

References

1. Fokas, A.S., Sung, L.Y.: On the solvability of the N-wave, Davey- Stewartson and Kadomstev -Petsiasvili equations. Inverse Problems, 8: 673-708 (1992).
2. Nizhnik L.P., Tarasov V.G.: Inverse non-stationary scattering problem for hyperbolic system of equations, DAN SSSR, 233 (3): 300-303 (1977) (in Russian).
3. Nizhnik, L.P.: Inverse scattering problems for hyperbolic equations, Kiev. Nauk. Dumka, 232 p. (1991).
4. Iskenderov, N.Sh.: Inverse scattering problem for a hyperbolic system of n equations of first order on a semi-axis, Ukr. Mat. Zh. 43(12): 1638-1646 (1991).
5. Ismailov, M.I.: Inverse scattering problem for hyperbolic systems on a semi-axis in the case of equal number of incident and scattered waves, Inverse Problem, 22: 955-974 (2006).
6. Iskenderov, N.Sh., Jabbarova, K.A.: The inverse scattering problem for the system of five first order hyperbolic equations on semi-axis, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math and Mech. (7), 41-54 (2005).
7. Iskenderov, N.Sh., Jafarova L.N.: Direct and inverse scattering problems for the system of six first order hyberbolic equations on semi-axis, Trans. Inst. Math. NAS Ukr. 14 (3), 67-99 (2017).
8. Mamedov, A.A.: Scattering problem on a semi-axis for a system of first order hyperbolic equations, Bull. Baku State Univ. 1, 59-65 (2015).
9. Nizhnik, L.P., Tarasov, V.G.: Inverse scattering problem for one-velocity transfer equation, Dokl. AN SSSR. 242 (6), 1307-1310 (1978).

[^0]: L.N. Atamova

 Khazar University, Baku, Azerbaijan
 E-mail: LJafarova@khazar.org
 A.N. Safarova

 Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
 E-mail: safarova-aynur@bk.ru

