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The talk will consist of two parts. The first part deals with spectral and pseudospectral
functions for generalized Fourier transform corresponding to symmetric differential system

Jy' = A(t)y = AH(t)y. (1)

It is assumed that n x n-matrix coefficients J(= —J* = —J ') and A(t) = A*(t), H(t) >0

in (1) are defined on an interval Z = [a,b), —0co < a < b < 0o, and integrable on each

compact subinterval [a, 3] C Z. Denote by L?%/(Z,C") the Hilbert space of vector-functions

[T — C"satistying [(H(t)f(t), f(t)) dt < co and by Ny deficiency indices of the system
T

(1), i.e., the number of its linearly independent solutions y € L%(Z,C") for A € C..
Let m < n and let ¢(t, \)(€ C"*™) be a matrix solution of (1) with ©(0, ) = const.
Then the generalized Fourier transform of a vector-function f(-) € L%(Z,C") is a vector-

~

function f(-) : R — C™ given by

Fs) = / (1) H (1) (1) d. @)

T

We define a spectral (resp. pseudospectral) function of the system with respect to the
transform (2) as a matrix-valued distribution function o(s), s € R, of the dimension
n, = m such that the operator V, : L%/(Z,C") — L?*(o;C™) defined by (V, f)(s) =
f(s), f € L%(Z,C"), is an isometry (resp. a partial isometry with the minimally possible
kernel). Moreover, we find the minimally possible dimension of a spectral function and
parameterize all spectral and pseudospectral functions of every possible dimension n,. In

the case Ny = N_ such a parametrization is given by the Redheffer transform
me(A) = mo(A\) + S(A)(Co(N) — CLNMN)LCL NS (), AeCy (3)

and by the Stieltjes inversion formula

1 s—0
o-(s) = lim lim f/ Imm, (u + ic) du. (4)

0—+0e—+0 77 5

for the Nevanlinna matrix-function m, (A) (the m-function of the system). Here mg(A), S(X)
and M (A) are matrix-valued coefficients defined in terms of respective matrix solutions of
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the system and 7 = {Cy(N), C1(N\)}, A € C,, is a Nevanlinna pair (a boundary parameter)
satisfying the following admissibility conditions:

lim i(Co(iy) - Cl(iy)M(iy))ilcl(iy) =0,

Y—r00

lim %M(zy)(co(zy) — Cy(iy) M (iy)) " Co(iy) = 0.

Y—>00

(5)

With a certain modification the parametrization (3), (4) holds in the case Ny # N_ as
well.

Assume now that N_ < N, = n (this means that N is maximally possible). For this
case we define the monodromy matrix B()) as a singular boundary value of the matrizant
Y (¢, \) at the endpoint b and parameterize all spectral and pseudospectral functions o(-)
of any possible dimension n, by means of the linear-fractional transform

m-(A) = (Co(N)wir(A) + C1(N)war (V)" (Co(Mwia(A) + Cr(A)waa(A))

and formula (4). Here w;;(\) are the matrix coefficients defined in terms of B(\) and
7 ={Co(N),C1(\)} is the same as in (3); moreover, the admissibility conditions (5) can be
written as

lim oy (i) (Co (iy)wi (iy) + Cr(iy)ws(iy)) ~ Ci(iy) = 0

y—+oo Y
yBI-&l-/loo iwd(zy)(Co(zy)wl(zy) + Oy (iy)ws(iy)) " Co(iy) =0
It turns out that the matrix W (X) = (w;(\))7 -, has the properties similar to those of
the resolvent matrix in the extension theory of symmetric operators.
The specified results develop the results by Arov and Dym; A. Sakhnovich, L. Sakhnovich
and Roitberg; Langer and Textorius.
The second part of the talk is devoted to the classical vector-valued Fourier transform

o~

7(s) = / ¢ £(1) dt. (6)

of the vector-valued function f(t). Assume that Z = {71, T, ...,7,} is a system of intervals
Z; = (a;,b;), —00 < a; < b; < co. Denote by L*(R,C";Z) the set of all vector-functions

fO) ={f®), (),.... fL)HET"), tER,
such that [ ||f(¢)]|*dt < oo and support of a coordinate function f; lies in Z;. For each
R

function f € L*(R, (C”;f) with compact support equality (6) defines the vector-valued
Fourier transform f: R — C™ of f. A matrix-valued distribution function o : R — C"*"
will be called a spectral function for the vector-valued Fourier transform (6) (with respect
to f) if the following Parseval equality holds:

~

/R (do(s) F(s), F(s)) = / If@IPdt, f e AR C 7).
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The set of all such spectral functions we denote by SFn(f) = SF,(Lh,Ly,...,Z,). If
o(-) € SE,(Z), then for each f € L*(R,C";Z) the inverse Fourier transform is

16 =x3l0) [ e do(s) 7o),

where xz(t) = diag(xz, (t), xz, (1), . .., Xz, (t)) (xz, is the indicator of T;).

In the particular case n = 1 system Z consists of a unique interval Z = (a, b) and equality
(6) defines the classical C-valued Fourier transform J of a scalar function f € L*(R) with
support belonging to (a,b) (the set of such functions we denote by L?(R; (a,b)). The set
SF({a,b)) of spectral functions for this transform consists of scalar distribution functions
o(+) such that the Parseval equality

AGQWMWﬂ=/U®Fﬁ7f€Lm&@@) (7)

R

holds; moreover, the inverse Fourier transform is

ﬂw:xﬂw/e%ﬁ@Md@. (s)

R
A parametrization of the set SF([0,D]) in the case of a compact interval [0, b] is given
by the following theorem.

Theorem 1. Let 0 < b < co. Then the equalities

i e 4 p(N)

N=-. ¥

N =y e 0y

s—0

1
o,(s) = lim lim —/Immy,(XJriy) dx

AeCy

d—=+0y—+0 77
-4

establish a bijective correspondence o(s) = o,(s) between all holomorphic functions
©(A), A€ Cp, with |p(N\)| <1 and all scalar spectral functions o(-) € SF([0,]).

In the case p(A\) =1 the spectral function o, (s) is a jump function and equalities (6)
and (8) give an expansion of a function f € L*(R;[0,b]) into the Fourier series on [0,5]. In
the case p(A) = 0 one has o,(s) = 5=5 and equality (8) turns into the classical inverse
Fourier — Plancherel transform of a function f € L*(R;|[0,b]). Moreover, according to
Theorem 1 there exist infinitely many spectral functions o(-) € SF[0,b]. At the same time
we show that in the case Z = R the set SF(R) consists of the unique spectral function
o(s) = 5=s and equality (7) turns into the classical Parseval equality

o [ 1F&)Pds = [ 1f () d,
[ire]

which holds according to the Plancherel theorem.
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A parametrization of spectral functions o(-) € SFy([0,00), (=00, 0]) is given by the
following theorem.

Theorem 2. Let Cg be the set of all complex-valued functions F' on R admitting the
representation

F(z):= lim K(x+iy) (a.e. on R).
y—+0

with a holomorphic function K(-) defined on an upper half-plane C, and satisfying
|[K(N)| <1, A € Ci. Then the equalities

Yp(x) = % (F(lac) F(f:)) , v eR, and op(s) = /OS Yp(x)de 9)

give a bijective correspondence o(-) = op(-) between all functions F' € Cg and all spectral
functions o(-) € SF5([0, 00), (—o0,0]).

Theorem 2 shows that each spectral function o(-) € SFy([0, 00), (—o0,0]) is absolutely
continuous with the matrix density Xp(z) defined by the first equality in (9).

We parameterize also spectral functions o(-) € SF,(Z) for other classes of Z.
The results of the talk are partially specified in [1], [2].
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