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The talk will consist of two parts. The first part deals with spectral and pseudospectral
functions for generalized Fourier transform corresponding to symmetric differential system

Jy′ − A(t)y = λH(t)y. (1)

It is assumed that n×n-matrix coefficients J(= −J∗ = −J−1) and A(t) = A∗(t), H(t) ≥ 0
in (1) are defined on an interval I = [a, b), −∞ < a < b ≤ ∞, and integrable on each
compact subinterval [a, β] ⊂ I. Denote by L2

H(I,Cn) the Hilbert space of vector-functions
f : I → C

n satisfying
∫
I
(H(t)f(t), f(t)) dt < ∞ and by N± deficiency indices of the system

(1), i.e., the number of its linearly independent solutions y ∈ L2
H(I,Cn) for λ ∈ C±.

Let m ≤ n and let ϕ(t, λ)(∈ C
n×m) be a matrix solution of (1) with ϕ(0, λ) = const.

Then the generalized Fourier transform of a vector-function f(·) ∈ L2
H(I,Cn) is a vector-

function f̂(·) : R → C
m given by

f̂(s) =

∫

I

ϕ∗(t, s)H(t)f(t) dt. (2)

We define a spectral (resp. pseudospectral) function of the system with respect to the
transform (2) as a matrix-valued distribution function σ(s), s ∈ R, of the dimension
nσ := m such that the operator Vσ : L2

H(I,Cn) → L2(σ;Cm) defined by (Vσf)(s) :=

f̂(s), f ∈ L2
H(I,Cn), is an isometry (resp. a partial isometry with the minimally possible

kernel). Moreover, we find the minimally possible dimension of a spectral function and
parameterize all spectral and pseudospectral functions of every possible dimension nσ. In
the case N+ = N− such a parametrization is given by the Redheffer transform

mτ (λ) = m0(λ) + S(λ)(C0(λ)− C1(λ)Ṁ(λ))−1C1(λ)S
∗(λ), λ ∈ C+ (3)

and by the Stieltjes inversion formula

στ (s) = lim
δ→+0

lim
ε→+0

1

π

∫ s−δ

−δ

Immτ (u+ iε) du. (4)

for the Nevanlinna matrix-functionmτ (λ) (them-function of the system). Herem0(λ), S(λ)
and Ṁ(λ) are matrix-valued coefficients defined in terms of respective matrix solutions of
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the system and τ = {C0(λ), C1(λ)}, λ ∈ C+, is a Nevanlinna pair (a boundary parameter)
satisfying the following admissibility conditions:

lim
y→∞

1
iy
(C0(iy)− C1(iy)Ṁ(iy))−1C1(iy) = 0,

lim
y→∞

1
iy
Ṁ(iy)(C0(iy)− C1(iy)Ṁ(iy))−1C0(iy) = 0.

(5)

With a certain modification the parametrization (3), (4) holds in the case N+ �= N− as
well.

Assume now that N− ≤ N+ = n (this means that N+ is maximally possible). For this
case we define the monodromy matrix B(λ) as a singular boundary value of the matrizant
Y (t, λ) at the endpoint b and parameterize all spectral and pseudospectral functions σ(·)
of any possible dimension nσ by means of the linear-fractional transform

mτ (λ) = (C0(λ)w11(λ) + C1(λ)w21(λ))
−1(C0(λ)w12(λ) + C1(λ)w22(λ))

and formula (4). Here wij(λ) are the matrix coefficients defined in terms of B(λ) and
τ = {C0(λ), C1(λ)} is the same as in (3); moreover, the admissibility conditions (5) can be
written as

lim
y→+∞

1
iy
w1(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C1(iy) = 0

lim
y→+∞

1
iy
w3(iy)(C0(iy)w1(iy) + C1(iy)w3(iy))

−1C0(iy) = 0

It turns out that the matrix W (λ) = (wij(λ))
2
i,j=1 has the properties similar to those of

the resolvent matrix in the extension theory of symmetric operators.
The specified results develop the results by Arov and Dym; A. Sakhnovich, L. Sakhnovich

and Roitberg; Langer and Textorius.
The second part of the talk is devoted to the classical vector-valued Fourier transform

f̂(s) =

∫

R

eitsf(t) dt. (6)

of the vector-valued function f(t). Assume that Ĩ = {I1, I2, . . . , In} is a system of intervals

Ij = 〈aj, bj〉, −∞ ≤ aj < bj ≤ ∞. Denote by L2(R,Cn; Ĩ) the set of all vector-functions

f(t) = {f1(t), f2(t), . . . , fn(t)}(∈ C
n), t ∈ R,

such that
∫
R

||f(t)||2 dt < ∞ and support of a coordinate function fj lies in Ij. For each

function f ∈ L2(R,Cn; Ĩ) with compact support equality (6) defines the vector-valued

Fourier transform f̂ : R → C
n of f . A matrix-valued distribution function σ : R → C

n×n

will be called a spectral function for the vector-valued Fourier transform (6) (with respect

to Ĩ) if the following Parseval equality holds:
∫

R

(dσ(s)f̂(s), f̂(s)) =

∫

R

||f(t)||2 dt, f ∈ L2(R,Cn; Ĩ).
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The set of all such spectral functions we denote by SFn(Ĩ) = SFn(I1, I2, . . . , In). If

σ(·) ∈ SFn(Ĩ), then for each f ∈ L2(R,Cn; Ĩ) the inverse Fourier transform is

f(t) = χ
˜I(t)

∫

R

e−its dσ(s)f̂(s),

where χ
˜I(t) = diag(χI1(t), χI2(t), . . . , χIn(t)) (χIj is the indicator of Ij).

In the particular case n = 1 system Ĩ consists of a unique interval I = 〈a, b〉 and equality

(6) defines the classical C-valued Fourier transform f̂ of a scalar function f ∈ L2(R) with
support belonging to 〈a, b〉 (the set of such functions we denote by L2(R; 〈a, b〉). The set
SF (〈a, b〉) of spectral functions for this transform consists of scalar distribution functions
σ(·) such that the Parseval equality

∫

R

|f̂(s)|2 dσ(s) =
∫

R

|f(t)|2 dt, f ∈ L2(R; 〈a, b〉) (7)

holds; moreover, the inverse Fourier transform is

f(t) = χI(t)
∫

R

e−itsf̂(s) dσ(s). (8)

A parametrization of the set SF ([0, b]) in the case of a compact interval [0, b] is given
by the following theorem.

Theorem 1. Let 0 < b < ∞. Then the equalities

mϕ(λ) =
i

2
· e

−iλb + ϕ(λ)

e−iλb − ϕ(λ)
, λ ∈ C+

σϕ(s) = lim
δ→+0

lim
y→+0

1

π

s−δ∫

−δ

Immϕ(x + iy) dx

establish a bijective correspondence σ(s) = σϕ(s) between all holomorphic functions
ϕ(λ), λ ∈ C+, with |ϕ(λ)| ≤ 1 and all scalar spectral functions σ(·) ∈ SF ([0, b]).

In the case ϕ(λ) ≡ 1 the spectral function σϕ(s) is a jump function and equalities (6)
and (8) give an expansion of a function f ∈ L2(R; [0, b]) into the Fourier series on [0, b]. In
the case ϕ(λ) ≡ 0 one has σϕ(s) =

1
2π
s and equality (8) turns into the classical inverse

Fourier – Plancherel transform of a function f ∈ L2(R; [0, b]). Moreover, according to
Theorem 1 there exist infinitely many spectral functions σ(·) ∈ SF [0, b]. At the same time
we show that in the case I = R the set SF (R) consists of the unique spectral function
σ(s) = 1

2π
s and equality (7) turns into the classical Parseval equality

1
2π

∫

R

|f̂(s)|2 ds =
∫

R

|f(t)|2 dt,

which holds according to the Plancherel theorem.
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A parametrization of spectral functions σ(·) ∈ SF2([0,∞), (−∞, 0]) is given by the
following theorem.

Theorem 2. Let CR be the set of all complex-valued functions F on R admitting the
representation

F (x) := lim
y→+0

K(x+ iy) (a.e. on R).

with a holomorphic function K(·) defined on an upper half-plane C+ and satisfying
|K(λ)| ≤ 1, λ ∈ C+. Then the equalities

ΣF (x) =
1

2π

(
1 F (x)

F (x) 1

)
, x ∈ R, and σF (s) =

∫ s

0

ΣF (x) dx (9)

give a bijective correspondence σ(·) = σF (·) between all functions F ∈ CR and all spectral
functions σ(·) ∈ SF2([0,∞), (−∞, 0]).

Theorem 2 shows that each spectral function σ(·) ∈ SF2([0,∞), (−∞, 0]) is absolutely
continuous with the matrix density ΣF (x) defined by the first equality in (9).

We parameterize also spectral functions σ(·) ∈ SFn(Ĩ) for other classes of Ĩ.
The results of the talk are partially specified in [1], [2].
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