Spectral functions for classical and generalized Fourier transforms

Mogilevskii V.

Poltava V.G. Korolenko National Pedagogical University, Ostrogradski Street, 2, Poltava 36000, Ukraine (vadim.mogilevskii@gmail.com)

The talk will consist of two parts. The first part deals with spectral and pseudospectral functions for generalized Fourier transform corresponding to symmetric differential system

$$Jy' - A(t)y = \lambda H(t)y. \tag{1}$$

It is assumed that $n \times n$ -matrix coefficients $J(=-J^*=-J^{-1})$ and $A(t) = A^*(t)$, $H(t) \ge 0$ in (1) are defined on an interval $\mathcal{I} = [a, b)$, $-\infty < a < b \le \infty$, and integrable on each compact subinterval $[a, \beta] \subset \mathcal{I}$. Denote by $L^2_H(\mathcal{I}, \mathbb{C}^n)$ the Hilbert space of vector-functions $f: \mathcal{I} \to \mathbb{C}^n$ satisfying $\int_{\mathcal{I}} (H(t)f(t), f(t)) dt < \infty$ and by N_{\pm} deficiency indices of the system

(1), i.e., the number of its linearly independent solutions $y \in L^2_H(\mathcal{I}, \mathbb{C}^n)$ for $\lambda \in \mathbb{C}_{\pm}$.

Let $m \leq n$ and let $\varphi(t, \lambda) (\in \mathbb{C}^{n \times m})$ be a matrix solution of (1) with $\varphi(0, \lambda) = \text{const.}$ Then the generalized Fourier transform of a vector-function $f(\cdot) \in L^2_H(\mathcal{I}, \mathbb{C}^n)$ is a vector-function $\widehat{f}(\cdot) : \mathbb{R} \to \mathbb{C}^m$ given by

$$\widehat{f}(s) = \int_{\mathcal{I}} \varphi^*(t, s) H(t) f(t) \, dt.$$
(2)

We define a spectral (resp. pseudospectral) function of the system with respect to the transform (2) as a matrix-valued distribution function $\sigma(s)$, $s \in \mathbb{R}$, of the dimension $n_{\sigma} := m$ such that the operator $V_{\sigma} : L^2_H(\mathcal{I}, \mathbb{C}^n) \to L^2(\sigma; \mathbb{C}^m)$ defined by $(V_{\sigma}f)(s) := \widehat{f}(s)$, $f \in L^2_H(\mathcal{I}, \mathbb{C}^n)$, is an isometry (resp. a partial isometry with the minimally possible kernel). Moreover, we find the minimally possible dimension of a spectral function and parameterize all spectral and pseudospectral functions of every possible dimension n_{σ} . In the case $N_+ = N_-$ such a parameterization is given by the Redheffer transform

$$m_{\tau}(\lambda) = m_0(\lambda) + S(\lambda)(C_0(\lambda) - C_1(\lambda)\dot{M}(\lambda))^{-1}C_1(\lambda)S^*(\overline{\lambda}), \quad \lambda \in \mathbb{C}_+$$
(3)

and by the Stieltjes inversion formula

$$\sigma_{\tau}(s) = \lim_{\delta \to +0} \lim_{\varepsilon \to +0} \frac{1}{\pi} \int_{-\delta}^{s-\delta} \operatorname{Im} m_{\tau}(u+i\varepsilon) \, du.$$
(4)

for the Nevanlinna matrix-function $m_{\tau}(\lambda)$ (the *m*-function of the system). Here $m_0(\lambda)$, $S(\lambda)$ and $\dot{M}(\lambda)$ are matrix-valued coefficients defined in terms of respective matrix solutions of the system and $\tau = \{C_0(\lambda), C_1(\lambda)\}, \lambda \in \mathbb{C}_+$, is a Nevanlinna pair (a boundary parameter) satisfying the following admissibility conditions:

$$\lim_{y \to \infty} \frac{1}{iy} (C_0(iy) - C_1(iy)\dot{M}(iy))^{-1} C_1(iy) = 0,$$

$$\lim_{y \to \infty} \frac{1}{iy} \dot{M}(iy) (C_0(iy) - C_1(iy)\dot{M}(iy))^{-1} C_0(iy) = 0.$$
(5)

With a certain modification the parametrization (3), (4) holds in the case $N_+ \neq N_-$ as well.

Assume now that $N_{-} \leq N_{+} = n$ (this means that N_{+} is maximally possible). For this case we define the monodromy matrix $B(\lambda)$ as a singular boundary value of the matrizant $Y(t, \lambda)$ at the endpoint b and parameterize all spectral and pseudospectral functions $\sigma(\cdot)$ of any possible dimension n_{σ} by means of the linear-fractional transform

$$m_{\tau}(\lambda) = (C_0(\lambda)w_{11}(\lambda) + C_1(\lambda)w_{21}(\lambda))^{-1}(C_0(\lambda)w_{12}(\lambda) + C_1(\lambda)w_{22}(\lambda))$$

and formula (4). Here $w_{ij}(\lambda)$ are the matrix coefficients defined in terms of $B(\lambda)$ and $\tau = \{C_0(\lambda), C_1(\lambda)\}$ is the same as in (3); moreover, the admissibility conditions (5) can be written as

$$\lim_{y \to +\infty} \frac{1}{iy} w_1(iy) (C_0(iy) w_1(iy) + C_1(iy) w_3(iy))^{-1} C_1(iy) = 0$$
$$\lim_{y \to +\infty} \frac{1}{iy} w_3(iy) (C_0(iy) w_1(iy) + C_1(iy) w_3(iy))^{-1} C_0(iy) = 0$$

It turns out that the matrix $W(\lambda) = (w_{ij}(\lambda))_{i,j=1}^2$ has the properties similar to those of the resolvent matrix in the extension theory of symmetric operators.

The specified results develop the results by Arov and Dym; A. Sakhnovich, L. Sakhnovich and Roitberg; Langer and Textorius.

The second part of the talk is devoted to the classical vector-valued Fourier transform

$$\widehat{f}(s) = \int_{\mathbb{R}} e^{its} f(t) \, dt. \tag{6}$$

of the vector-valued function f(t). Assume that $\widetilde{\mathcal{I}} = \{\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_n\}$ is a system of intervals $\mathcal{I}_j = \langle a_j, b_j \rangle, -\infty \leq a_j < b_j \leq \infty$. Denote by $L^2(\mathbb{R}, \mathbb{C}^n; \widetilde{\mathcal{I}})$ the set of all vector-functions

$$f(t) = \{f_1(t), f_2(t), \dots, f_n(t)\} (\in \mathbb{C}^n), \quad t \in \mathbb{R},$$

such that $\int_{\mathbb{R}} ||f(t)||^2 dt < \infty$ and support of a coordinate function f_j lies in \mathcal{I}_j . For each function $f \in L^2(\mathbb{R}, \mathbb{C}^n; \widetilde{\mathcal{I}})$ with compact support equality (6) defines the vector-valued Fourier transform $\widehat{f} : \mathbb{R} \to \mathbb{C}^n$ of f. A matrix-valued distribution function $\sigma : \mathbb{R} \to \mathbb{C}^{n \times n}$ will be called a spectral function for the vector-valued Fourier transform (6) (with respect to $\widetilde{\mathcal{I}}$) if the following Parseval equality holds:

$$\int_{\mathbb{R}} (d\sigma(s)\widehat{f}(s), \widehat{f}(s)) = \int_{\mathbb{R}} ||f(t)||^2 dt, \quad f \in L^2(\mathbb{R}, \mathbb{C}^n; \widetilde{\mathcal{I}}).$$

The set of all such spectral functions we denote by $SF_n(\widetilde{\mathcal{I}}) = SF_n(\mathcal{I}_1, \mathcal{I}_2, \dots, \mathcal{I}_n)$. If $\sigma(\cdot) \in SF_n(\widetilde{\mathcal{I}})$, then for each $f \in L^2(\mathbb{R}, \mathbb{C}^n; \widetilde{\mathcal{I}})$ the inverse Fourier transform is

$$f(t) = \chi_{\widetilde{\mathcal{I}}}(t) \int_{\mathbb{R}} e^{-its} \, d\sigma(s) \widehat{f}(s).$$

where $\chi_{\widetilde{\mathcal{I}}}(t) = \operatorname{diag}(\chi_{\mathcal{I}_1}(t), \chi_{\mathcal{I}_2}(t), \dots, \chi_{\mathcal{I}_n}(t))$ ($\chi_{\mathcal{I}_j}$ is the indicator of \mathcal{I}_j).

In the particular case n = 1 system \mathcal{I} consists of a unique interval $\mathcal{I} = \langle a, b \rangle$ and equality (6) defines the classical \mathbb{C} -valued Fourier transform \widehat{f} of a scalar function $f \in L^2(\mathbb{R})$ with support belonging to $\langle a, b \rangle$ (the set of such functions we denote by $L^2(\mathbb{R}; \langle a, b \rangle)$). The set $SF(\langle a, b \rangle)$ of spectral functions for this transform consists of scalar distribution functions $\sigma(\cdot)$ such that the Parseval equality

$$\int_{\mathbb{R}} |\widehat{f}(s)|^2 \, d\sigma(s) = \int_{\mathbb{R}} |f(t)|^2 \, dt, \quad f \in L^2(\mathbb{R}; \langle a, b \rangle) \tag{7}$$

holds; moreover, the inverse Fourier transform is

$$f(t) = \chi_{\mathcal{I}}(t) \int_{\mathbb{R}} e^{-its} \widehat{f}(s) \, d\sigma(s).$$
(8)

A parametrization of the set SF([0, b]) in the case of a compact interval [0, b] is given by the following theorem.

Theorem 1. Let $0 < b < \infty$. Then the equalities

$$m_{\varphi}(\lambda) = \frac{i}{2} \cdot \frac{e^{-i\lambda b} + \varphi(\lambda)}{e^{-i\lambda b} - \varphi(\lambda)}, \quad \lambda \in \mathbb{C}_{+}$$
$$\sigma_{\varphi}(s) = \lim_{\delta \to +0} \lim_{y \to +0} \frac{1}{\pi} \int_{-\delta}^{s-\delta} \operatorname{Im} m_{\varphi}(\mathbf{x} + i\mathbf{y}) \, \mathrm{d}\mathbf{x}$$

establish a bijective correspondence $\sigma(s) = \sigma_{\varphi}(s)$ between all holomorphic functions $\varphi(\lambda), \lambda \in \mathbb{C}_+$, with $|\varphi(\lambda)| \leq 1$ and all scalar spectral functions $\sigma(\cdot) \in SF([0, b])$.

In the case $\varphi(\lambda) \equiv 1$ the spectral function $\sigma_{\varphi}(s)$ is a jump function and equalities (6) and (8) give an expansion of a function $f \in L^2(\mathbb{R}; [0, b])$ into the Fourier series on [0, b]. In the case $\varphi(\lambda) \equiv 0$ one has $\sigma_{\varphi}(s) = \frac{1}{2\pi}s$ and equality (8) turns into the classical inverse Fourier – Plancherel transform of a function $f \in L^2(\mathbb{R}; [0, b])$. Moreover, according to Theorem 1 there exist infinitely many spectral functions $\sigma(\cdot) \in SF[0, b]$. At the same time we show that in the case $\mathcal{I} = \mathbb{R}$ the set $SF(\mathbb{R})$ consists of the unique spectral function $\sigma(s) = \frac{1}{2\pi}s$ and equality (7) turns into the classical Parseval equality

$$\frac{1}{2\pi} \int_{\mathbb{R}} |\widehat{f}(s)|^2 \, ds = \int_{\mathbb{R}} |f(t)|^2 \, dt.$$

which holds according to the Plancherel theorem.

A parametrization of spectral functions $\sigma(\cdot) \in SF_2([0,\infty), (-\infty, 0])$ is given by the following theorem.

Theorem 2. Let $C_{\mathbb{R}}$ be the set of all complex-valued functions F on \mathbb{R} admitting the representation

$$F(x) := \lim_{y \to +0} K(x + iy) \quad (\text{a.e. on } \mathbb{R}).$$

with a holomorphic function $K(\cdot)$ defined on an upper half-plane \mathbb{C}_+ and satisfying $|K(\lambda)| \leq 1, \ \lambda \in \mathbb{C}_+$. Then the equalities

$$\Sigma_F(x) = \frac{1}{2\pi} \begin{pmatrix} 1 & \overline{F(x)} \\ F(x) & 1 \end{pmatrix}, \quad x \in \mathbb{R}, \quad \text{and} \quad \sigma_F(s) = \int_0^s \Sigma_F(x) \, dx \tag{9}$$

give a bijective correspondence $\sigma(\cdot) = \sigma_F(\cdot)$ between all functions $F \in \mathbb{C}_{\mathbb{R}}$ and all spectral functions $\sigma(\cdot) \in SF_2([0,\infty), (-\infty, 0])$.

Theorem 2 shows that each spectral function $\sigma(\cdot) \in SF_2([0,\infty), (-\infty, 0])$ is absolutely continuous with the matrix density $\Sigma_F(x)$ defined by the first equality in (9).

We parameterize also spectral functions $\sigma(\cdot) \in SF_n(\mathcal{I})$ for other classes of \mathcal{I} . The results of the talk are partially specified in [1], [2].

References

- V. Mogilevskii, Spectral and pseudospectral functions of various dimensions for symmetric systems, J. Math. Sci. 221(2017), no. 5, 679–711.
- [2] V.I.Mogilevskii, Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index, J. Math. Sciences 229 (2018), no. 1, 51–84.