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It is well known, perhaps, only an example for differential operator of any even order
for which the spectrum fills the entire complex plane [1] (see also [2] and [3]). In this
example the boundary conditions have the following form

Uj(y) = y(j−1)(0) + (−1)j−1 y(j−1)(1) = 0, j = 1, 2, 3, 4.

All eigenvalue boundary problems for the operators D3 and D4 whose spectrum fills
the entire complex plane are described. There are only finitely many such third-order
differentiation operators. A characteristic determinant for D3 is identically equal to zero if
and only if the matrix of coefficients consists of two diagonal submatrices, on one of the
diagonals of which there are units, and on the other are roots of minus one. But fourth-
order differential operators, whose spectrum fills the whole complex plane, is infinitely
many (continuum). For operator D4 it is found 12 examples for which the spectrum fills
the entire complex plane. All examples contains arbitrary constant.

Consider the following problems for the operators D3 and D4:

y′′′(x) = λ y(x) = s3 y(x), x ∈ [0, 1] (1)

Uj(y) =
3∑

k=0

ajk y
(k−1)(0) +

3∑

k=0

aj k+3 y(k−1)(1) = 0, j, k = 1, 2, 3 (2)

y(4)(x) = λ y(x) = s4 y(x), x ∈ [0, 1] (3)

Uj(y) =
4∑

k=0

ajk y
(k−1)(0) +

n∑

k=0

aj k+4 y(k−1)(1) = 0, j, k = 1, 2, 3, 4 (4)

It is known [4, P. 26] that if the coefficients of an ordinary linear differential equation
are continuous on [0,1], then for the spectrum of the problem (3), (4) the following two
possibilities occur: 1) there exist at most a countable number of eigenvalues such that do
not have limit points in C; 2) every λ ∈ C is an eigenvalue.

Direct and inverse problems with nonseparated boundary conditions for case 1) have
been fairly well studied (see, for example, [5, 6, 7, 8, 9]). The degenerate case 2) has
been studied little (The boundary conditions are called degenerate if the characteristic
determinant of corresponding eigenvalue problem is constant [10, p. 29]). It is well known,
perhaps, only an example for differential operator of any even order for which the spectrum
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fills the entire complex plane [1] (see also [2]). In this example the boundary conditions
(4) have the followng form

Uj(y) = y(j−1)(0) + (−1)j−1 y(j−1)(1) = 0, j = 1, 2, 3, 4. (5)

Recently in [11] it is shown that there exist similar differential operators of any odd order.
However, in connection with this, another question arises: are there other examples of
such operators? In the present paper, for the operators D3 and D4 we find other examples
of such operators and describe all boundary value problems for the operators D3 and D4

whose spectrum fills the entire complex plane. The form of degenerate boundary conditions
is found too.

The question of describing all boundary value problems with degenerate boundary
conditions is related to a description of all Volterra problems. The problem for operator L
is called Volterra problem if inverse operator L−1 is Volterra operator (see [12, p. 208]).
In the case of nondegenerate boundary conditions for an arbitrary continuous function
q(x), the system of eigen-vectors of the operator L is complete in L2(0, π) (see [10, p. 29]).
Therefore, Volterra problems are among problems with degenerate boundary conditions.

In [13] it is shown, that all Volterra problems for operator D2 with comon boundary
conditions have the form

y(0)∓ a y(π) = 0, y′(0)± a y′(π) = 0, (6)

where a �= 1. A similar result is obtained in [14] for Sturm-Liouville problems with
differential equation −y′′ + q(x) y = λ y and symmetric potential (q(x) = q(π − x)).

In [16] it is discribed all degenerate boundary conditions for D2. In [17] a similar result
is obtained for Sturm-Liouville problems (see also [18] and [15]).

In [16, p. 556] and [2] it is shown that there can not exist example for the operators
D2 and D4 with finite (but not empty) spectrum. In [19] it is shown that the spectrum of
common nth order linear differential operators generated by regular boundary conditions
is either empty or infinite.

For operator D3 we denote the matrix consisting of the coefficients alk in the boundary
conditions (2) by A and the minor consisting of the i1th, i2th and i3th columns of this
matrix A by Ai1,i2,i3 ,

A =

∥∥∥∥∥∥

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36

∥∥∥∥∥∥
. (7)

Ai1,i2,i3 =

∣∣∣∣∣∣

a1,i1 a1,i2 a1,i3
a2,i1 a2,i2 a2,i3
a3,i1 a3,i2 a3,i3

∣∣∣∣∣∣
. (8)

In what follows, we assume that the rank of the matrix A is equal to 4,

rankA = 3. (9)

For operator D4 we denote the matrix consisting of the coefficients alk in the boundary
conditions (4) by A and the minor consisting of the i1th, i2th, i3th and i4th columns of
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this matrix A by Ai1,i2,i3,i4 ,

A =

∥∥∥∥∥∥∥∥

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

∥∥∥∥∥∥∥∥
. (10)

Ai1,i2,i3,i4 =

∣∣∣∣∣∣∣∣

a1,i1 a1,i2 a1,i3 a1,i4
a2,i1 a2,i2 a2,i3 a2,i4
a3,i1 a3,i2 a3,i3 a3,i4
a4,i1 a4,i2 a4,i3 a4,i4

∣∣∣∣∣∣∣∣
. (11)

In what follows, we assume that the rank of the matrix A is equal to 4,

rankA = 4. (12)

The aim of this paper is to prove the following theorems:
Theorem 1.
For operator D3 Matrix (7) for coefficients of degenerate boundary conditions (2) has

the following form:

A1 =

∥∥∥∥∥∥

1 0 0 a1 0 0
0 1 0 0 a2 0
0 0 1 0 0 a3

∥∥∥∥∥∥
(13)

or

A2 =

∥∥∥∥∥∥

a1 0 0 1 0 0
0 a2 0 0 1 0
0 0 a3 0 0 1

∥∥∥∥∥∥
, (14)

where ai (i = 1, 2, 3) are some numbers.
For operator D4 Matrix (10) for coefficients of degenerate boundary conditions (4) has

the following form:

A1 =

∥∥∥∥∥∥∥∥

1 0 0 0 a1 0 0 0
0 1 0 0 0 a2 0 0
0 0 1 0 0 0 a3 0
0 0 0 1 0 0 0 a4

∥∥∥∥∥∥∥∥
(15)

or

A2 =

∥∥∥∥∥∥∥∥

a1 0 0 0 1 0 0 0
0 a2 0 0 0 1 0 0
0 0 a3 0 0 0 1 0
0 0 0 a4 0 0 0 1

∥∥∥∥∥∥∥∥
, (16)

where ai (i = 1, 2, 3, 4) are some numbers.

Theorem 2.
For operator D3 the characteristic determinant of problem (1),(2) is identically equal

to zero if and only if matrix (7) of coefficients of boundary conditions (4) has form (13) or
(14), where {ai} (i = 1, 2, 3) are roots of minus one.



For operator D4 the characteristic determinant of problem (3),(4) is identically equal
to zero if and only if matrix (10) of coefficients of boundary conditions (4) has form (15)
or (16), where {ai} (i = 1, 2, 3, 4) are one of the following 12 sets:

1. a1 = C1, a2 = −1, a3 = C−1
1 , a4 = 1,

2. a1 = C2, a2 = 1, a3 = C−1
2 , a4 = −1,

3. a1 = C3, a2 = −1, a3 = 1, a4 = −1,
4. a1 = C4, a2 = 1, a3 = −1, a4 = 1,
5. a1 = −1, a2 = C5, a3 = −1, a4 = 1,
6. a1 = −1, a2 = C6, a3 = 1, a4 = C−1

6 ,
7. a1 = 1, a2 = C7, a3 = −1, a4 = C−1

7 ,
8. a1 = 1, a2 = C8, a3 = 1, a4 = −1,
9. a1 = −1, a2 = 1, a3 = C9, a4 = 1,
10. a1 = 1, a2 = −1, a3 = −1, a4 = −1,
11. a1 = −1, a2 = 1, a3 = −1 a4 = C11,
12. a1 = 1, a2 = −1, a3 = 1, a4 = C12,

(17)

where Cj (j = 1, 2, . . . , 12) are arbitrary constants.
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