

2

﻿

POUL KLAUSEN

JAVA 11: WEB
APPLICATIONS
AND JAVA EE
SOFTWARE DEVELOPMENT

3

Java 11: Web applications and Java EE: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-403-1948-4
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

4

Contents

4

CONTENTS

	 Foreword	 6

1	 Introduction	 8

1.1	 The development tool	 10

2	 Servlet	 12

	 Exercise 1	 22

2.1	 Change address 1	 23

	 Exercise 2	 31

3	� Parameters and sessions and more	 34

3.1	 Parameters to servlets	 34

3.2	 Sessions	 39

3.3	 Redirection	 46

3.4	 Cookies	 50

	 Exercise 3	 53

4	 JavaBeans	 55

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

5

Contents

5	 JSP	 58

5.1	 Calculations	 67

5.2	 Functions	 77

	 Problem 1	 81

5.3	 JSP documents	 82

5.4	 Change address 2	 85

	 Exercise 4	 115

6	 JSF	 116

6.1	 ChangeAddress3	 128

6.2	 Page navigation	 140

	 Problem 2	 147

6.3	 Templates	 148

6.4	 Themes	 171

	 Problem 3	 177

6.5	 Upload images	 180

7	 A last example	 184

7.1	 Analysis	 184

7.2	 Design	 187

7.3	 Programming	 191

7.4	 Deployment	 195

8	 A final remark	 199

	 Appendix A: Installation of Glassfish	 203

	 Appendix B: HTTP	 206

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

6

Foreword

FOREWORD

This book is the eleventh in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. This book deals with the development of web applications where the focus
is on the server side and how to develop dynamic web pages. The book starts with an
introduction to servlets, followed by a brief presentation of Java Server Pages. The rest of
the book deals with how to write web applications using Java Server Faces, and after reading
the book, you should be able to write classic web applications. However, the book contains
little about the client side, which is dealt with first in the next book. The book is not a
reference to JSF elements, and the aim is, through examples, to show what you are doing
and it is necessary that you examine the online documentation to get an overview of the
many JSF elements that exist.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

7

Foreword

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

1.	NetBeans as IDE for application development
2.	MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
3.	GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

8

Introduction

1	 INTRODUCTION

Everything in the previous books that has been said about system development, programming
and Java has been aimed at applications running on a single computer – also called desktop
applications. In the following books, I will treat the development of applications that run
on multiple machines and exchange data over a network, which is often the Internet, and
in fact, such programs are the most common in practice – at least if you look at programs
used in companies or public institutions. Besides running the programs on a network, they
are characterized by having many concurrent users and typically included in an IT solution
that includes several programs that work together to solve the desired tasks. Development
of such programs requires new technical solutions and, on the other hand, they make new
demands for the system development process itself, but fortunately everything so far been
said is still valid, but it is necessary to expand with new concepts.

In the literature, such programs are generally referred to as enterprise applications, and
without it being precisely defined what it is, it covers programs for large companies and
organizations, but perhaps you should think about it in that way that a program is not just
a program but a solution to a work situation or task in a larger company. I will start by
looking at the development of web applications, which are applications that run through
the Internet, and although it’s not the only kind of enterprise applications, and even maybe
it’s not even sharp anymore what are web application and what are not, then at least there
is a talk of some technology and applications that are developed and run in a way other
than traditional office programs, and in addition, they are programs that all meet, whether
it’s at work or privately.

Web applications have been around for many years and have, as a result of a long development,
been more and more widely distributed from simple static websites to actual applications
such as web stores and applications such as Google’s office programs, but while there’s been
much happening, the principle is still the same with a server and a client:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

9

Introduction

T﻿he client is often an ordinary workstation with a browser. A browser is a program similar
to any other PC program, but using the browser, the user can enter a request to a web server
by entering a web address in the browser’s address bar. A web server is also a program that
runs on a machine somewhere. It is a program that is constantly running and listening for a
request. A request means that the client’s browser wants a HTML document to be sent back
and the web server will then load the document and send it back to the client’s browser as
a response. Once the client gets the document, the browser will rendering it and display it
on the screen. This means that the browser interprets the HTML code and based on the
code determines how the document should appear on the screen.

It is at least the basic principle, and as it works in the beginning with World Wide Web,
but today there is a lot more. A request regarding not only to send an HTML document
back, but often data is sent along with the request (that could be data about items to be
added to a shopping cart) and it may also be information to the server to find specific
data (for example from search criteria to goods). This means that the server has to do a lot
of other things like, for example, to save data in databases, retrieve data from a database
and dynamically build the response to be sent to the client. In other words, on the basis
of the client’s requests, the web server must perform software, programs that are basically
developed and executed like any other program, but only programs that run on the machine
hosting the web server.

A web application is thus characterized by, that the program’s code being executed on the
server, which then sends the result back to the client in the form of a dynamically generated
HTML document. However, a client-side program can also contains code that is executed
by the browser. There are several options, but the most important is JavaScript, which is
script code (which is just text) that is sent as part of the HTML document. Of course, it
requires that the browser is able to interpret and execute the JavaScript code, but all modern
browsers can. Another option is to send actual translated code to the browser, for example,
a Java applet that is written and translated in exactly the same way as for example a Swing
program. One might think of a Java applet as a Java application that runs in the browser
window. Of course, it requires the browser to support the execution of a Java applet, and it
usually requires installing a plugin (extension) for the browser. However, since a Java applet
is translated into binary code and downloaded and executed on the client’s machine, this
technology entails a security risk that many are not happy about. Thus, a web application
can include both code executed on the server side and code executed on the client side,
but such that the largest part of the code is server code. One are therefore called web
applications for client-server applications.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

10

Introduction

As described above, a web application builds on network traffic, and every time a user makes
a request, there is a delay before getting a response. Web applications therefore run different
from a traditional desktop application. Nevertheless, many of the tasks that previously were
solved by programs running on the specific client machine are taken ower by web applications.
There are several reasons for this. The most important thing is the obvious advantage that
you can access data regardless of where you are located, and it is not necessary to install the
program on the user’s machine. Then there is the delay that draws in the other direction,
but it does not mean the same as before and, among other things because that today we
have a much higher rate on the Internet than before, but also because we have used to the
fact that web applications works that way. Finally, technically, a number of measures have
been taken to ensure that the delay is not felt so much primarily by ensuring that no more
data is sent than necessary. One could say that it has always been the goal of getting a web
application to appear to the user, as it was a usual program installed on the user’s computer.

T﻿he goal of this book is to show how to develop web applications in Java. However, it
requires a modest knowledge of HTML that I do not want to touch on, but although it
should not be in place, you will probably be able to follow the development of the examples
anyway, as it is relatively small that I use, and also the development tools (NetBeans)
provides great help.

Finally, it should be mentioned that web applications are not the solution to everything
and there are still programs that should be developed as classical PC applications, primarily
because they can not live with the above delay. Now, a common PC application can also
communicate with a server over the Internet and thus be part of an enterprise application,
but it requires another technology that I return to in subsequent books. It should also be
mentioned that handheld computers such as mobile phones today play a very important
role and again set new requirements for the programmer, a topic that is dealt with in the
the book Java 15.

1.1	 THE DEVELOPMENT TOOL

In order to develop and test web applications, you must have a web server. There are many
options, but in this case I need a web server that supports web applications developed in
Java. So far all programs have been written using NetBeans, and when you download the
product you can choose from several packages:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

11

Introduction

So far, I’ve used the first one, but now I need Java EE, which stands for Java Enterprise
Edition. It expands with Java EE, which contains a lot of development tools for enterprise
applications including web applications and HTML5 that support the development of web
applications that uses HTML5. Finally, two web servers are included. The difference is that
the latter is a common web server that supports Java web applications and is sufficient for
the sake of this book, but it is not an application server. That is the GlassFish server, and as
it is necessary for the following books, I will use it everywhere. Both servers are included,
but you can decide if you want to install both (there is no need to install Tomcat unless
you want to experiment with it).

When you download NetBeans bundle with Java EE, you get a self-extracting script, and
generally it is easy to install Java EE and GlassFish, but the book has an appendix that
shows how.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

12

Servlet

12

2	 SERVLET

The basic concept of a Java web application is a servlet, which is a Java class that has methods
that can generate response to the client in the form of HTML. Since it is a regular Java
class, whose methods are performed on the server, it can perform anything a class can and
it can, for example, read data in a database. A servlet can therefore dynamically generate
a HTML document whose content depend on the situation. In fact, it is rare, in practice,
you look at these servlets as you usually develop dynamic websites like JSP pages or Facelets
(explained later), but in both cases the pages are translated to servlets, so this section about
what a servlet is, but also how you write a servlet using NetBeans. After I opens NetBeans,
I choose File | New Project:

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

13

Servlet

but this time, Categories must be Java Web, while Projects should be Web Application. When
you click Next, you get the usual window where you need to enter a project name and select
the folder where the project is to be created. I have called the project TimeServer. When
you click Next, you get a window to select the server where the application is to be hosted:

It is probably already available for the GlassFish server, so there is no need to do anything
and just click Finish. After that, a project for a web application (see below) has been created
with folders for the different types of files that the project may consist of, but for the time
being there is only one single file named index.html, which is a common HTML document,
and it can be perceived as the application’s home page:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

14

Servlet

I will add a few changes in a while, but it is a full-featured HTML document, and trying
to run the NetBeans project opens the browser and displays the following page:

With regard to the browser window, note that the title bar displays the text from the
document’s title element, while the content of the page itself is the text from the body part
of the document. Finally, note the address bar:

localhost:8080/TimeServer

localhost is the name of the local machine and hence the physical server where the web server
is installed. As mentioned, a web server is a program that is running constantly, and such
a program is out of the world known by the name of the server (which is actually a web
address) and a port number. A web server can be configured to use a specific port number
and GlassFish uses as default port 8080. In this case, the TimeServer application is called,
and as no other is specified, the server will use the application’s home page (send the home
page as a response), which is index.html.

Currently, the application has no servlets, and I will now add a servlet. This happens by
right clicking on <Default package> and selecting New | Servlet. In the following window
I have called the servlet for TimeServlet (the window shows a warning that you can ignore
in this place) and when you click Next you get the window, as shown below:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

15

Servlet

15

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

16

Servlet

Here you should note that I have changed both Servlet Name and URL Pattern (s). It is not
necessary and is most done to show that it is allowed. Then click on Finsh, and NetBeans
creates a servlet (where I have deleted some of the comments):

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "Time", urlPatterns = {"/Time"})
public class TimeServlet extends HttpServlet
{
	/**
	 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>
	 * methods.
	 * @param request servlet request
	 * @param response servlet response
	 * @throws ServletException if a servlet-specific error occurs
	 * @throws IOException if an I/O error occurs
	 */
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 try (PrintWriter out = response.getWriter())
	 {
	 /* TODO output your page here. You may use following sample code. */
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>Servlet TimeServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 out.println(
	 "<h1>Servlet TimeServlet at " + request.getContextPath() + "</h1>");
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

17

Servlet

	/**
	 * Handles the HTTP <code>GET</code> method.
	 * @param request servlet request
	 * @param response servlet response
	 * @throws ServletException if a servlet-specific error occurs
	 * @throws IOException if an I/O error occurs
	 */
	@Override
	protected void doGet(HttpServletRequest request,
HttpServletResponse response)
	 throws ServletException, IOException
	{
	 processRequest(request, response);
	}

	/**
	 * Handles the HTTP <code>POST</code> method.
	 * @param request servlet request
	 * @param response servlet response
	 * @throws ServletException if a servlet-specific error occurs
	 * @throws IOException if an I/O error occurs
	 */
	@Override
	protected void doPost(HttpServletRequest
request, HttpServletResponse response)
	 throws ServletException, IOException
	{
	 processRequest(request, response);
	}

	/**
	 * Returns a short description of the servlet.
	 * @return a String containing servlet description
	 */
	@Override
	public String getServletInfo()
	{
	 return "Short description";
	}
}

The comments explain to some extent what the individual methods do, but I will explain
a little more in a while. However, you must note that in the class definition there is
an annotation:

@WebServlet(name = "Time", urlPatterns = {"/Time"})

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

18

Servlet

18

which tells me that it’s a servlet, what its name and URL are, and here you should especially
note that these are the names that I have chosen when the servlet in question was created.
Initially, I will return to index.html (the home page) that I have changed to the following:

<!DOCTYPE html>
<html>
	<head>
	 <title>TODO supply a title</title>
	 <meta charset="UTF-8">
	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	</head>
	<body>
	 <h1>A simple html document</h1>
	 <h2>What time is it?</h2>
	</body>
</html>

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

19

Servlet

You should notice the h2 element that enclose a link that refers to my servlet. If you now
run the application, it opens a browser:

It’s not that strange, but clicking on the link you will get another window:

You must remark the address bar, which tells you that it is the result of the servlet that appears.

I will now look a little closer to the code of the servlet class. First, note that the class inherits
HttpServlet, which is the base class of a servlet. If you consider the method processRequest(),
it is clear that it creates a HTML document. The method has two parameters, which
represents respectively a request (from a browser) and a response. The communication between
client and server occurs after the HTTP protocol, which is a simple text-based protocol.
When the browser executes a request, it can be done in two ways, as are called GET and
POST, and the main difference is how the browser sends data together with the request.
When the browser sends a request to a servlet, one of the methods doGet() and doPost()
are performed, and both methods have two parameters, which are references to objects that
represent respectively a request and a response. In this case, nothing else happens than these
objects are sent to the method processRequest().

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

20

Servlet

It initializes the response object to an HTML document, after which it determines a reference
out to the object’s writer. The reference is used to print text for the document, text that in
this case constitutes a HTML document. When the try block goes out of scope, the reference
is deleted, which means that the document is terminated and a response is send to the client.

Now I will change the method processRequest() as follows:

protected void processRequest(HttpServletRequest request,
	HttpServletResponse response) throws ServletException, IOException
{
	response.setContentType("text/html;charset=UTF-8");
	try (PrintWriter out = response.getWriter())
	{
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>Servlet TimeServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 out.println("<h1>The time is: " + getTime() + "</h1>");
	 out.println("</body>");
	 out.println("</html>");
	}
}

private String getTime()
{
	Calendar date = Calendar.getInstance();
	return String.format("%d. %s %d %02d:%02d:%02d", date.get(Calendar.DATE),
	 getMonth(date.get(Calendar.MONTH)), date.get(Calendar.YEAR),
	 date.get(Calendar.HOUR), date.get(Calendar.MINUTE), date.get(Calendar.SECOND));
}

private String getMonth(int n)
{
	switch (n)
	{
	 case 0: return "January";
	 case 1: return "February";
	 case 2: return "March";
	 case 3: return "April";
	 case 4: return "May";
	 case 5: return "June";
	 case 6: return "July";
	 case 7: return "August";
	 case 8: return "September";

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

21

Servlet

21

	 case 9: return "October";
	 case 10: return "November";
	 case 11: return "December";
	}
	return "";
}

In fact, only one statement has been changed, but it now calls the method getTime(), which
returns a string with the current date and time. The goal of all is to show that a servlet can
contain all the Java code that may be needed, as a servlet is simply a Java class. Another goal
is that my servlet is now dynamic so that the html sent to the browser depends on when the
application is being executed. Below is an example after clicking the link on the home page:

http://s.bookboon.com/elearningforkids

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

22

Servlet

Note that you do not have to open the page by clicking the link on the home page, but
you can also directly open the page – and get the servlet that creates the page – by entering
the address directly in the browser.

Once you have written a web application as above, it must be hosted on the application server
before it can be opened in the browser. The task is called deployment, and it was earlier and
can still be complex, but if the application is developed using NetBeans, it’s all about itself
as part of the build process without the need to do anything. If you examine the project,
you will see that under the dist folder is a file with (in this case) the name TimeServer.war
and it is a package that contains the files that the deployment process requires. I will later
return to the deployment process as more complex applications may require more actions,
and especially if the application is to be hosted on a server on another machine. If you
opens the browser and enter the address field

localhost:8080/TimeServer

the application’s home page opens. This corresponds to sending a request to the local GlassFish
server asking for it to perform the TimerServer application, and GlassFish has then sent as
response the application’s start pages, which are index.html.

EXERCISE 1

In the same way as above, write a web application that uses a servlet. The application must
start with a page (have a home page) as shown below:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

23

Servlet

If you click on the link, the result could be:

which shows the name and reign of a random Danish king. If you click on the link again,
you will have a name and a reign of another random king.

Start by creating a new Web Application project and adjust the home page index.html to
show the first page. Then add a servlet whose response is the other page. This servlet needs
a list with the kings. You can find it in the file kings, which is a text file, and you can put
the content of the file as a static array into your servlet class.

2.1	 CHANGE ADDRESS 1

As another example of a servlet, I will show a web application where the user must fill out
a form that can be regarding as a moving message. The entered information is then sent to
the server where they are validated and if they can be accepted, a receipt will appear that
the message that has been received. Otherwise, the user will be prompted to re-enter the
message. If you open the application in the browser, you get the following window:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

24

Servlet

24

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

25

Servlet

If you click on the Submit button, the form data is sent to the server, which could, for
example, answer back with the following message:

since the user has not entered the entire address. You will then have to click on the link,
and you will be able to fill out the form again.

If you fill in all fields as shown below, where the field for the email address is not filled
out, and where the date is entered on the form DD-MM-YYYY (that is, hyphen between
the fields) and then click Submit, you will receive a receipt as a response (see below).

It is, of course, a very simple application, yet it is an application that sends data from the
client to the server where they are processed, after which the client gets a response and in
many ways it is the principle of many web applications.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

26

Servlet

The basis is a NetBean project, called ChangeAddress1, which as the first project in this
chapter is a Web Application project. NetBeans creates a home page, called index.html,
which I have modified to the following:

<!DOCTYPE html>
<html>
	<head>
	 <title>ChangeAddress</title>
	 <meta charset="UTF-8">
	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	</head>
	<body>
	 <h1>Change address</h1>
	 <form method="post" action="AddressServlet">
	 <table>
	 <tr>
	 <td><label>Enter first name: </label></td>
	 <td><input type="text" id="fname" name="fname"/></td>
	 </tr>
	 <tr>
	 <td><label>Enter last name: </label></td>
	 <td><input type="text" id="lname" name="lname"/></td>
	 </tr>
	 <tr>
	 <td><label>Enter address: </label></td>
	 <td><input type="text" id="addr" name="addr"/></td>
	 </tr>
	 <tr>
	 <td><label>Enter zip code and city: </label></td>
	 <td><input type="text" id="post" name="post"/></td>
	 </tr>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

27

Servlet

27

	 <tr>
	 <td><label>Enter mail address: </label></td>
	 <td><input type="text" id="mail" name="mail"/></td>
	 </tr>
	 <tr>
	 <td><label>Enter date for new address: </label></td>
	 <td><input type="text" id="date" name="date"/></td>
	 </tr>
	 <tr>
	 <td></td>
	 <td><input type="reset" value="Reset"/>
	 <input type="submit" value="Submit"/></td>
	 </tr>
	 </table>
	 </form>
	</body>
</html>

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

28

Servlet

It is this page that shows the form. A form is defined in HTML with a form element. In
this case, the form’s fields are placed in a table, and it is alone to have the fields placed
nicely underneath each other in two columns. The table has 7 rows, and the first 6 rows
have a label and an input element. A label shows a text, whereas an input element that
in this case has the type of text is an input field. Each input field has a name and thus
an identifier defined by an id and a name attribute, respectively. In this case, only the last
one is necessary, but it is slightly different when an element is identified by an id or a
name, but when the elements values are sent to the server as part of a form, it is the name
attribute that is used. Should you, however, refer to an element from a style sheet, it is the
id attribute that is used. Therefore, it may be a good idea to indicate both. The last row in
the table also has two input components, but they have different types. Both components
are rendered by the browser as a button, and the value attribute specifies the text that the
button shows. The first component clear the form’s input fields while the other (submit
component) submits the form to the server.

If you consider the form element, it has two attributes. action indicates to which page on
the server the request should be send to. In this case, it is AddressServlet, which is a servlet.
The other method indicates what kind of request it is and here it is POST. This means that
the elements of the form are sent together with the request as key/value pair, where the key
is the value of the name attribute while value is the value of the value attribute, which for
an input field is the entered text.

As mentioned, AddressServlet refers to a servlet. It is created in the same way as in the
previous example, and I have called it AddressServlet, and on the Configure Servlet Deployment
screen, I have not changed the values for Servlet Name and URL Pattern (s) this time, but
I have created a package for the servlet. The completed code is shown below, where I have
deleted all comments as well as the last method getServletInfo():

package changeaddress.servlets;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.util.*;
import java.text.*;
import java.util.regex.*;

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

29

Servlet

@WebServlet(name = "AddressServlet", urlPatterns = {"/AddressServlet"})
public class AddressServlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 request.setCharacterEncoding("UTF-8");
	 try (PrintWriter out = response.getWriter())
	 {
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>AddressServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 String fname = request.getParameter("fname");
	 String ename = request.getParameter("lname");
	 String addr = request.getParameter("addr");
	 String post = request.getParameter("post");
	 String mail = request.getParameter("mail");
	 String date = request.getParameter("date");
	 if (fname.length() == 0 || ename.length() == 0)
	 {
	 out.println("<h3>You must enter your name</h3>
");
	 out.println("Try again…");
	 }
	 else if (addr.length() == 0 || post.length() == 0)
	 {
	 out.println("<h3>You must enter the address</h3>
");
	 out.println("Try again…");
	 }
	 else if (mail.length() > 0 && !isMail(mail))
	 {
	 out.println("<h3>You must enter a legal mail address</h3>
");
	 out.println("Try again…");
	 }
	 else
	 {
	 try
	 {
	 SimpleDateFormat formatter = new SimpleDateFormat("dd-mm-yyyy");
	 Date dato = formatter.parse(date);
	 out.println("<h1>Thank you for your inquiry</h1>");
	 out.println("<h3>We have registered</h3>");
	 out.println(fname + " " + ename + "
");
	 out.println(addr + "
");

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

30

Servlet

30

	 out.println(post + "
");
	 out.println(mail + "
");
	 out.println("New address is valid from: " + date);
	 }
	 catch (Exception ex)
	 {
	 out.println("<h3>You must enter a date on the form DD-MM-YYYY</h3>
");
	 out.println("Try again…");
	 }
	 }
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

	private boolean isMail(String mail)
	{
	 return Pattern.compile(".....").matcher(mail).matches();
	}

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

31

Servlet

	@Override
	protected void doGet(HttpServletRequest request, HttpServletResponse response)
	 throws ServletException, IOException
	{
	 processRequest(request, response);
	}

	@Override
	protected void doPost(HttpServletRequest request, HttpServletResponse response)
	 throws ServletException, IOException
	{
	 processRequest(request, response);
	}
}

In principle, it does not contain anything new to the first example, and almost the method
processRequest() is also generated by NetBeans. Note that I have added a method isMail(),
which is a method from earlier to validate an email address using a regular expression (I
have not shown the code). The method processRequest() works in principle in the same way
as in the first example, and dynamically creates the HTML to be sent as response. First,
note the statement

request.setCharacterEncoding("UTF-8");

It is necessary for Danish letters to be decoded correctly. Next, you should notice how to
grasp the form’s values, for example:

String fname = request.getParameter("fname");

that determines the value entered as the first name. The rest is, in principle, just off the
road and consists in validating the fields sent from the form and, in the case of errors,
sending an error message as a response. Thus, the server response is dynamically because it
depends on the data sent.

It is clear that the servlet could do so much else and it could, for example, save the submitted
data in a database. It would alone be a question to add some Java code.

EXERCISE 2

You must write a web application similar to the ChangeAddress1 example. The application
should this time show a page with a form for an electronic guestbook. When the application
starts, it must display the following page:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

32

Servlet

where a guest can enter his name and where to come from (for example a city name). In
addition, you can enter an email address as well as a text that tells about the visit. Name
and where to come from must be entered, but you do not have to enter the email address,
but if you do, it should be a legal address. The text may also be omitted.

Once you have completed the form and clicked on the Submit button, the form must be
submitted to a servlet. If the form is not filled in correctly, you must receive an error message:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

33

Servlet

33

and you must be able to reopen the form so you can re-enter. If the form is correctly filled
out, the user must receive the following receipt:

http://s.bookboon.com/EOT

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

34

Parameters and sessions and more

3	� PARAMETERS AND SESSIONS
AND MORE

Looking at the above examples, it is clear that one can reach far with regard to the development
of dynamic websites and web applications alone by using html documents and servlets, but
it is also clear that for a complex site it can be extensive to write a servlet and make it all
look real. It’s something that JSP and JSF have to solve, but before I show what it is, I’ll
show you some examples of servlets. Not so much for servlets, but more to put some basic
concepts regarding web applications in place.

3.1	 PARAMETERS TO SERVLETS

I will start by creating a new web application that I have called Parameters, and the result
is again an application with a homepage called index.html. I will first show how to transfer
parameters to a servlet when initialized. I have added a servlet named Init1Servlet, and
in the configuration window I have defined the following (note the checkmark for Add
information to deployment descriptor (web.xml)):

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

35

Parameters and sessions and more

After the corresponding servlet has been created, NetBeans has created an XML document
under the WEB-INF folder:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
	http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
	<servlet>
	 <servlet-name>Init1</servlet-name>
	 <servlet-class>parameters.servlets.Init1Servlet</servlet-class>
	</servlet>
	<servlet-mapping>
	 <servlet-name>Init1</servlet-name>
	 <url-pattern>/Init1</url-pattern>
	</servlet-mapping>
	<session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	</session-config>
</web-app>

It is a configuration file that is used in connection with deployment of the application. You
must note that the name of my servlet is Init1 as selected in the above window and that it
is a name that refers to the class parameters.servlets.Init1Servlet. You should also note that
the servlet in the application has the address (URL) /Init1.

I have next expanded the XML document, as shown below:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
	<servlet>
	 <servlet-name>Init1</servlet-name>
	 <servlet-class>parameters.servlets.Init1Servlet</servlet-class>
	 <init-param>
	 <param-name>owner</param-name>
	 <param-value>Torus data</param-value>
	 </init-param>
	</servlet>
	<servlet-mapping>
	 <servlet-name>Init1</servlet-name>
	 <url-pattern>/Init1</url-pattern>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

36

Parameters and sessions and more

36

	</servlet-mapping>
	<session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	</session-config>
</web-app>

This means that I have defined a key/value pair with the name owner and the value Torus
data. I have then changed the code for Init1Servlet to the following, where I have only
shown the first part of the class:

public class Init1Servlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 try (PrintWriter out = response.getWriter())
	 {
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

37

Parameters and sessions and more

	 out.println("<title>Servlet InitServlet1</title>");
	 out.println("</head>");
	 out.println("<body>");
	 out.println("<h1>Greetings from " +
	 getServletConfig().getInitParameter("owner") + " 1</h1>");
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

Here you should note that the class is not decorated by a @WebServlet attribute. The reason
is that the servlet in question is this time defined in the configuration file. The use of
annotations is an alternative to the configuration file that makes it easier to write a servlet
(you do not need to maintain the xml configuration file), but conversely, changes require
that the code may be translated again while the configuration file can be maintained without
the need to modify the servlet code. You should also note that in processRequest() I have only
changed a single line (the third last statement) and that it retrieves the parameter defined
in the XML document.

I have then changed the start page to the following:

<!DOCTYPE html>
<html>
	<head>
	 <title>Parameters</title>
	 <meta charset="UTF-8">
	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	</head>
	<body>
	 <h1>Parameters to servlets</h1>
	 <p>Init1</p>
	</body>
</html>

and executing the application and clicking on the link, you get the window

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

38

Parameters and sessions and more

Here you should note how to transfer parameters to a servlet using the xml configuration file.

If you look at NetBean’s Configure Servlet Deployment window above, the bottom option
is to specify initialization parameters for a servlet. This can be used instead of manually
editing the XML document as shown above. I have added another servlet, this time called
Init2Servlet, and I have configured deployment as follows:

The important thing is that there is no tick in Add information to deployment descriptor
(web.xml) and an Initialization Parameter has been added. This means that web.xml is not
updated, but if you look at the code, the class definition is decorated:

@WebServlet(name = "Init2", urlPatterns = {"/Init2"},
	initParams={@WebInitParam(name="owner", value="Torus data") })
public class Init2Servlet extends HttpServlet
{

It is used during deployment as an alternative to web.xml and you can see how the name
and URL are defined. Finally, I have added a parameter. The code for processRequest() is
essentially the same and after adding another link on the start page, you can make a request
to the new servlet and the result is as follows:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

39

Parameters and sessions and more

39

3.2	 SESSIONS

When you request a web page from the browser and the server answers back with a response,
it will be done as already mentioned in accordance with the HTTP protocol. This protocol
is basically stateless, which means that after the server has replied back with the response,
the server has “forgotten” all about the request, and next time a request for the same page is
received, the server will perceive it as a new request. This model fits badly with modern web
applications, and you can, among other things, solve the problem using the session concept.

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

40

Parameters and sessions and more

When a user opens the browser and sends a request to a new page, the server will investigate
whether a session ID is included. It does not matter if it is a request for a new page entered
in the browser’s address bar, and the server will then generate a session ID and send it with
the response back to the client. If the client then performs a submit or, for example, clicks
on a link that refers to a page in the same web application, the browser will send the
session ID with, and the server will include it in its response. That way, the term called a
session has been introduced that exists as long as the server refers to pages within the same
web application.

This can be used to def﻿ine data that lives throughout the session. When the server creates
a session ID, it also creates a session object and this object contains a collection for Object
objects. The server can thus create and save objects in this collection, and these objects live
as long as the session object lives, and therefore they can be used by all pages within that
session. It is important to note that the objects are only known on the server side and are
not sent to the client. The only one sent to the client is the session ID, which is sent back
and forth for each request/response pair.

The individual session objects live on the server until they are explicitly removed or until
they are removed due to a timeout (for example, it may be 30 minutes). This means, on
the other hand, that the server can have many session objects that are no longer used, thus
using space, and partly that session objects (such as a shopping cart) may disappear if you
stop working.

To illustrate the use of sessions, I have created a web application called Sessions. For this
application I will add three servlets. When adding a servlet to a web application, it should
not be placed in the project’s default package (what has been done above in the first example).
Typically, I create a package named projectname.servlets (in this case, sessions.servlets) and
places my servlets there. In this case, I have also created a package called sessions.data, and
I have added the following class that can represent a person with a name and a job title:

package sessions.data;

public class Person
{
	private String name;
	private String title;

	public Person(String name, String title)
	{
	 this.name = name;
	 this.title = title;
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

41

Parameters and sessions and more

	public String getName()
	{
	 return name;
	}

	public String getTitle()
	{
	 return title;
	}
}

You should note that it is a fairly common model class. As a next step, I have added the
following servlet:

@WebServlet(name = "CreateServlet", urlPatterns = {"/CreateServlet"})
public class CreateServlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 request.setCharacterEncoding("UTF-8");
	 try (PrintWriter out = response.getWriter())
	 {
	 String name = request.getParameter("name");
	 String title = request.getParameter("title");
	 if (name != null && title != null)
	 {
	 sessions.data.Person pers =
	 new sessions.data.Person(name.trim(), title.trim());
	 HttpSession session = request.getSession(true);
	 session.setAttribute("person", pers);
	 }
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>Servlet SaveServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 out.println("<h3>Your session object is now updated</h3>");
	 out.println("<h3>Session id: " + request.getSession().getId() + "</h3>");
	 out.println("Go to start");
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

42

Parameters and sessions and more

42

The method processRequest() starts by determining the values of two form fields from the
page that sent a request to this servlet. Is it possible, and they are both different from null,
they are used to create a Person object. Next, a reference to the session object is added:

HttpSession session = request.getSession(true);

This means that the object must be created if it does not already exist. As the next step,
the Person object is added to the session object’s collection with the key person. Finally, a
response is returned, which includes the session object ID.

The code for the start page is the following:

<!DOCTYPE html>
<html>
	<head>
	 <title>ServletTest</title>
	 <meta charset="UTF-8">
	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	</head>
	<body>
	 <h3>Start page</h3>

http://s.bookboon.com/GTca

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

43

Parameters and sessions and more

	 <form method="post" action="CreateServlet">
	 <table>
	 <tr>
	 <td>Enter name</td>
	 <td><input type="text" name="name" id="name" /></td>
	 </tr>
	 <tr>
	 <td>Enter job title </td>
	 <td><input type="text" name="title" id="title" /></td>
	 </tr>
	 <tr>
	 <td colspan="2"><input type="submit" value="OK" /></td>
	 </tr>
	 </table>
	 </form>
	
	 Show name
	 Show title
	
	</body>
</html>

If you run the application you get the following window:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

44

Parameters and sessions and more

If you enter a name and job title here and click OK, you get the following results:

It tells that the session object is updated, as well as what the session ID is. You should note
that it is represented as a large hexadecimal number, which you generally can not use for
anything, but in this case you can use it to see when a new session is started.

As a next step, a servlet has been added, which shows the name of the person that was created:

@WebServlet(name = "NameServlet", urlPatterns = {"/NameServlet"})
public class NameServlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 try (PrintWriter out = response.getWriter())
	 {
	 String name = null;
	 try
	 {
	 name = ((sessions.data.Person)
	 request.getSession().getAttribute("person")).getName();
	 }
	 catch (Exception ex)
	 {
	 name = ex.toString();
	 }
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>NameServlet</title>");
	 out.println("</head>");
	 out.println("<body>");

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

45

Parameters and sessions and more

45

	 out.println("<h1>Name</h1>");
	 out.println("<h3>" + name + "</h3>");
	 out.println("Go to start");
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

There is not much to explain, but you should notice how to refer to the session object and
to the object that is stored under the name person. The result is an Object, and therefore a
type of cast is necessary.

Similarly, a servlet named TitleServlet has been created, which sends a response with the
Person object’s title. If you on the start page enter:

 .

http://s.bookboon.com/AlcatelLucent

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

46

Parameters and sessions and more

and clicking OK and then from the start page clicking on the Show name link, you get
the window:

3.3	 REDIRECTION

If you send a request to a servlet, it can perform a data processing and then send the request
to another servlet (or another web page). This can be done either as redirect or forward. In
the first case, the server insertes a code into the HTTP header along with the new URL (in
the Location field) and sends a response to the browser. It will then perform a request for the
new URL. In the second case, the server will simply send the same request to another URL,
including all attributes of key/value pairs from form fields. Thus, a forward does not involve
the browser, and the address bar in the browser does not change as everything happens on
the server side. I will show you how to perform a redirect and a forward, respectively. The
starting point is the following HTML document, called index.html and is the start page of
the application Calculations:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

47

Parameters and sessions and more

<!DOCTYPE html>
<html>
	<head>
	 <title>Calculations</title>
	 <meta charset="UTF-8">
	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	</head>
	<body>
	 <h2>Calculations</h2>
	 <form method="post" action="MathServlet">
	 <table>
	 <tr>
	 <td>a: </td>
	 <td><input type="text" name="numbera"
	 style="width: 80px; height:20px; padding:0"/></td>
	 </tr>
	 <tr>
	 <td>b: </td>
	 <td><input type="text" name="numberb"
	 style="width: 80px; height:20px; padding:0"/></td>
	 </tr>
	 <tr>
	 <td colspan="2">
	 <select name="operation" style="width: 120px; height:30px; padding:0">
	 <option value="add">Addition</option>
	 <option value="sub">Subtraction</option>
	 <option value="mul">Multiplikation</option>
	 <option value="div">Division</option>
	 </select>
	 </td>
	 </tr>
	 </table>
	 <input type="submit" value="Calculate"
	 style="width: 120px; height:35px; padding:0"/>
	 </form>
	</body>
</html>

If you run the application you get a page as shown below. Here you can enter two numbers,
and there is also a list where you can choose one of the four calculations. If you click on
the button, there is a submit of the form to a servlet MathServlet. This servlet does nothing
but deciding which operation to be performed, and then passes that request to one of four
additional servlets (AddServlet, SubServlet, MulServlet and DivServlet), but in the first two cases
it happens as redirect, while in the other two cases it happens as forward. The four servlets
for the calculations send a response as a simple page that shows the result. In principle,
they are all the same, and as an example, processRequest() for AddServlet is shown below:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

48

Parameters and sessions and more

48

protected void processRequest(HttpServletRequest request,
	HttpServletResponse response) throws ServletException, IOException
{
	response.setContentType("text/html;charset=UTF-8");
	try (PrintWriter out = response.getWriter())
	{
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>Servlet AddServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 try
	 {
	 String a = request.getParameter("numbera");
	 String b = request.getParameter("numberb");
	 double s = Double.parseDouble(a) + Double.parseDouble(b);
	 out.println("<p>" + a + " + " + b + " = " + s + "</p>");
	 }
	 catch (Exception ex)
	 {
	 out.println("<p>Illegal arguments</p>");
	 }

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

49

Parameters and sessions and more

	 out.println("Back to start");
	 out.println("</body>");
	 out.println("</html>");
	}
}

The most interesting is MathServlet:

protected void processRequest(HttpServletRequest request,
	HttpServletResponse response) throws ServletException, IOException
{
	String opr = request.getParameter("operation");
	if (opr.equals("add") || opr.equals("sub"))
	{
	 String a = request.getParameter("numbera");
	 String b = request.getParameter("numberb");
	 String site = opr.equals("add") ? "AddServlet" : "SubServlet";
	 site += "?numbera=" + a + "&numberb=" + b;
	 response.sendRedirect(site);
	}
	else if (opr.equals("mul") || opr.equals("div"))
	{
	 ServletContext context = getServletConfig().getServletContext();
	 RequestDispatcher dispatcher =
	 opr.equals("mul") ? context.getRequestDispatcher("/MulServlet") :
	 context.getRequestDispatcher("/DivServlet");
	 dispatcher.forward(request, response);
	}
	else response.sendRedirect("index.html");
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

50

Parameters and sessions and more

It starts by determining the value of the list and hence the form field select called operation.
If it is add or sub, a redirect must be made to either AddServlet or SubServlet. However, it
causes a problem as the browser will redirect to that servlet as a GET, which means that the
form fields are not sent. Therefore, I must add them manually as parameters to the URL,
which occurs by initializing a variable, which could for example have the value

AddServlet?numbera=33&numberb=51

With this address in place, a redirect is performed using the method sendRedirect(), which
corresponds to the above address being returned to the browser, which then performs an
HTTP GET to this address.

If the operation is not add or sub, a ServletContext object is determined that is used to
create a RequestDispatcher object for a MulServlet or DivServlet. This object has a forward()
method, which is used to forward the request to that servlet. When this happens, the request
is forwarded, including all forms of fields and without involving the browser.

You are encouraged to test the application and, in the same context, note what happens to
the browser’s address bar.

3.4	 COOKIES

As the last thing about servlets, I will show you how to create and use a cookie. A cookie
is text sent back and forth between server and browser and can be used in the same way
as session variables to maintain state information. Below is a servlet that creates a cookie:

@WebServlet(name = "SetServlet", urlPatterns = {"/SetServlet"})
public class SetServlet extends HttpServlet
{
	private static java.util.Random rand = new java.util.Random();

	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 try (PrintWriter out = response.getWriter())
	 {
	 Cookie cookie =
	 new Cookie("randomvalue" + rand.nextInt(10),"" +
	 rand.nextInt(Integer.MAX_VALUE));
	 cookie.setHttpOnly(true);
	 cookie.setMaxAge(30);

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

51

Parameters and sessions and more

51

	 response.addCookie(cookie);
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>Servlet SetServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 out.println("<h1>Cookie created…</h1>");
	 out.println("Show cookie");
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

A cookie is represented by a Cookie object. In this case is created a cookie with the
name randomValue plus a digit (such as randomValue5) and is assigned a random value.
Subsequently, it is defined as a temporary cookie known by the browser and finally defined
as having a 30-second timeout. If the number is negative, it means that it is removed with
the current session.

Below is another servlet that reads the cookie:

http://s.bookboon.com/BI

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

52

Parameters and sessions and more

@WebServlet(name = "GetServlet", urlPatterns = {"/GetServlet"})
public class GetServlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 response.setContentType("text/html;charset=UTF-8");
	 try (PrintWriter out = response.getWriter()) {
	 out.println("<!DOCTYPE html>");
	 out.println("<html>");
	 out.println("<head>");
	 out.println("<title>Servlet GetServlet</title>");
	 out.println("</head>");
	 out.println("<body>");
	 out.println("<h1>Servlet GetServlet at " + request.getContextPath() +
	 "</h1>");
	 out.println("<table><tr><td>Name</td><td>Value</td></tr>");
	 Cookie[] cookies = request.getCookies();
	 for(Cookie c: cookies)
	 {
	 out.println("<tr><td>");
	 out.println(c.getName());
	 out.println("</td><td>");
	 out.println(c.getValue());
	 out.println("</td></tr>");
	 }
	 out.println("</table>");
	 out.println("<p>Set cookie</p>");
	 out.println("</body>");
	 out.println("</html>");
	 }
	}

Here’s not much to explain, but you should notice how to loop over all cookies – for the
current session. Finally, there is the start page:

<!DOCTYPE html>
<html>
	<head>
	 <title>Cookies</title>
	 <meta charset="UTF-8">
	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	</head>
	<body>
	 <h1>Cookies</h1>
	 <p>Set cookie</p>
	</body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

53

Parameters and sessions and more

If you run the program, you will find that more cookies are created, but also that a cookie
changes value if you create a cookie with a name that already exists. You will also find that
the individual cookies may disappear as there is a 30-second timeout.

EXERCISE 3

You must write a web application that can simulate a very simple shopping cart. The purpose
is primarily to show an example of the use of a session variable.

Start with a new Web Application project, which you can call Shopping. The home page
index.html should be a simple form with a single entry field:

If you enter a product (a text) and press the button, the text must be sent to a servlet that
saves it to an ArrayList<String>, that is a session item, after which the user is sent back to
the home page. If you click on the bottom link, you must request a servlet that dynamically
creates a page that shows the contents of the shopping cart – if there is anything in the
basket. Otherwise, you just have to know that the basket is empty. The page with the
shopping cart must also have a link that deletes the contents of the basket. You can solve
this by referring the link to a servlet that deletes the contents of the session object. Below
is an example of how a shopping cart of goods could look after 2 items have been added
to the basket:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

54

Parameters and sessions and more

54

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

55

JavaBeans

4	 JAVABEANS

In the following I will often refer to a Java Bean, and therefore little about what it is (in
fact, I have referred to Java Beans in a previous book). In fact, it is nothing but a usual
class, but it must fulfill a very few decisions:

1.	A Java Bean must be serializable.
2.	A Java Bean must have a default constructor.
3.	All instance variables must be private.
4.	 Instance variables can have get- and set methods, and they must adhere to the names

of the conventions so that if there is a get method getName(), the corresponding
set method must be called setName(…).

Apart from that, a Java Bean can be anything, and in the same way as other classes it may
have various other methods and so forth. As an example, is below shown a Java Bean:

package dateserver;

import java.util.*;

public class DateBean implements java.io.Serializable
{
	private String date;
	private String time;

	public DateBean()
	{
	 Calendar dt = Calendar.getInstance();
	 date = String.format("%02d-%02d-%04d", dt.get(Calendar.DATE),
	 dt.get(Calendar.MONTH) + 1, dt.get(Calendar.YEAR));
	 time = String.format("%02d:%02d:%02d", dt.get(Calendar.HOUR_OF_DAY),
	 dt.get(Calendar.MINUTE), dt.get(Calendar.SECOND));
	}

	public String getDate()
	{
	 return date;
	}

	public String getTime()
	{
	 return time;
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

56

JavaBeans

	public void setDate(String date)
	{
	 try
	 {
	 StringTokenizer tk = new StringTokenizer(date, "-");
	 if (tk.countTokens() != 3) throw new Exception("Illegal date");
	 int day = value(tk.nextToken(), 1, 31);
	 int month = value(tk.nextToken(), 1, 12);
	 int year = value(tk.nextToken(), 1900, 2100);
	 if ((month == 4 || month == 6 || month == 9 || month == 11) && day == 31)
	 throw new Exception("Illegal value");
	 else if (month == 2 && day > (leapYear(year) ? 29 : 28))
	 throw new Exception("Illegal value");
	 this.date = String.format("%02d-%02d-%04d", day, month, year);
	 }
	 catch (Exception ex)
	 {
	 this.date = ex.toString();
	 }
	}

	public void setTime(String time)
	{
	 try
	 {
	 StringTokenizer tk = new StringTokenizer(time, ":");
	 if (tk.countTokens() != 3) throw new Exception("Illegal time");
	 int tim = value(tk.nextToken(), 0, 23);
	 int min = value(tk.nextToken(), 0, 59);
	 int sek = value(tk.nextToken(), 0, 59);
	 this.time = String.format("%02d:%02d:%02d", tim, min, sek);
	 }
	 catch (Exception ex)
	 {
	 this.time = ex.getMessage();
	 }
	}

	public String toString()
	{
	 return date + " " + time;
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

57

JavaBeans

57

	private int value(String text, int a, int b) throws Exception
	{
	 int t = Integer.parseInt(text);
	 if (a <= t && t <= b) return t;
	 throw new Exception("Illegal value");
	}

	private boolean leapYear(int aar)
	{
	 if (aar % 100 == 0) return aar % 400 == 0;
	 return aar % 4 == 0;
	}
}

The example is chosen because I want to apply it later, but also to show that a bean is
just an ordinary class, which can consist of everything that classes can. It is a bean that
represents a date and time.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

58

JSP

5	 JSP

Above I have introduced servlets and shown how they can be used (and are used) to write
dynamic websites, but it is also clear that it is a big and difficult task to develop complex
web applications alone using servlets. Therefore JSP pages are introduced, which you can
briefly characterize as documents that are a mixture of HTML and Java code. The Java code
will then be executed on the server before the document is sent to the client’s browser. This
is best explained with an example.

I have in NetBeans created a new web application, which I have called DateServer, and the
result is as before an application with a homepage called index.html. Next, I have right-
clicked the Web Pages folder and selected New and then JSP and added a new JSP page,
which I have called start, and the result is that a file named start.jsp is added to the project,
whose content is almost an initial comment:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	</head>
	<body>
	 <h1>Hello World!</h1>
	</body>
</html>

As you can see, it looks like a regular HTML document, and there are only two differences,
which is the first line, and so the extension jsp. The latter is important as it tells the web
server that the document is to be translated before it is sent to the browser. If you right-
click on the name on the Projects tab and select Run File, the document will automatically
be translated and opened in the browser.

Currently, there are no Java, but as the next step, I have right-clicked the Source Packages
folder and added a class named DateBean. The code is the Java bean, as I have shown in
the previous chapter. This Java bean can then be used from the JSP page as follows:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

59

JSP

	 <title>JSP Page</title>
	</head>
	<body>
	 <jsp:useBean id="dateBean" scope="page" class="dateserver.DateBean"/>
	 <h1>Hello World!</h1>
	 <h3>The data is: ${dateBean.date}</h3>
	 <h3>The time is: ${dateBean.time}</h3>
	</body>
</html>

The code is expanded with a jsp:bean element, and as you see it, it defines a reference to
the class dateserver.DateBean and calls this reference for dateBean. Finally, it defines a scope
that tells where a DateBean object can be used. In addition, two lines are defined that insert
the relevant bean values in the page. For example, inserts

${dateBean.date}

the property date in the HTML code. You should note the reference and you write date which
is the property name, which means that it is the method getDate() that is being executed
and that its return value is inserted. If you open the JSP page in the browser, the result is

and you can see that the bean class is instantiated and the object’s values (the current date
and time are inserted in the document). In particular, if you click on F5 (refresh of the
browser), the browser will update the clock and then the object will be reinstated. You can
use other public methods in a Java bean in the same way, but in this case there are no
other. With regard of the value of the attribute scope there is four options:

1.	page which is default and indicates that the bean object can be used solely from
the current page

2.	 request indicating that the bean object can be used from all JSP pages that concerns
the same request

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

60

JSP

60

3.	 session which means that the bean object can be used from all JSP pages regarding
the same session – however, the page that creates the object must have a page
directive with session = “true”

4.	application indicating that the bean object can be used from all JSP pages in
the application

When a request is received for a JSP page, the page is automatically translated into a servlet
if it is not already. Here the web server will automatically check if the JSP page is newer
than any servlet, and the page will be translated again. This means that a JSP page will
only be translated into a servlet if needed.

You can also insert Java code into a JSP page using so-called scriplets. I have expanded the
page in the following way:

<%@page import="java.util.*"%>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%! Calendar date = null;
	String text = null;

http://s.bookboon.com/Subscrybe

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

61

JSP

	String getTime(Calendar dt)
	{
	 return String.format("%02d-%02d-%04d %02d:%02d:%02d", dt.get(Calendar.DATE),
	 dt.get(Calendar.MONTH) + 1, dt.get(Calendar.YEAR),
	 dt.get(Calendar.HOUR_OF_DAY), dt.get(Calendar.MINUTE),
	 dt.get(Calendar.SECOND));
	}
%>
<% date = Calendar.getInstance();
	 text = getTime(date);
%>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	</head>
	<body>
	 <jsp:useBean id="dateBean" scope="page" class="dateserver.DateBean"/>
	 <h1>Hello World!</h1>
	 <h2 style="color:red">The current time: <%=text%></h2>
	 <h3>The date is: ${dateBean.date}</h3>
	 <h3>The time is: ${dateBean.time}</h3>
	</body>
</html>

First, a page directive has been inserted to an import statement, which means that you can
refer to the classes in the java.util package. Next, two scripting blocks are defined. The first
starts with <%! and contains statements, which are variables and a method. It is code that is
transmitted directly to the page’s servlet and corresponds to defining instance variables and
methods in a servlet. The second block starts with <% and contains code that is executed
every time the page loads. In this case, the two variables defined in the first block are
initialized. Finally, using the scriplets, you can insert values into the HTML code, such as

<%=text%>

that inserts the value of the variable text. The result of performing the page could then be
as follows:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

62

JSP

Including Java code in a JSP page that way (using scripting) has its uses, but is generally
considered as poor programming. The reason is that it results in JSP pages that are very
difficult to maintain. Therefore, it is recommended that you use Java beans as much as
possible.

I will now make a last extension of the page:

<%@page import="java.util.*"%>
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%! Calendar dato = null;
	 String tekst = null;

	 String getTime(Calendar dt)
	 {
	 return String.format("%02d-%02d-%04d %02d:%02d:%02d", dt.get(Calendar.DATE),
	 dt.get(Calendar.MONTH) + 1, dt.get(Calendar.YEAR),
	 dt.get(Calendar.HOUR_OF_DAY), dt.get(Calendar.MINUTE),
	 dt.get(Calendar.SECOND));
	 }
%>
<% dato = Calendar.getInstance();
	 tekst = getTime(dato);
%>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	</head>
	<body>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

63

JSP

63

	 <jsp:useBean id="dateBean" scope="page" class="dateserver.DateBean"/>
	 <jsp:setProperty name="dateBean" property="*"/>
	 <h1>Hello World!</h1>
	 <h2 style="color:red">The current time: <%=tekst%></h2>
	 <h3>The date is: ${dateBean.date}</h3>
	 <h3>The time is: ${dateBean.time}</h3>
	 <form method="post">
	 <table>
	 <tr>
	 <td>Date</td>
	 <td><input type="text" id="date" name="date" style="width:120px"/></td>
	 </tr>
	 <tr>
	 <td>Time </td>
	 <td><input type="text" name="time" style="width:120px"/></td>
	 </tr>
	 </table>
	 <input type="submit" value="Update"/>
	 </form>
	</body>
</html>

http://s.bookboon.com/volvo

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

64

JSP

where a form has been added. Note that the form element does not define any action.
This means that the page by a submit carries out a request to itself. The form defines two
input components. Here it is important that they have the same name attributes that are
the names of the two properties in DateBean. In addition, note the statement:

<jsp:setProperty name="dateBean" property="*"/>

It states that when performing a submit, all set methods in the class DateBean must be
performed and updated with the values of the corresponding input fields. If you open the
page, the result could be as shown below, where I have entered values in the two input fields:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

65

JSP

If you click on the button then you get a window that shows that the current bean object
is updated:

As can be seen from the above, it is simple on a JSP page to link input components
to properties in a Java bean. Above it is all fields that are associated, but you can do it
individually and for example. write

<jsp:setProperty name="dateBean" property="date"/>

if you do not want all fields to be updated. Another thing is handling exceptions, what I
want to return to later, but in this case it is resolved in that way that the fields are assigned
the exceptions in question, which of course is not a solution that can be used in practice.

As a last comment, a new web application starts creating a home page, which is a HTML
document, and above it is not used for anything. For several reasons, it is advisable to
start a web application with a HTML document, and in this case the home page could be
modified to the following:

<!DOCTYPE html>
<html>
	<head>
	 <title>TODO supply a title</title>
	 <meta charset="UTF-8">

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

66

JSP

66

	 <meta name="viewport" content="width=device-width, initial-scale=1.0">
	 <script>
	 window.location = "start.jsp";
	 </script>
	</head>
	<body>
	</body>
</html>

As a result, the homepage sends the request to start.jsp. This is done using JavaScript, which
is code executed on the client side, and you should just accept the syntax.

However, it is not a requirement that the home page is there, and if you wish, you can
delete it and instead let the JSP page be the start page.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

67

JSP

5.1	 CALCULATIONS

In the introductory example of JSP, I have shown how simple it is to associate, for example,
input fields in a JSP page with properties in a Java bean. It is also the theme in the following
example (called BeanFields), but also I will show how, in a JSP page using other methods from
a Java bean, and how to handle methods, including set-methods, which raises an exception.
The project is again a web application project, but this time I have deleted the home page
index.html. I have, however, add a JSP page named index.jsp. To get the application to use
this page as the start page it may be required that you add a web.xml configuration file. If
no, right-click the folder WEB-INF and select Standard Deployment Descriptor (web.xml).
The contents of the file must be as follows:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" … >
	 <welcome-file-list>
	 <welcome-file>index.jsp</welcome-file>
	 </welcome-file-list>
	 <session-config>
	 <session-timeout>
	 30
	 </session-timeout>
</session-config>

</web-app>

When you opens the application in the browser, you get the window:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

68

JSP

If you enter integers in the two top fields and click the top OK button, the result could be
as shown below. That is, some calculations have been made on the two numbers, and the
results appear on the five results lines. Then, in the bottom input field, enter 107 (which
is a prime number) and click on the bottom OK button, nothing happens except that all
fields retain their values, but you can see that the window is being updated and that there
is a submit. If you now type 108 and click OK, you will see the window below. This is
because 108 is not a prime and the application has raised an exception. When you click on
Repeat, you return to the main window, and note that all values are still there. You should
note in particular that the bottom input field still has the value 107. Finally, there are the
two links. If you click on one of them, the lower input field will be updated by the next
or the previous prime, respectively.

It was the functionality and the program should show how to use Java beans to separate the
user interface HTML from the Java code, implemented in Java beans and other classes. One
consider it as important, and you get a web application that is much easier to maintain.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

69

JSP

69

The program uses two Java beans, which are located in the beanfields.beans package. The
first represents the two top input fields and is the following:

package beanfields.beans;

import java.io.*;

public class MathBean implements Serializable
{
	private long arga;
	private long argb;

	public MathBean()
	{
	}

	public long getArga()
	{
	 return arga;
	}

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

70

JSP

	public long getArgb()
	{
	 return argb;
	}

	public void setArga(long arga)
	{
	 this.arga = arga;
	}

	public void setArgb(long argb)
	{
	 this.argb = argb;
	}

	public long add()
	{
	 return arga + argb;
	}

	public long subtract()
	{
	 return arga – argb;
	}

	public long multiply()
	{
	 return arga * argb;
	}

	public long divide()
	{
	 if (argb == 0) return 0;
	 return arga / argb;
	}

	public long modulus()
	{
	 if (argb == 0) return 0;
	 return arga % argb;
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

71

JSP

The class fills some lines, but is trivial. You should note that the class is written in accordance
with the requirements of a Java bean, and here you should especially note the names of
the two variables and the get and set methods that follows the standard of a Java bean.
Also note that the class has other methods (the 5 calculation methods). Here you should
especially note the two last ones who return 0 if the calculation is not possible. In fact,
they should make an exception, but since the JSP page always uses the return value of the
functions, this solution can not be used.

The other Java bean is the following:

package beanfields.beans;
import java.io.*;

public class PrimeBean implements Serializable
{
	private static final long max = 9223372036854775783L;
	private long prime = 2;

	public PrimeBean()
	{
	}

	public long getPrime()
	{
	 return prime;
	}

	public void setPrime(long n) throws Exception
	{
	 if (!isPrime(n)) throw new Exception("Illegal prime");
	 prime = n;
	}

	public boolean next()
	{
	 if (prime < max)
	 {
	 if (prime == 2) prime = 3;
	 else for (prime += 2; !isPrime(prime); prime += 2);
	 return true;
	 }
	 return false;
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

72

JSP

72

	public boolean prev()
	{
	 if (prime > 2)
	 {
	 if (prime == 3) prime = 2;
	 else for (prime -= 2; !isPrime(prime); prime -= 2);
	 return true;
	 }
	 return false;
	}

	public static boolean isPrime(long n)
	{
	 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
	 if (n < 11 || n % 2 == 0) return false;
	 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2)
	 if (n % t == 0) return false;
	 return true;
	}
}

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

73

JSP

Here there is also some code, and the goal is, among other things, to show that a Java bean
can contain complex code similar to any other class. There is only one property that must
represent a prime number. Therefore, its set method can raise an exception if you try to
assign it a non-prime value. In addition to this property, there are two methods that assign
the value to the next and the previous prime, respectively – if possible.

The program has another Java class, which is a servlet and is called PrimesServlet. The class
is found in the package beanfields.servlets and processRequest() is:

@WebServlet(name = "Primes", urlPatterns = {"/Primes"})
public class PrimeServlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 PrimeBean bean = (PrimeBean)request.getSession().getAttribute("prim");
	 String arg = request.getParameter("arg");
	 if (arg.equals("next")) bean.next(); else bean.prev();
	 response.sendRedirect("index.jsp");
	}

It is a very simple servlet. It starts by determining a reference to a session object, which
is a PrimeBean, and then executes next() or prev() depending on the value of a parameter.
Finally, a redirect is performed to the start page.

It was the Java code and back there are two JSP pages. The first is index.jsp where there are
several things that you should notice:

<%@page contentType="text/html" session="true" pageEncoding="UTF-8"%>
<%@page errorPage="error.jsp" %>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	</head>
	<body>
	 <h1>Calculations</h1>
	 <jsp:useBean id="math" scope="session" class="beanfields.beans.MathBean"/>
	 <jsp:useBean id="prim" scope="session" class="beanfields.beans.PrimeBean"/>
	 <jsp:setProperty name="math" property="*"/>
	 <jsp:setProperty name="prim" property="prime"/>
	 <form name="form1" method="post">
	 <table>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

74

JSP

	 <tr>
	 <td>a: </td>
	 <td><input type="text" name="arga" value="${math.arga}"
	 style="width: 120px"/></td>
	 </tr>
	 <tr>
	 <td>b: </td>
	 <td><input type="text" name="argb" value="${math.argb}"
	 style="width: 120px"/></td>
	 </tr>
	 <tr>
	 <td colspan="2" style="text-align: right">
	 <input type="submit" value="OK"/></td>
	 </tr>
	 </table>
	 </form>
	 <table>
	 <tr>
	 <td>Sum</td><td>${math.add()}</td>
	 </tr>
	 <tr>
	 <td>Difference </td><td>${math.subtract()}</td>
	 </tr>
	 <tr>
	 <td>Product</td><td>${math.multiply()}</td>
	 </tr>
	 <tr>
	 <td>Quotient</td><td>${math.divide()}</td>
	 </tr>
	 <tr>
	 <td>Modulus</td><td>${math.modulus()}</td>
	 </tr>
	 </table>
	 <form name="form2" method="post">
	 <input type="text" name="prime" value="${prim.prime}"/>
	 <input type="submit" value="OK"/>
	 </form>
	 <p>Next prime</p>
	 <p>Previous prime</p>
	</body>
</html>

The page starts with two directives. The first is added by NetBeans, but you should note
that I have added an attribute:

session="true"

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

75

JSP

75

which means that any Java beans can be created as session objects. The next directive refers
to a JSP error page and indicates a page that will automatically be redirected to in case of
an exception. Here you can then make an appropriate error handling.

In the body section, the first thing is to create two Java bean objects. Here you should
especially note that their scope is session, which means that they are objects whose value is
retained in the context of submitting the page and it is an important part of the explanation
that the page values are retained after a submit, however the actual reasoning is the two
links at the end of the page. Following the declaration of the two beans, they are defined
to be updated with the values of the input fields. That is, the classes’ set methods must be
performed. You should note that with * you can indicate that it is all properties, or you
can specify exactly which property should be updated. This is the case with prim, although
there is no reason for it in this case, since there is only this one property. You must then
note how to tie a property in a bean to an input field:

<input type="text" name="arga" value="${math.arga}" style="width: 120px"/>

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

76

JSP

In particular, you should note how to refer to the individual property and to use the name
of the variable alone. That’s why a bean must adhere to the default for naming. Also note
that the input field’s name is the same name as the current property, what is required.
Following the first form named form1 follows a table that inserts the return values of the 5
calculation methods using the same syntax as when a property is linked to an input field.
Note that a JSP page (and also an HTML page) must have more forms. When you click
on a submit button, only the values for the components that are part of the same form
as the button are submitted to the server. The other form has only a single input element
that binds to a property for prim. This happens in the same way as explained above, but
it’s just another Java bean.

Finally, there are the two links that will send a request to a servlet. The servlet is called
Primes, but an argument must be provided that tells which operation is to be performed.
Here you should especially note the syntax for how to add an argument to an URL:

Primes?arg=next

Back there is only the error page, which is a quite simple JSP page:

<%@page contentType="text/html" pageEncoding="UTF-8" isErrorPage="true" %>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	</head>
	<body>
	 <h1>There has been an error</h1>
	 <p>Repeat</p>
	</body>
</html>

It is, of course, a very simple error handling, but it notifies the user that there has been an
error rather than just letting the program go down.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

77

JSP

5.2	 FUNCTIONS

It is also possible to call a static method in a class and apply the return value in the JSP
page, but it requires the method to be registered in a Tag Library Descriptor, which is also
called a TLD. The BeanFunction program opens the window above. There is a single input
field that is bound to a property in a Java bean and there is a submit button. Clicking on
the button sends the value of the field to the server and the program inserts the text is not
a prime or is a prime. This happens by calling a static method whose argument is the value
of the above property. The bean class code is the following and looks like the same bean
from the previous example, but is just simpler:

package beanfunction.beans;

import java.io.*;

public class PrimeBean implements Serializable
{
	private long prime = 0;

	public PrimeBean()
	{
	}

	public long getPrime()
	{
	 return prime;
	}

	public void setPrime(long n)
	{
	 prime = n;
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

78

JSP

78

	public static boolean isPrime(long n)
	{
	 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
	 if (n < 11 || n % 2 == 0) return false;
	 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2)
	 if (n % t == 0) return false;
	 return true;
	}
}

Note that the set method this time does not validate the value. To create a Tag Library
Descriptor, I have added a directory named tlds to WEB-INF and then added the descriptor
to this directory:

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

79

JSP

This sub directory is not necessary, but it is recommended to create such a directory as a
larger web application may well have more Tag Library Descriptors. The descriptor itself is
called functions.tld and is an XML document:

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd">

	<tlib-version>1.0</tlib-version>
	<short-name>f</short-name>
	<uri>/WEB-INF/tlds/functions</uri>
	<function>
	 <name>isPrime</name>
	 <function-class>beanfunction.beans.PrimeBean</function-class>
	 <function-signature>boolean isPrime(long)</function-signature>
	</function>
</taglib>

In this case, the name is functions.tld and it has a so-called short-name called f. It is used
to refer to a method. A single function has been defined, and the definition includes
the function’s name, the function’s class and its signature. The document must contain a
description for each static method that must be available for the JSP pages. Below is the
code for the JSP page:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@taglib uri="/WEB-INF/tlds/functions.tld" prefix="f" %>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	</head>
	<body>
	 <jsp:useBean id="prim" scope="request" class="beanfunction.beans.PrimeBean"/>
	 <jsp:setProperty name="prim" property="prime"/>
	 <h1>Prime number</h1>
	 <form name="form1" method="post">
	 <p>Enter a prime: <input type="text" name="prime" value="${prim.prime}"/></p>
	

	 <input type="submit" value="OK"/>
	 </form>
	 <p>
	 <c:choose>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

80

JSP

	 <c:when test="${f:isPrime(prim.prime)}">
	 is a prime
	 </c:when>
	 <c:otherwise>
	 is not a prime
	 </c:otherwise>
	 </c:choose>
	 </p>
	</body>
</html>

First, note the definition of two TLDs:

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@taglib uri="/WEB-INF/tlds/functions.tld" prefix="f" %>

A tag library descriptor expands JSP with new elements in the form of Java features, which
can subsequently be used on the page. Here is the first a series of extensions that make it
possible to introduce conditions and loops on the JSP page, while the latter is the descriptor
defined above and which is part of the project. The two TLDs are referenced on the page
using a prefix, which is c and f, respectively.

If you consider the body part, you can see that a bean is defined and its properties must
be updated. Next, there is a form with an input field and a submit button, and compared
to the previous example there is nothing new here. Next, a condition follows:

<c:choose>
	<c:when test="${f:isPrime(prim.prime)}">
	 is a prime
	</c:when>
	<c:otherwise>
	 is not a prime
	</c:otherwise>
</c:choose>

choose is a construct that is defined in the tag library, which is defined by the prefix c, and
it corresponds to a switch statement. Each when element is controlled by a condition, and
in this case, it is where the value returned from the bean object is a prime number. The
method isPrime() is defined in the library that has the prefix f and you should note how to
write the condition. You should also note how to state the argument for isPrime(). If the
condition is met, the following HTML (here just text) is inserted into the document. Or,
the subsequent otherwise element is performed. In this case, choose functions as an if/else,
but there may be all the when elements that may be needed.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

81

JSP

81

PROBLEM 1

You must solve the same task as problem 1 in the book Java 2, but this time it should be
a web application. This means that you must write a loan calculation program, where the
user must enter parameters for a loan (loan costs, loan amount, interest rate, number of
years and number of periods per year). The program should then calculates the payment.
The program should start with a form as shown below. If illegal values are entered:

-- the costs must not be negative
-- the loan amount must not be negative
-- number of years must be between 1 and 60
-- number of periods a year must be between 1 and 12
-- the interest rate must be greater than 0 and less than 25

you should instead be redirected to an error page.

If you click on the Clear button, the form fields must be blank.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

82

JSP

If legal loan parameters are entered and a loan calculation is made, an additional button
must be displayed and clicking this button you should be redirected to a page showing an
amortization plan.

The individual pages (home page and page with the amortization plan) must be written as
JSP pages, and the loan should be represented by a Java bean.

5.3	 JSP DOCUMENTS

When you create a jsp page in NetBeans you get the window as shown below, where
for Options as default is selected JSP File (Standard Syntax), and in most cases you will
probably stick to it, but you can also select JSP Document (XML Syntax). The result is a
JSP page, which has the extension jspx, which resembles a standard JSP page, but where
it is a requirement that the page is welformed XML. Since the above examples actually
are already welformed, there will be no big difference besides being a requirement. Most
importantly, however, a JSP document does not allow the use of scriptlets, thus forcing
the programmer to place all Java code in Java beans and other classes, and that is the exact
goal of this variation of JSP pages.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

83

JSP

As an example, I will show the first program in this chapter (the web application DateServer),
where the start.jsp page is replaced by a page start.jspx. The program is called DateTimeServer
and performs exactly the same as the application DateServer. It uses the same Java bean
DateBean, and additionally, the following simple bean is added:

package datetimeserver.beans;

import java.util.*;

public class CurrentTime implements java.io.Serializable
{
	public CurrentTime()
	{
	}

	public String getTime()
	{
	 Calendar dt = Calendar.getInstance();
	 return String.format("%02d-%02d-%04d %02d:%02d:%02d", dt.get(Calendar.DATE),
	 dt.get(Calendar.MONTH) + 1, dt.get(Calendar.YEAR),
	 dt.get(Calendar.HOUR_OF_DAY), dt.get(Calendar.MINUTE),
	 dt.get(Calendar.SECOND));
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

84

JSP

84

Then, the jspx page can be written as follows:

<?xml version="1.0" encoding="UTF-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
	<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
	<jsp:element name="text">
	 <jsp:attribute name="lang">EN</jsp:attribute>
	 <jsp:body>
	 <jsp:useBean id="dateBean" scope="page"
	 class="datetimeserver.beans.DateBean"/>
	 <jsp:useBean id="timeBean" scope="page"
	 class="datetimeserver.beans.CurrentTime"/>
	 <jsp:setProperty name="dateBean" property="*"/>
	 <h1>Hello World!</h1>
	 <h2 style="color:red">The current time: ${timeBean.time}</h2>
	 <h3>The date is: ${dateBean.date}</h3>
	 <h3>The time is: ${dateBean.time}</h3>
	 <form method="post">
	 <table>
	 <tr>
	 <td>Date</td>
	 <td><input type="text" id="date" name="date" style="width:120px"/></td>
	 </tr>

http://s.bookboon.com/elearningforkids

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

85

JSP

	 <tr>
	 <td>Time</td>
	 <td><input type="text" name="time" style="width:120px"/></td>
	 </tr>
	 </table>
	 <input type="submit" value="Update"/>
	 </form>
	 </jsp:body>
	</jsp:element>
</jsp:root>

As you can see, it’s mostly copy and paste from the previous example, but you should notice
three things. First of all, it is about wellformed XML. Secondly, there are no scriplets, and
if you try to use the scriplets, you get an error. Third, there are several new elements of the
form jsp:xxxx, and some may appear more than shown in this example.

As mentioned above, the aim of JSP documents is to force not to use scriplets. It’s true that
exaggerated use of scriplets leads to code that is harder to read and maintain, but conversely,
it also has its uses, and generally I prefer standard JSP pages. First of all, with modern
development tools like NetBeans, it’s easy to make sure that the code is well-formed, and
secondly, it means that because using of scriplets is allowed you do not have to use them
or at least you can minimize the use and only use scriplets where it makes sense.

5.4	 CHANGE ADDRESS 2

I’ve called this example for ChangeAddress2, because it’s a bit the same problem as in the
example ChangeAddress1, but it’s really nothing about moving messages. The example shows
a web application that will simulate that employees in a company can enter and maintain
personal information such as name, address, email, and more. In addition to this, you
should be able to get an overall overview of all employee data.

The exemple is slightly larger than the previous examples in this book, and it should show
many of the solutions that are part of a typical web application. There are many details,
but one of the main goals of the example is to show a web application that uses a database.

Therefore, I will start by describing the database, which use a table named person in database
padata. In addition to this table, the table zipcode is used. The person table is defined as follows:

use padata;
drop table if exists persons;

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

86

JSP

create table persons
(
	id int not null auto_increment primary key,
	firstname varchar(40) not null,
	lastname varchar(30) not null,
	addrline1 varchar(30),
	addrline2 varchar(30),
	zipcode char(4) not null,
	phone varchar(20),
	email varchar(50) not null,
	title varchar(50),
	date date,
	passwd varchar(150),
	foreign key (zipcode) references zipcode(code)
);

alter table persons auto_increment=1001;

The meaning of the columns should appear from the names – perhaps the last two. The
column date must contain the date when a row has last been updated, while the last column
may contain a password, which should be encrypted. You should also note that in addition
to the key are the only columns that must have a value firstname, lastname, zipcode and
email, and note that the column zipcode is a foreign key to the table zipcode.

When you start the application, you get the following browser:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

87

JSP

87

that can be perceived as a welcome page. It is a JSP page named index.jsp, and it has
links to three other JSP pages, which are for the three functions that the application can
perform. The page does not look much, but there is still a lot of new, because the page has
a header (the colored area). It is a JSP page that is part of another JSP page. In addition,
the application uses a style sheet and a bit of JavaScript, which are topics that are dealt
with first in the next book.

Looking at the top line, it consists of a header as well as a text concerning the page’s
webmaster. The latter is an example of a custom web element. The example may in this
case be a little searched, but a custom web element is defined as a derived class of the class
SimpleTagSupport:

package changeaddress;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class Webmaster extends SimpleTagSupport
{
	private String master1 = null;
	private String master2 = null;

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

88

JSP

	public void setMaster1(String master)
	{
	 master1 = master;
	}

	public void setMaster2(String master)
	{
	 master2 = master;
	}

	@Override
	public void doTag() throws JspException
	{
	 PageContext context = (PageContext) getJspContext();
	 JspWriter out = context.getOut();
	 try
	 {
	 out.println("Web master: " + master1);
	 if(master2 != null)
	 {
	 out.println(" and " + master2);
	 }
	 }
	 catch (Exception e)
	 {
	 }
	}
}

In this case, the element must have two attributes that are strings and are respectively called
master1 and master2. Both attributes have set methods, but otherwise the method doTag()
defines how to render the item in the browser. In order for custom web elements to be
used in the application, they must be registered in a Tag Lidrary Description file (which I
previously used to define a function), and in this case, the content is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<taglib version="2.1" xmlns="http://java.sun.com/xml/ns/javaee" … >
	<tlib-version>1.0</tlib-version>
	<short-name>t</short-name>
	<uri>/WEB-INF/tlds/taglib</uri>
	<tag>
	 <name>webmaster</name>
	 <tag-class>changeaddress.Webmaster</tag-class>
	 <body-content>empty</body-content>
	 <attribute>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

89

JSP

	 <name>master1</name>
	 <rtexprvalue>true</rtexprvalue>
	 <required>true</required>
	 </attribute>
	 <attribute>
	 <name>master2</name>
	 <rtexprvalue>true</rtexprvalue>
	 <required>false</required>
	 </attribute>
	</tag>
</taglib>

Note that, as a short-name, I have used the letter t. The file defines a single element
called webmaster, and in addition to the name of the class, you must define the element’s
attributes, and in this case there are two. An attribute is defined by the name, and where
it is required. The name rtexprvalue specifies whether the attribute must be initialized with
a ${} server value.

With this custom item in place, the header can be defined as the following JSP page, called
header.jsp:

<%@taglib uri="/WEB-INF/tlds/taglib.tld" prefix="t" %>
<html xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
	<jsp:directive.page contentType="text/html" pageEncoding="UTF-8"/>
	<div class="header-class" style="height: 40px;">
	 <table>
	 <tr>
	 <td style="font-size: xx-large; font-weight: bold; color: navy;">
	 Borremose voldsted</td>
	 <td style="font-size: small; color: gray;">
	 <t:webmaster master1="Knud den Store" master2="Regnar Lodbrog"/></td>
	 </tr>
	 </table>
	

	</div>
</html>

You should note that the tag library described above is defined by a directive, but otherwise
you should notice that there is no body. It’s not a real JSP page, but some JSP that is
intended to be inserted into another JSP page.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

90

JSP

90

One of the major challenges in web application development is the visual repræsentation and
thus how the page is displayed in the browser. This is something that I will only touch on to
a limited extent, but typically you define the details with styles. That is for each of the two
TD elements above, there is defined a style that indicates font size and color. More generally,
you can define styles in a style sheet, which is a document of styles that the application’s
pages can apply. As part of this application, I have defined the following stylesheet:

body
{
	font-family: "Liberation Sans"
}

p
{
	width: 800px
}

li
{
	margin: 10px 0
}

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

91

JSP

.error
{
	font-weight: bold;
	color: red
}

.header-class
{
	background: bisque
}

table.imagetable
{
	font-family: verdana,arial,sans-serif;
	font-size:11px;
	color:#333333;
	border-width: 1px;
	border-color: #999999;
	border-collapse: collapse;
}

table.imagetable th
{
	background:#b5cfd2 url('cell-blue.jpg');
	border-width: 1px;
	padding: 8px;
	border-style: solid;
	border-color: #999999;
}

table.imagetable td
{
	background:#dcddc0 url('cell-grey.jpg');
	border-width: 1px;
	padding: 8px;
	border-style: solid;
	border-color: #999999;
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

92

JSP

There are, of course, many syntactical details related to style sheets, but when you read
the individual styles, they are easy enough to understand, and NetBeans knows style heets
and also provides assistance to the individual styles. In practice, a style sheet can be very
comprehensive and the whole idea is to move the definition of how the individual HTML
elements should be displayed from the HTML and JSP documents. This means, on the one
hand, that these documents become simpler and easier to understand, and partly that it is
easier to maintain how websites appear, as you only has to modify the style sheet. The idea
is that the HTML and JSP documents should only define the content, while style sheets
defines how the content is rendered in the browser. A style sheet is thus a text document
sent with the page, as the browser uses to render the document. A style sheet is not used
on the server side.

In this case, 9 styles are defined. The first three is very simple and defines the font for the
body element (and thus the entire document) that as default should apply, and how wide a
paragraph should be (such a text line does not necessarily fill the entire screen), and that a li
element must have an upper margin of 10. The next two defines a so-called class that can be
associated with specific elements. For example header-class that is used in the above header:

<div class="header-class">

The last three styles are more complex and define styles that can be used in a HTML table.
I will return to them later. These styles are used by all documents that uses that style sheet.
If you look at the code for the home page, you can see how how with a link element in
the header yoy defines to use the style sheet in question:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>Start page</title>
	 <link rel="stylesheet" href="styles.css" type="text/css"/>
	</head>
	<body>
	 <jsp:include page="header.jsp"/>
	 <h1>Employee information</h1>
	 <p>On this page ….. </p>
	 <p>The individual employee ….. </p>
	

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

93

JSP

93

	 Enter employee information
	 Show employee informations
	 New password
	
	</body>
</html>

You should also note how the above header is inserted with a jsp:include element as the
first line in the body section. You must note that it is on the server side and it is the server
that is responsible for creating the completed document. In this application, all pages start
with this header and it can help ensure that all pages in a web application get a common
look and feel and it is easy to change as you can easily change the header. You should also
note that, in principle, a JSP page may have all of the jsp:include items that may be desired
and they may appear anywhere.

If you click on the top link from the home page, you get the following browser:

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

94

JSP

It should illustrate a simple login page. In this case, the user must enter his employee number
and password and when the button is clicked, this information will be sent to the server.
If the user only enter a password (there is no employee number), it is perceived as creating
a new employee, and otherwise it means that you can edit the employee information. For
practical use, it may not be appropriate, but I do not want to make the application more
extensive than necessary. The page is of course basically a form and, in principle, it is a very
simple page, which simply consists in sending a form to the server, but there are nevertheless
one having challenges to be resolved.

When the form is sent to the server, the server must validate if the entered data is legal.
In this case, the employee number must be a 4-digit integer (automatically assigned by the
database server) and there must be a password. If the employee number is blank, the server
must create a new employee and assign it to an auto generated number. If an employee
number has been entered, the server must validate the number and, if it is legal, the server
must check if the database has an employee with that number and password and, if necessary,
load the employee’s data. If the form’s data is illegal, the program must return to the login
with an error message and the form fields must retains there content so that the user can
edit the content. If data can be accepted, the server instead has to go to the editing page
so that the user can edit the data in question.

All that requires some Java code, and I want to start with a simple bean that can represent
data to the login page:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

95

JSP

package changeaddress.beans;

import java.io.*;

public class LoginBean implements Serializable
{
	private String userid;
	private String passwd;
	private String error;

	public LoginBean()
	{
	}

	public String getUserid()
	{
	 return userid;
	}

	public void setUserid(String userid)
	{
	 this.userid = userid;
	}

	public String getPasswd()
	{
	 return passwd;
	}

	public void setPasswd(String passwd)
	{
	 this.passwd = passwd;
	}

	public String getError()
	{
	 return error;
	}

	public void setError(String error)
	{
	 this.error = error;
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

96

JSP

96

There is not much to explain, but you should notice that there is an additional property
that I have called error and it is used to send an error message back. Then, the JSP page
can be written as follows:

<%@page contentType="text/html" pageEncoding="UTF-8" session="true"%>
<%@page errorPage="error.jsp" %>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>Login</title>
	 <link rel="stylesheet" href="styles.css" type="text/css"/>
	 <script src='scripts.js'></script>
	 <script>
	 function encryptPassword()
	 {
	 var passwd = ("" + document.getElementById("passwd").value).trim();
	 if (passwd.length > 0)
	 document.getElementById("passwd").value = createHash(passwd);
	 return true;
	 }
	 </script>
	</head>

http://s.bookboon.com/EOT

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

97

JSP

	<body>
	 <jsp:useBean id="loginBean" class="changeaddress.beans.LoginBean"
	 scope="session"/>
	 <jsp:include page="header.jsp"/>
	 <h2>Login</h2>
	 <form method="post" action="PersonServlet" onsubmit="return encryptPassword()">
	 <table>
	 <tr>
	 <td>Enter your employee number: </td>
	 <td><input type="text" id="mednr" name="userid" style="width:120px"
	 value="${loginBean.userid}"/></td>
	 </tr>
	 <tr>
	 <td colspan="2"><div style="font-size: xx-small">
	 To create a new employee, simply do not enter the employee number
	 </div></td>
	 </tr>
	 <tr>
	 <td colspan="2" style="height: 10px"></td>
	 </tr>
	 <tr>
	 <td>Enter password</td>
	 <td><input type="password" id="passwd" name="passwd" style="width:120px"
	 value="${loginBean.passwd}"/></td>
	 </tr>
	 <tr>
	 <td colspan="2" style="height: 20px"></td>
	 </tr>
	 <tr>
	 <td colspan="2" style="text-align: right"><input type="submit" id="edit"
	 name="edit" value="Edit employee"/></td>
	 </tr>
	 <tr>
	 <td colspan="2" style="height: 20px"></td>
	 </tr>
	 <tr>
	 <td colspan="2" style="text-align: right">Cancel</td>
	 </tr>
	 </table>
	 </form>
	 <div class="error">${loginBean.error}</div>
	</body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

98

JSP

Note that line 2 refers to an error page. In principle, you should never come to this page
because the server validates data, but you will be sent to the error page in case of one or more
serious errors, and that is, when an exception occurs. Also note how the above LoginBean is
applied and how its properties are linked to the input fields as well as to a div element at the
end of the document. It is used to show a possible error message. Please note that the scope
of the particular bean is a session. That is that the value of objects is preserved throughout
the session. Finally, you should note that the page only reads the bean object, but does not
update it. Otherwise, you may notice that the page uses the style sheet, and that one input
field has the type password. It simply means that the user’s entries are not displayed as text.

However, the most important thing is the form element, where its action indicates that the
form should be sent to PersonServlet, which is the Java object to process the form, and finally
the form element states that before submitting, the JavaScript function encryptPassword()
must be performed. The user’s password must be stored encrypted in the database, and I
have previously shown (in the book Java 7) how to do it. Java has classes for it, which
determines a message digest of the password and stores it in the database. However, it causes
a problem as it can only happens on the server side, and the password must therefore be
sent to the server in clear text, allowing others to intercept it. The encryption must therefore
be done on the client side, and here I currently only have JavaScript available. A message
digest is determined by means of a complex algorithm, and there are several that can be
used and which differ in terms of their strength and thus how difficult they are to break.
The algorithm is well described on the Internet, and you can easily find an example where
it is implemented in JavaScript. The file scripts.js implements such an algorithm (SHA-1
algorithm). It is not the strongest algorithm, but for many practical purposes strong enough.
I do not want to review the algorithm here or show the code but briefly the idea is to modify
the text in such a way that it can not be recognized and that you can not regret and from
that message digest determine the password. However, there is a problem as it happens on
the client side, so everyone can see what’s happening and therefore it is discussed whether
it’s safe to encrypt a password using script code, because such a code is not irreproachable,
but in relation to this example, it must be sufficient. Should encryption be safe, one will
usually require another approach (another implementation) than what this example shows.

Before I look at PersonServlet, I will look at the class PersonBean, which is a Java bean that
defines a person. The class is extensive and I have only shown a part of the code:

public class PersonBean implements Serializable
{
	private static ArrayList<Zipcode> list = new ArrayList();
	private int userid;
	private String firstname;

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

99

JSP

99

	private String lastname;
	private String addrline1;
	private String addrline2;
	private String code;
	private String city;
	private String phone;
	private String email;
	private String title;
	private Calendar date;
	private String passwd;
	private String error;

	public PersonBean()
	{
	}

	public void setUserid(String userid) throws Exception
	{
	 if (userid.trim().length() == 0)
	 {
	 this.userid = 0;
	 return;
	 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

100

JSP

	 try
	 {
	 int id = Integer.parseInt(userid);
	 if (id < 1000 || id > 9999) throw new Exception(" … ");
	 this.userid = id;
	 }
	 catch (Exception ex)
	 {
	 throw new Exception("Illegal value for userid: " + ex.getMessage());
	 }
	}

	public void setFirstname(String firstname) throws Exception
	{
	 firstname = firstname.trim();
	 if (firstname.length() == 0) throw new Exception(" … ");
	 this.firstname = Tools.cut(firstname, 40);
	}

	public void setCode(String code) throws Exception
	{
	 code = code.trim();
	 for (Zipcode zc : list)
	 if (zc.code.equals(code))
	 {
	 this.code = zc.code;
	 this.city = zc.city;
	 return;
	 }
	 throw new Exception("Illegal zipcode");
	}

	public String getDate()
	{
	 if (date == null) return "";
	 return String.format("%02d-%02d-%04d", date.get(Calendar.DATE),
	 date.get(Calendar.MONTH) + 1, date.get(Calendar.YEAR));
	}

	public void setDate(String date) throws Exception
	{
	 try
	 {
	 java.text.DateFormat formatter =
	 new java.text.SimpleDateFormat("dd-MM-yyyy");
	 if (this.date == null) this.date = java.util.Calendar.getInstance();

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

101

JSP

	 this.date.setTime(formatter.parse(date));
	 }
	 catch (Exception ex)
	 {
	 throw new Exception("Illegal date");
	 }
	}

	static
	{
	 try (Connection conn = DB.getConnection();
	 Statement stmt = conn.createStatement())
	 {
	 ResultSet res = stmt.executeQuery("SELECT * FROM zipcode");
	 while (res.next())
	 list.add(new Zipcode(res.getString("code"), res.getString("city")));
	 }
	 catch(Exception ex)
	 {
	 }
	}
}

class Zipcode
{
	public String code;
	public String city;

	public Zipcode(String code, String city)
	{
	 this.code = code;
	 this.city = city;
	}
}

Looking at the class’s variables, it is clear that it reflects a row in the database and thus can
represent a person. However, the class further defines a few variables as city and error. Here,
the last one should be used for an error message when editing a person’s data. Similar to
the database definition, the following fields must be validated:

-- useris
-- firstname
-- lastname
-- code
-- email

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

102

JSP

102

The set methods for these variables raise an exception in case of errors. For example the
method setFirstname() that ensures that a first name has a value. The variable email is
validated by a method isMail(), which is found in the class Tools. It’s the same method I’ve
shown before. Then there is finally the variable code, and since the corresponding column
in the database is a foreign key, the method setCode() must test if the zip code is found.
In order, that the method does not always have to connect to the database and perform
a SELECT, the zip codes are loaded once for all in an ArrayList<Zipcode>. Here’s Zipcode
is a simple class that can represent a zip code by two fields. Reading the zip codes takes
place in a static constructor, and in principle it does not require any special explanation.
However, it requires a database connection and the class DB has a method that can create
this connection to the database. I will wait to describe this class for later, but it will be
used in several places. Once the arraylist is initialized, it is easy for the method setCode()
to validate if a zip code is legal. If necessary, it also initializes the variable city.

Then there is PersonServlet, that is the servlet that JSP page login.jsp posts the form to when
clicking on the submit button:

@WebServlet(name = "PersonServlet", urlPatterns = {"/PersonServlet"})
public class PersonServlet extends HttpServlet
{

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

103

JSP

	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 request.setCharacterEncoding("UTF-8");
	 LoginBean bean = (LoginBean)request.getSession(true).getAttribute("loginBean");
	 String usr = request.getParameter("userid").trim();
	 String pwd = request.getParameter("passwd").trim();
	 if (pwd.length() == 0)
	 {
	 bean.setError("You must enter password");
	 bean.setUserid(usr);
	 bean.setPasswd("");
	 response.sendRedirect("login.jsp");
	 return;
	 }
	 PersonBean person = new PersonBean();
	 if (usr.length() > 0)
	 {
	 if (!userOk(usr))
	 {
	 bean.setError("Illegal user ID");
	 bean.setUserid(usr);
	 bean.setPasswd("");
	 response.sendRedirect("login.jsp");
	 return;
	 }
	 if (!loadPerson(person, usr, pwd))
	 {
	 bean.setError("Employee number not found or illegal password");
	 bean.setUserid(usr);
	 bean.setPasswd("");
	 response.sendRedirect("login.jsp");
	 return;
	 }
	 }
	 else person.setPasswd(pwd);
	 request.getSession().setAttribute("personBean", person);
	 request.getSession().removeAttribute("loginBean");
	 request.getRequestDispatcher("/edit.jsp").forward(request, response);
	}

	private boolean userOk(String userid)
	{
	 try
	 {
	 int t = Integer.parseInt(userid);
	 return t > 1000 && t < 10000;
	 }

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

104

JSP

	 catch (Exception ex)
	 {
	 return false;
	 }
	}

	private boolean loadPerson(PersonBean person, String userid, String passwd)
	{
	 try (Connection conn = DB.getConnection();
	 Statement stmt = conn.createStatement())

	 {
	 ResultSet res = stmt.executeQuery("SELECT * FROM persons WHERE id = " +
	 userid + " AND passwd = '" + passwd + "'");
	 if (res.next())
	 {
	 person.setUserid("" + res.getInt("id"));
	 person.setFirstname(res.getString("firstname"));
	 person.setLastname(res.getString("lastname"));
	 person.setAddrline1(res.getString("addrline1"));
	 person.setAddrline2(res.getString("addrline2"));
	 person.setCode(res.getString("zipcode"));
	 person.setPhone(res.getString("phone"));
	 person.setEmail(res.getString("email"));
	 person.setTitle(res.getString("title"));
	 person.setDate(Tools.toStr(res.getDate("date")));
	 return true;
	 }
	 return false;
	 }
	 catch(Exception ex)
	 {
	 return false;
	 }
	}
}

I have only shown that part of the code that explains what happens and it is primarily
processRequest(). First note the line

request.setCharacterEncoding("UTF-8");

It is necessary to ensure that Danish letters are processed correctly when the form is submitted.
Perhaps it is not so important in this example, but in connection with the next form it is.
The first thing that happens is to add a reference to the bean object:

LoginBean login = (LoginBean)request.getSession().getAttribute("loginBean");

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

105

JSP

105

Note that the object exists as it is defined with session scope. Next, the value of the employee
number and password (which is now encrypted) are determined and the method tests
whether a password has been submitted. If not, an error message is attached to the bean
object, and the server performs a redirect back to login.jsp. Since the bean object still exists,
the page will display the error message. Has a password been entered a PersonBean object is
created. If an employee number has been entered (the length is positive) is validated first,
if it is a positive 4-digit integer. If not, an error message will be returned in the same way
as above. Otherwise, the method loadPerson() is called to try to read a person from the
database with the appropriate employee number and password. Is it possible, PersonBean
initializes the object with the entire data, but otherwise, again, returns to login.jsp with an
error message. If, on the other hand, the entered employee number is blank, PersonBean
initializes the object with the entered password.

If password and employee number can be accessed, then PersonBean is saved as a session
object, while at the same time removing the session object loginBean. It is necessary to ensure
that the item does not live next time the login page opens. Finally, a forward is made to
the page edit.jsp, where the PersonBean object can be edited.

http://s.bookboon.com/GTca

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

106

JSP

As a last comment to login.jsp there is a link to cancel. If you click on that link, you have
to get back to the home page, but instead of doing it directly, a servlet StartServlet is called.
Its processRequest() is the following:

@WebServlet(name = "start", urlPatterns = {"/start"})
public class StartServlet extends HttpServlet
{
	protected void processRequest(HttpServletRequest request,
	 HttpServletResponse response) throws ServletException, IOException
	{
	 HttpSession session = request.getSession(false);
	 if (session != null) session.invalidate();
	 request.getRequestDispatcher("/index.jsp").forward(request, response);
	}

The goal is to end the session so that the object loginBean (and, if any, other session objects)
no longer lives.

Then there is edit.jsp, in the event of a new employee opens the page below. The page is
basically a form and is in principle no different than login.jsp. It fills a lot, and I’ve only
shown a part of the HTML code:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@page errorPage="error.jsp" %>
<!DOCTYPE html>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	 <link rel="stylesheet" href="styles.css" type="text/css"/>
	</head>
	<body>
	 <jsp:useBean id="personBean" class="changeaddress.beans.PersonBean"
	 scope="session"/>
	 <jsp:include page="header.jsp"/>
	 <h2>Edit data</h2>
	 <form method="post" action="StoreServlet">
	 <table>
	 <tr>
	 <td>Employee number </td>
	 <td><input type="text" name="userid" readonly="true" style="width:60px"
	 value="${personBean.userid}" /></td>
	 </tr>
	 …
	 <tr>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

107

JSP

	 <td colspan="2" style="text-align: right">Cancel</td>
	 </tr>
	 </table>
	 </form>
	

	 <div class="error">${personBean.error}</div>
	</body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

108

JSP

108

Compared to login.jsp there is nothing new to explain and it works in principle in the same
way. You should note that there is a reference to the object personBean, and that when
submitting the form, a request is made to a servlet named StoreServlet. It’s processRequest()
is the following:

protected void processRequest(HttpServletRequest request,
	HttpServletResponse response) throws ServletException, IOException
{
	response.setContentType("text/html;charset=UTF-8");
	PersonBean person = (PersonBean)request.getSession().getAttribute("personBean");
	try
	{
	 request.setCharacterEncoding("UTF-8");
	 person.setFirstname(request.getParameter("firstname"));
	 person.setLastname(request.getParameter("lastname"));
	 person.setAddrline1(request.getParameter("addrline1"));
	 person.setAddrline2(request.getParameter("addrline2"));
	 person.setCode(request.getParameter("code"));
	 person.setPhone(request.getParameter("phone"));
	 person.setEmail(request.getParameter("email"));
	 person.setTitle(request.getParameter("title"));
	 if (person.getDate().length() == 0)
	 {

 .

http://s.bookboon.com/AlcatelLucent

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

109

JSP

	 person.setUserid("" + create(person));
	 request.getRequestDispatcher("/employee.jsp").forward(request, response);
	 }
	 else
	 {
	 update(person);
	 request.getRequestDispatcher("/start").forward(request, response);
	 }
	}
	catch (Exception ex)
	{
	 person.setError(ex.toString());
	 request.getRequestDispatcher("/edit.jsp").forward(request, response);
	}
}

It starts by initializing the session object with the form data. Several of the set methods can
raise an exception if the value is illegal and if it happens, the server performs a forward back
to edit.jsp with an error message. Initializing the object correctly, the date field is used to
know whether it is an update or to add a new row to the database. This happens by using
two methods that I have not shown here, but the difference is that one executes a SQL
INSERT, while the other performs a SQL UPDATE. If these methods are not performed
properly, they raise an exception, which is sent back to edit.jsp as an error message. If, on
the other hand, the database is updated correctly, you are in case of an update send back to
the home page, but if it is a new employee, you will be sent to a page employee.jsp, which
shows which employee number you are assigned.

If you click on the center link on the start page, you will get an overview of all employees
in the database. The result could, for example be, as shown below, where two employees
have been created:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

110

JSP

The table’s look and feel is determined by the style sheet, where the last three classes are
used to style the table. The JSP page content are as follows:

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<%@page errorPage="error.jsp" %>
<!DOCTYPE html>
<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
	<head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
	 <title>JSP Page</title>
	 <link rel="stylesheet" href="styles.css" type="text/css"/>
	</head>
	<body>
	 <jsp:useBean id="personsBean" class="changeaddress.beans.PersonsBean"
	 scope="page"/>
	 <jsp:include page="header.jsp"/>
	 <h2>Employee list</h2>
	 <table class="imagetable">
	 <tr>
	 <th>Employee</th>
	 <th>Name</th>
	 <th>Address</th>
	 <th></th>
	 <th>Post address</th>
	 <th>Phone</th>
	 <th>Email</th>
	 <th>Title</th>
	 <th>Last modified</th>
	 </tr>
	 <c:forEach items="${personsBean.persons }" var="pers">
	 <tr>
	 <td>${pers.userid}</td>
	 <td>${pers.firstname} ${pers.lastname}</td>
	 <td>${pers.addrline1}</td>
	 <td>${pers.addrline2}</td>
	 <td>${pers.code} ${pers.city}</td>
	 <td>${pers.phone}</td>
	 <td>${pers.email}</td>
	 <td>${pers.title}</td>
	 <td>${pers.date}</td>
	 </tr>
	 </c:forEach>
	 </table>
	 <p>Back to start</p>
	</body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

111

JSP

111

The page uses a Java bean called PersonsBean. I do not want to display the code here, but
it creates a List<PersonBean>, which is initialized with all employees in the database. The
most important thing here is to note how this list is used to dynamically create the table
with a row for each employee. Here you should especially note the syntax for how to insert
a loop with the element c:forEach on a JSP page.

There is yet another link on the start page where a member has the opportunity to change
his password. I do not want to show this here as it does not add anything new. It is a form
where the user must enter his employee number, password and new passwords, and the
page uses a servlet to validate this data and possibly updates the database.

This web application is simple and are in more places simplified to a practical application,
and of course, there could be more features such as search on employees, but it is a typical
web application where users can edit data, which is stored in a database. In practice, many
web applications are database applications, for example, thinking of a classic shopping cart.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

112

JSP

However, before I completely leave the application there is a single standout. As mentioned,
I uses a class DB to create a connection to the database. It requires at least a database user
in the form of username and password. This information is often saved in a configuration
file and I have used web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" … >
	<welcome-file-list>
	 <welcome-file>index.jsp</welcome-file>
	</welcome-file-list>
	<listener>
	 <listener-class>changeaddress.ParamsFactory</listener-class>
	</listener>
	<context-param>
	 <param-name>usr</param-name>
	 <param-value>pa</param-value>
	</context-param>
	<context-param>
	 <param-name>pwd</param-name>
	 <param-value>Volmer_1234</param-value>
	</context-param>
</web-app>

It is generally considered to be a safe place as it is not sent to the client, and since the
web container does not allow access to the file from the outside. However, this means that
a Java class should be able to retrieve these parameters, and it can be done with a listener
class that retrieves information when the application starts. Note that web.xml defines this
listener as the ParamsFactory class, and the server will instantiate an object of this class that
creates a Properties object with the context parameters as the key / value pair. This item is
represented by the class

package changeaddress;

import java.util.*;

public abstract class WebParams
{
	private static Properties contextProperties = new Properties();

	public static String getParam(String key)
	{
	 return contextProperties.getProperty(key);
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

113

JSP

	public static void setProperties(Properties properties)
	{
	 contextProperties = properties;
	}
}

there only have static members. The Properties object is created in ParamsFactory (listening
Object):

package changeaddress;

import java.util.*;
import javax.servlet.*;

public class ParamsFactory implements ServletContextListener
{
	public void contextDestroyed(ServletContextEvent event)
	{
	}

	public void contextInitialized(ServletContextEvent event)
	{
	 Properties properties = new Properties();
	 ServletContext servletContext = event.getServletContext();
	 Enumeration<?> keys = servletContext.getInitParameterNames();
	 while (keys.hasMoreElements())
	 {
	 String key = (String) keys.nextElement();
	 String value = servletContext.getInitParameter(key);
	 properties.setProperty(key, value);
	 }
	 WebParams.setProperties(properties);
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

114

JSP

114

This method is automatically performed by the Glassfish server, and the following class can
therefore connect to the database:

package changeaddress;

import java.sql.*;

public class DB
{
	public static Connection getConnection() throws SQLException
	{
	 String usr = WebParams.getParam("usr");
	 String pwd = WebParams.getParam("pwd");
	 return DriverManager.getConnection(
	 "jdbc:mysql://localhost:3306/padata?useSSL=false", usr, pwd);
	}
}

http://s.bookboon.com/BI

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

115

JSP

EXERCISE 4

Start by creating a copy of the web application ChangeAddress2. You must expand the
application to add a Delete button to the edit page:

The button should only be there if you edit an existing employee. When you click the
button, the employee must be deleted from the database. The easiest thing is to let the
button post to a new servlet, which then deletes the employee.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

116

JSF

6	 JSF

The whole idea behind JSP is to separate the presentation part from the application’s business
logic so that the individual pages of a web application are written as JSP pages, which
then perform their data processing by sending requests to servlets, and as mentioned, the
JSP page itself is translated into a servlet. The data to be manipulated by the JSP page is
represented by a Java bean, which is a Java class whose properties can immediately be linked
to the JSP page’s fields. With this model you are able to develop effective dynamic websites.
The technology has since been refined, and today wee talk about JSF, that stands for Java
Server Faces, and the goal has been to make it easier to develop modern web applications
and make it easier to use many new web technologies. A JSF page replaces the JSP pages,
and a JSF page is linked to a special servlet, which is called a FacesServlet. One can also
say that JSF is not much more than a natural development of a technology driven by the
many new demands that constantly arise in the development of effective web applications.

I will start by showing how a web application with JSF can be written using NetBeans.
The application is basically the same as I previously shown, where the user must enter two
numbers, after which the program can perform a calculation:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

117

JSF

117

The calculation is one of the four calculations types, and there are two buttons, one clear
the fields (the two input fields and the result), while the other performs the calculation.

The project is called CalculationPage and is created in NetBeans as other web applications,
but in the Server Settings window, I click Next and then I comes to the window for selecting
Frameworks. Here you must tick the JavaServer Faces field (see below). The rest must remain
as it is and when you click Finish, a JSF web application has been created that consists of
a single file named index.xhtml:

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

118

JSF

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet Title</title>
	</h:head>
	<h:body>
	 Hello from Facelets
	</h:body>
</html>

As you can see, it is an XML document with HTML syntax, and in fact it is a complete
web application that can be translated and opened in the browser. The task is, of course,
to modify this page so it displays a window as shown above.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

119

JSF

Data to a JSP page is represented by a Java bean, and there will usually be a Java bean
to any JSP page. The same goes for JSF pages, but instead, you’re talking about a named
bean (exactly a CDI named bean) or a controller, but basically, it’s nothing but a usual
Java bean with two annotations in front of the class. To associate such a named bean with
the project, I have added a package calculationpage.beans as previously. Then I have right-
clicked and selected JSF Managed Bean (see below). When I click OK, I get a window to
create the desired class (see below). The name is CalulationController and you should note
that the above package is selected. Also note the Name field, which is the name that the
class is known in the JSF page. By default, NetBeans choose the class name starting with
a lowercase letter, and there is seldom a reason to change it. Finally, note the field Scope
where I have the choice session. When you click OK, NetBeans will create a named bean:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

120

JSF

120

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

121

JSF

package calculationpage.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;
@Named(value = "calculationController")
@SessionScoped
public class CalculationController implements Serializable
{
	public CalculationController()
	{
	}
}

Basically, it’s nothing but a simple skeleton for a class, but you should notice that the class
is serializable as other Java beans and of course the two annotations. Here you should note
that the values are those that you have selected in the previous screen.

After you have attached a named bean to the project, the code must be written and it will
be done in the same way as other beans. The result is the following where I have not shown
the code for get and set methods (which are all trivial):

@Named(value = "calculationController")
@SessionScoped
public class CalculationController implements Serializable
{
	private static final String ADDITION = "Addition";
	private static final String SUBTRACTION = "Subtraction";
	private static final String MULTIPLICATION = "Multiplication";
	private static final String DIVISION = "Division";
	private long number1;
	private long number2;
	private long result;
	private String calculation;
	private List<SelectItem> calculations;

	public CalculationController()
	{
	 clear();
	 calculations = new ArrayList();
	 calculations.add(new SelectItem(ADDITION));
	 calculations.add(new SelectItem(SUBTRACTION));
	 calculations.add(new SelectItem(MULTIPLICATION));
	 calculations.add(new SelectItem(DIVISION));
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

122

JSF

	public void clear()
	{
	 number1 = 0;
	 number2 = 0;
	 result = 0;
	 calculation = null;
	}

	public void calculate()
	{
	 if (calculation.equals(ADDITION)) setResult(number1 + number2);
	 else if (calculation.equals(SUBTRACTION)) setResult(number1 – number2);
	 else if (calculation.equals(MULTIPLICATION)) setResult(number1 * number2);
	 else if (calculation.equals(DIVISION))
	 try
	 {
	 setResult(number1 / number2);
	 }
	 catch (Exception ex)
	 {
	 FacesMessage facesMsg = new FacesMessage(FacesMessage.SEVERITY_ERROR,
	 "Invalid Calculation", "Invalid Calculation");
	 FacesContext.getCurrentInstance().addMessage(null, facesMsg);
	 }
	}
}

The class has four simple properties whose meaning should be self explanatory (the latter
is used for the calculation operation to be performed), and there is also a list for objects
to type SelectionItem, which represents items that the JSF page can display in a dropdown
list. In addition to properties, the class has two methods, the first setting all properties to
0, while the last one performs a calculation. Since you can not divide by 0, the operation
DIVISION can raise an exception. If it happens, a FacesMessage object will be created that
represents an error message. I show below how it is used.

Then there’s the JSF page, and here’s the most to note:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html">

	<h:head>
	 <title>Calculation page</title>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

123

JSF

123

	</h:head>
	<h:body>
	 <f:view>
	 <h1>Perform a Calculation</h1>
	 <p>Enter two integers</p>
	 <h:messages errorStyle="color: red" infoStyle="color: green"
	 globalOnly="true"/>
	

	 <h:form id="calulationForm">
	 Enter number 1:
	 <h:inputText id="number1" value="#{calculationController.number1}"/>
	

	 Enter number 2:
	 <h:inputText id="number2" value="#{calculationController.number2}"/>
	

	

	 Select calculation:
	 <h:selectOneMenu id="calculation"
	 value="#{calculationController.calculation}">
	 <f:selectItems value="#{calculationController.calculations}"/>
	 </h:selectOneMenu>
	

	

	 Result:

http://s.bookboon.com/Subscrybe

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

124

JSF

	 <h:outputText id="result" value="#{calculationController.result}"/>
	

	

	 <h:commandButton action="#{calculationController.clear()}"
	 value="Clear"/>
	 <h:commandButton action="#{calculationController.calculate()}"
	 value="Calculate"/>
	 </h:form>
	 </f:view>
	</h:body>
</html>

When you see the code, it is easy to understand, and immediately you notice that it is
an XML document and that much of the code is similar to HTML. However, many new
elements are used, which are not standard HTML elements, but elements that are defined
in two tag libraries and are usually called JSF elements:

xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html"

Such an element defines different attributes that can be initialized and the element is
translated into standard HTML. For example, there is an element

<h:messages errorStyle="color: red" infoStyle="color: green" globalOnly="true"/>

which generally does not result in any code, but if there is an error in the calculation
(division with 0) the following text is added to the document:

<li style="color: red">Invalid Calculation

It is important to be aware that these new elements do not mean that you can not use
standard HTML. This is possible in the same way as before. It’s just a matter that the new
elements giving new opportunities and opportunities to generate the desired HTML easier
than to write it all from scratch. Note as an example how the dropdown list is defined:

<h:selectOneMenu id="calculation"
value="#{calculationController.calculation}">
	<f:selectItems value="#{calculationController.calculations}"/>
</h:selectOneMenu>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

125

JSF

Note, in particular, how to refer to a bean property, and in principle it is done in the same
way as in a JSP page, just use the character # instead of $. Looking at the above definition,
it results in the following HTML:

<select id="calulationForm:calculation" name="calulationForm:calculation" size="1">
	<option value="Addition" selected="selected">Addition</option>
	<option value="Subtraction">Subtraction</option>
	<option value="Multiplication">Multiplication</option>
	<option value="Division">Division</option>
</select>

The page also defines a form element, but no action is defined. This action is instead
associated with the definition of a button, such as:

<h:commandButton action="#{calculationController.clear()}" value="Clear"/>

Below is an example of the HTML that this JSF page generates:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
	<head id="j_idt2">
	 <title>Calculation page</title>
	</head>
	<body>
	 <h1>Perform a Calculation</h1>
	 <p>Enter two integers</p>
	

	 <form id="calulationForm" name="calulationForm" method="post"
	 action="/CalculationPage/faces/index.xhtml"
	 enctype="application/x-www-form-urlencoded">
	 <input type="hidden" name="calulationForm" value="calulationForm" />
	 Enter number 1:
	 <input id="calulationForm:number1" type="text" name="calulationForm:number1"
	 value="0" />
	

	 Enter number 2:
	 <input id="calulationForm:number2" type="text" name="calulationForm:number2"
	 value="0" />
	

	

	 Select calculation:
	 <select id="calulationForm:calculation" name="calulationForm:calculation"
	 size="1">
	 <option value="Addition">Addition</option>
	 <option value="Subtraction">Subtraction</option>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

126

JSF

126

	 <option value="Multiplication">Multiplication</option>
	 <option value="Division">Division</option>
	 </select>
	

	

	 Result:
	 0
	

	
<input type="submit" name="calulationForm:j_idt14" value="Clear" />
	 <input type="submit" name="calulationForm:j_idt16" value="Calculate" />
	 <input type="hidden" name="javax.faces.ViewState"
	 id="j_id1:javax.faces.ViewState:0"
	 value="-5991509489504870512:5541158679969395251" autocomplete="off" />
	 </form>
	</body>
</html>

Most of it can be recognized. However, there are a few hidden fields whose value is difficult
to interpret, but here you must remember how the HTML document is formed: The JSF
page is being translated into a servlet, and this servlet sends the above HTML document
as a response.

http://s.bookboon.com/volvo

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

127

JSF

As a conclusion, a JSF application consists of a number of XHTML pages that contain
primarily JSF elements as well as one or more named beans and optionally a configuration
file called faces-config.xml. As the following examples will show, there may also be other Java
classes, which typically represent model classes.

As part of the project, NetBeans has added a web.xml configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
	http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
	<context-param>
	 <param-name>javax.faces.PROJECT_STAGE</param-name>
	 <param-value>Development</param-value>
	</context-param>
	<servlet>
	 <servlet-name>Faces Servlet</servlet-name>
	 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
	 <load-on-startup>1</load-on-startup>
	</servlet>
	<servlet-mapping>
	 <servlet-name>Faces Servlet</servlet-name>
	 <url-pattern>/faces/*</url-pattern>
	</servlet-mapping>
	<session-config>
	 <session-timeout>
	 30
	 </session-timeout>
	</session-config>
	<welcome-file-list>
	 <welcome-file>faces/index.xhtml</welcome-file>
	</welcome-file-list>
</web-app>

There is not much to note, and it is rarely maintained this file, but initially a context-param
element has been inserted that defines a param value with the value Development, which
means adding some debug information to the project. It is not interested in a finished
application, and the value can then be changed to Production. Also note that web.xml
defines the start page.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

128

JSF

6.1	 CHANGEADDRESS3

I want to show how to write a JSF application, similar to ChangeAddress1. I start with a
new Web Application project, which I have called ChangeAddress3, and when I come to
the window to select framework, I have chosen JavaServer Faces and selected session scope
as above. The result is again a JSF page named index.xhtml which is the application’s home
page. If you open the application, you get the following window (see below).

If you enter a date and click on the Send button, the result is the window below. The reason
is that the program validates the contents of the fields, and when a value has be entered
for date, it is because this field is validated differently from the other fields. When there is
no error message next to the Email address and Job title fields, it is because the first one
must be empty while the last one is not validated at all.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

129

JSF

129

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

130

JSF

Once you have entered a legal address, it is saved in a list and the fields are blanked so
that you can enter another address. If you click on the bottom link, there is a request for
a page that shows an overview of the addresses that have been entered. The result could
for example be:

Then to the code. Under Source Packages, three packages have been created:

1.	 changeaddress.beans which contains the application’s beans, and there is only one
that is a named bean

2.	 changeaddress.models which contains other Java class, and there is only one that
represents an address

3.	 changeaddress.validators that contains classes to validate the user interface fields and
there are two

I want to start with the class, which represents an address. The class is called Person, and
is a usual model class and in fact it is a Java bean:

package changeaddress.models;
public class Person implements java.io.Serializable
{
	private String firstname;
	private String lastname;
	private String address;
	private String code;
	private String city;
	private String email;
	private String title;
	private String date;

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

131

JSF

	public Person()
	{
	}

	public Person(String firstname, String lastname, String address, String code,
	 String city, String email, String title, String date)
	{
	 …
	}

	public boolean isLegal()
	{
	 return firstname != null && firstname.length() > 0 && lastname != null &&
	 lastname.length() > 0 && date != null && date.length() > 0;
	}
}

There is not much to explain, and I have not shown the class’s get and set methods, as they
are all trivial. You must note the last method, which states that a Person object is legal if
the object has a first name, a last name and a date. The purpose of the class is primarily to
show that a web application can use model classes in the same way as other Java applications
and here especially where the class is used from JSF pages.

As the next example, I will show a Validator class, which in this case is used to validate an
input field and here the field’s value must be a legal date:

package changeaddress.validators;

….

@FacesValidator(value ="dateValidator")
public class DateValidator implements Validator
{
	@Override
	public void validate(FacesContext facesContext, UIComponent uiComponent,
	 Object value) throws ValidatorException
	{
	 HtmlInputText htmlInputText = (HtmlInputText) uiComponent;
	 String label = htmlInputText.getLabel() == null ||
	 htmlInputText.getLabel().trim().equals("") ?
	 htmlInputText.getId() : htmlInputText.getLabel();
	 if (!isDate((String)value))
	 {
	 FacesMessage facesMessage =

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

132

JSF

132

	 new FacesMessage(label + ": Illegal value for date");
	 throw new ValidatorException(facesMessage);
	 }
	}

	private boolean isDate(String text)
	{
	 ….
	}
}

First, note that the class is decorated with an annotation telling that it is a Validator class.
Also note that the class implements the Validator interface, which defines a single method
validate(), which is the method that validates the field’s value that is the parameter value.
uiComponent is the component whose value must be validated and the method starts by
determining the value of an attribute for this component (either its ID or label). Next, the
value is tested using a private helper method called isDate(). I have not shown the code
because it contains nothing but what I have shown in other books. If the value can not
be validated correctly, a FacesMessage object is created and an exception is made with this
object as a parameter. As a result, the error message appears in the window.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

133

JSF

There is a corresponding Validator class, called EmailValidator. It is in principle identical
to the above, and I do not want to show the code here.

Finally, the application has a named bean. The class is simple and consists primarily of get
and set methods, where I have only shown a few examples:

package changeaddress.beans;

….

@Named(value = "indexController")
@SessionScoped
public class IndexController implements Serializable
{
	private Person person = new Person();
	private List<Person> persons = new ArrayList();

	public IndexController()
	{
	}

	public String getFirstname()
	{
	 return person.getFirstname();
	}

	public void setFirstname(String firstname)
	{
	 person.setFirstname(firstname);
	}

	….

	public List<Person> getPersons()
	{
	 return persons;
	}

	public void add()
	{
	 if (person.isLegal())
	 {
	 persons.add(person);
	 person = new Person();
	 }
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

134

JSF

Seen from index.xhtml is the most important the method add() as the method that is
performed when clicking the Send button. It tests where a person is legal, and if that is the
case, the method adds a Person object to the list, after which a new Person object is created.

I have chosen that this bean should have session scope and there are the following options:

1.	Request which means that the bean only exists for the current HTTP request. That
is, it must be created for each request.

2.	Session which means that the bean object exists within a single user’s HTTP session.
3.	Conversation which means that the bean exists across multiple HTTP requests.
4.	Application which means that the same bean is available to all users of the application

across multiple user sessions.
5.	Dependent which means that the bean is created every time there is a need.

Then index.xhtml which is a typical example of a form:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE … >
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core">

	<h:head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
	 <title>Change address</title>
	 <h:outputStylesheet library="css" name="styles.css"/>
	</h:head>
	<h:body>
	 <h1>Change address</h1>
	 <h:form>
	 <h:panelGrid columns="3" columnClasses="rightalign,leftalign,leftalign">
	 <h:outputLabel value="First name:" for="firstname"/>
	 <h:inputText id="firstname" label="First name" required="true"
	 style="width: 300px" value="#{indexController.firstname}" />
	 <h:message for="firstname" class="error-message" />
	 <h:outputLabel value="Last name:" for="lastname"/>
	 <h:inputText id="lastname" label="Lastname" required="true"
	 style="width: 200px" value="#{indexController.lastname}" />
	 <h:message for="lastname" class="error-message" />
	 <h:outputLabel value="Address:" for="address"/>
	 <h:inputText id="address" label="Address" required="true"
	 style="width: 300px" value="#{indexController.address}" />
	 <h:message for="address" class="error-message" />
	 <h:outputLabel value="Zip code:" for="code" />
	 <h:inputText id="code" label="Zipcode"

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

135

JSF

135

style="width: 60px" required="false"
	 value="#{indexController.code}">
	 <f:validateLength minimum="4" maximum="4"/>
	 </h:inputText>
	 <h:message for="code" class="error-message" />
	 <h:outputLabel value="City:" for="city"/>
	 <h:inputText id="city" label="City" required="true" style="width: 200px"
	 value="#{indexController.city}" />
	 <h:message for="city" class="error-message" />
	 <h:outputLabel value="Email address:" for="email"/>
	 <h:inputText id="email" label="Email address" required="false"
	 style="width: 300px" value="#{indexController.email}">
	 <f:validator validatorId="emailValidator"/>
	 </h:inputText>
	 <h:message for="email" class="error-message" />
	 <h:outputLabel value="Change date:" for="date"/>
	 <h:inputText id="date" label="Change date" required="true"
	 style="width: 100px" value="#{indexController.date}"
	 immediate="true" onchange="submit()">
	 <f:validator validatorId="dateValidator"/>
	 </h:inputText>
	 <h:message for="date" class="error-message" />
	 <h:outputLabel value="Job titel: " for="title"/>
	 <h:inputText id="title" required="false" style="width: 300px"

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

136

JSF

	 value="#{indexController.title}" />
	 <h:panelGroup/>
	 <h:commandButton value="Send" action="#{indexController.add()}" />
	 </h:panelGrid>
	 Show addresses
	 </h:form>
	</h:body>
</html>

When you see the code, it’s mostly easy enough to understand, but there are some things
you should notice. The application uses a stylesheet that is located in the directory

resources/css

You should note how to refer to this style sheet in the header. Otherwise, the form consists
primarily of fields that are laid out in a h:panelGrid, which is translated into a HTML table
with a row for each field and where there are three columns. The first column is the text,
the second the input field, and the third a possible error message. The first row is for the
first name and is defined as follows:

<h:outputLabel value="First name:" for="firstname"/>
<h:inputText id="firstname" label="First name" required="true"
	 style="width: 300px" value="#{indexController.firstname}" />
<h:message for="firstname" class="error-message" />

The first statement defines the text, and at the same time it is stated that the text with the
attribute for is attached to the input field firstname. When this field has a label attribute it
is because it is used in connection with an error message. Also note how the value of the
field is bound to a property in indexController. Finally, the last statement is for the error
message, and you should note that the element with the for attribute is attached to the
input field. If you consider the input field, it has an attribute

required="true"

which means that a validator is attached to the field, which simply means that a value for
first name must be entered. If not, the message field displays an error message. It is an
example of a predefined Validator, and there are some of them. For example, if you look at
the zipcode field, it also has a Validator that validates the value of the field to have a length
within an interval. It is actually a very useful validator. If you consider the input field to
date, it uses a custom Validator, which is a DateValidator object:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

137

JSF

<h:inputText id="date" label="Change date"
required="true" style="width: 100px"
	value="#{indexController.date}" immediate="true" onchange="submit()">
	<f:validator validatorId="dateValidator"/>
</h:inputText>

In general, validation is performed when you click on the submit button – and before the
action method is performed. It is important to be aware that validation takes place on the
server side and that a request is made to the server. If all fields can not be validated, the
action method is not executed, but there is a return to index.xhmtl and an error messages
are displayed. You should note that in this case, the input field has two new attributes:

immediate="true" onchange="submit()"

They means that the content of the field must be validated immediately after the field loses
focus, and thus not only when submitting the form. This option is not used as often as a
request to the server still occurs and because you can do it better with ajax (see the next
book). Lastly note the input field for title and that it has no validator.

As mentioned, the components in this example are placed using a panelGrid, which is a JSF
element that is translated into an HTML table. There is also a panelGroup element used
to collect multiple items as a single cell in the table. Here is an empty panelGroup, which
simply means that an empty cell occurs.

Clicking on the bottom link will as mentioned above display a page with an overview of
the addresses that were entered. It’s also a JSF page (and thus a FaceLet) called list.xhmtl:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml" … >
	<h:head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
	 <title>Facelet Title</title>
	 <h:outputStylesheet library="css" name="styles.css"/>
	</h:head>
	<h:body>
	 <h:form>
	 <h1>Addresses</h1>
	 <h:dataTable id="addrTable" var="addr" border="1"
	 value="#{indexController.persons}"
	 rendered="#{indexController.persons.size() > 0}">
	 <f:facet name="header">
	 Entered addresses in this session

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

138

JSF

138

	 </f:facet>
	 <h:column id="nameCol">
	 <f:facet name="header">Name</f:facet>
	 <h:outputText id="name" value="#{addr.firstname} #{addr.lastname}"/>
	 </h:column>
	 <h:column id="addrCol">
	 <f:facet name="header">Address</f:facet>
	 <h:outputText id="addr" value="#{addr.address}"/>
	 </h:column>
	 <h:column id="cityCol">
	 <f:facet name="header">City</f:facet>
	 <h:outputText id="city" value="#{addr.code} #{addr.city}"/>
	 </h:column>
	 <h:column id="jobCol">
	 <f:facet name="header">Title</f:facet>
	 <h:outputText id="job" value="#{addr.title}"/>
	 </h:column>
	 <h:column id="mailCol">
	 <f:facet name="header">Mail</f:facet>
	 <h:outputText id="mail" value="#{addr.email}"/>
	 </h:column>
	 <h:column id="dateCol">
	 <f:facet name="header">Date</f:facet>
	 <h:outputText id="date" value="#{addr.date}"/>

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

139

JSF

	 </h:column>
	 </h:dataTable>
	 <p>Back to start</p>
	 </h:form>
	</h:body>
</html>

The code is an example that dynamically builds a table. You should note the syntax and
that the page uses the same named bean (same controller) as index.xhmtl. In particular, you
should notice how to iterate all person objects in the bean object’s list.

Then the application is complete, but there is a single outstanding. The application may
display national characters incorrectly. The problem is, that Glassfish may use an incorrect
default encoding. If you right-click on WEB-INF and choose new, you can add a descriptor
to the server:

The file is called glassfish-web.xml and the content must be:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE glassfish-web-app PUBLIC
	"-//GlassFish.org//DTD GlassFish Application Server 3.1 Servlet 3.0//EN"
	"http://glassfish.org/dtds/glassfish-web-app_3_0-1.dtd">

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

140

JSF

<glassfish-web-app error-url="">
	<class-loader delegate="true"/>
	<jsp-config>
	 <property name="keepgenerated" value="true">
	 <description> … </description>
	 </property>
	</jsp-config>
	<parameter-encoding default-charset="UTF-8" />
</glassfish-web-app>

where I have added the blue line. Then the application is the finish.

6.2	 PAGE NAVIGATION

A typical web appilation consists of many pages (or views) and works while the user navigating
between different pages often by performing an action with either a h:commandButton or
h:commandLink element. In both cases, it means calling a named bean. For large applications,
it can actually be complicated to control, especially because navigating a page may depend
on a condition. For these reasons, a special descriptor file has been introduced that specifies
how navigation can take place. The example ViewNavigation has the following index.xhtml:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

141

JSF

141

where there are three buttons, each of which has the type h:commandButton and has an
action. If you click on the first button, you get the following window, which is another
view (called info.xhtml ):

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

142

JSF

and clicking here on the button, you return to index.xhtml. If you click on the middle
button on the start screen, you get the following window:

called login.xhtml and clicking the button you comes to the data.xhtml window:

Clicking this button will return to the start page (index.xhtml). If you click on the middle
button again, you’ll get directly to data.xhtml without having to go to login.xhtml. The last
button on the start page is used for logout, and if you click on it and then on the middle
button, you again has to go to login.xhtml.

To control it, a named bean, called NavigationController, is used:

package viewnavigation.beans;

import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

143

JSF

@Named(value = "navigationController")
@SessionScoped
public class NavigationController implements Serializable
{
	private boolean loggedIn = false;

	public NavigationController()
	{
	}

	public String toStart()
	{
	 return "START";
	}

	public String toInfo()
	{
	 return "INFO";
	}

	public String nextPage()
	{
	 if (loggedIn) return "data"; else return "login";
	}

	public String login()
	{
	 loggedIn = true;
	 return "LOGIN";
	}

	public void logout()
	{
	 loggedIn = false;
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

144

JSF

144

It defines methods that return a string and can be called as an action. The class has a
variable to simulate if the user is logged in. There are two types of navigation. The first is
called explicit navigation, where the action method references a string (a key) that refers to
a faces-config.xml configuration file, which then indicates which view should be displayed.
The other is called implicit navigation, where the action method returns the name of
the current view (but without extension). For example, if you consider the toStart() and
toInfo() methods, they return a string used in faces-config.xml and are examples of explicit
navigation. As another example, the method nextPage() is an example of implicit navigation
as it simply returns the name of a view (which depends on a condition). Also note the two
last methods, the first one also being used as an action method for explicit navigation, but
it first modifies the loggedIn variable to simulate that the user is logged in. The last one
is actually an action method, but does not return anything, which means that there is no
forward to another view.

Then there is the configuration file (added to WEB-INF):

<?xml version='1.0' encoding='UTF-8'?>
<faces-config version="2.2" … >
	<navigation-rule>
	 <from-view-id>/index.xhtml</from-view-id>

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

145

JSF

	 <navigation-case>
	 <from-outcome>INFO</from-outcome>
	 <to-view-id>/info.xhtml</to-view-id>
	 </navigation-case>
	</navigation-rule>
	<navigation-rule>
	 <from-view-id>/info.xhtml</from-view-id>
	 <navigation-case>
	 <from-outcome>START</from-outcome>
	 <to-view-id>/index.xhtml</to-view-id>
	 </navigation-case>
	</navigation-rule>
	<navigation-rule>
	 <from-view-id>/login.xhtml</from-view-id>
	 <navigation-case>
	 <from-outcome>LOGIN</from-outcome>
	 <to-view-id>/data.xhtml</to-view-id>
	 </navigation-case>
	</navigation-rule>
</faces-config>

In this case, three navigation rules are defined. The first is interpreted as follows. If you
come from (the action has taken place) index.xhtml, there is a single navigation case that
says that if the value (key) is INFO, you must navigate to the info.xhtml page. You should
note that a navigation rule may have more (many) navigation-case entries.

By using a faces-config.xml file, you can completely control how to navigate between individual
views in a web application, but it can mean a very large file where you need to write a lot.
Therefore, the concept of implicit navigation has been introduced, which does not use the
configuration file.

Below is the code of index.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet Title</title>
	</h:head>
	<h:body>
	 <h:form id="form">
	 <h1>Hello World</h1>
	 <h2>Demonstrates page navigation</h2>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

146

JSF

	

	 <h:commandButton style="width: 150px" action="#{navigationController.toInfo}"
	 value="Go To Information"/>
	 <h:commandButton style="width: 150px"
	 action="#{navigationController.nextPage}" value="Goto data page"/>
	 <h:commandButton style="width: 150px" action="#{navigationController.logout}"
	 value="Logout"/>
	 </h:form>
	</h:body>
</html>

There is not much to explain, but you should note that the view has three commands. The
first one will always forwards to info.xhtml (by explicit navigation). The other will forwards
to either login.xhtml or data.xhtml with the help of implicit navigation. Finally, the last one
will not make a forward as the method logout() does not return a value. Finally, I want to
show data.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet Title</title>
	</h:head>
	<h:body>
	 <h:form>
	 <h1>The data</h1>
	
	 Gorm den Gamle
	 Harald Blåtand
	 Svend Tverskæg
	
	

	 <h:commandButton action="index" value="Go to start"/>
	 </h:form>
	</h:body>
</html>

Here you should note that implicit navigation is used, but instead of calling a method, the
name of the view is directly listed as an argument for the action attribute.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

147

JSF

147

PROBLEM 2

In this task, you must write a web application for a simple guestbook, like exercise 2. The
program should fundamentally open the same form, but unlike exercise 2, data must be
stored in a database. Start by creating a database called guestbook. The database should only
have a single table that can be created with the following script:

use guestbook;
drop table if exists guests;

create table guests
(
	id int auto_increment primary key,
	name varchar(100) not null,
	addr varchar(100) not null,
	code char(4) not null,
	mail varchar(100),
	text text not null,
	date date
);

where the date is automatically assigned when writing in the guestbook.

http://s.bookboon.com/elearningforkids

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

148

JSF

It is a requirement that the program must be written using JavaServer Faces. In addition
to the form to write in the guestbook, there must be a JSF page to which the home page
links that shows the content of the guestbook.

6.3	 TEMPLATES

As mentioned, a web application will consist in practice of many pages or views, and typically
they are similar to each other and have a common design. In addition, templates can be
used, and the following application shows how. Specifically, I will show the development
of an application step by step, including how to use templates. The example also shows a
number of other details regarding web application development, and especially the ability to
use composite components, which are code that can be used in multiple views. In addition,
the example shows how to apply images. The application is called PaWeb and will illustrate
a very simple personal website where a person (and here the author) wishes to share private
information using a public website.

The application is created as all other web applications in this chapter, and a FaceLet is
created, named index.xhtml, which serves as the applications launcher. Note that after the
application has been created, in addition to index.xhtml, a descriptor web.xml has also been
created, which basically states that it is a JSF application. I have edited index.xhtml, so the
finished code is the following, which just shows a welcome page:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//
EN" … > <html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Facelet Title</title>
	</h:head>
	<h:body style="color: darkblue; background: bisque">
	 <h:form>
	 <div style="font-size: 144pt; font-weight: bold; text-align: center">
	 Welcome</div>
	 <div style="font-size: 72pt; text-align: center">to my website</div>
	 <div style="font-size: 36pt; text-align: center">
	 The site about big and small in my everyday life</div>
	 <p style="text-align: center"><h:commandLink
	 value="It sounds interesting so read on here" action="gallery"/></p>
	 <p style="text-align: center">Poul Klausen</p>
	 </h:form>
	</h:body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

149

JSF

There is not much new to explain, but you should note that the code is a mix of common
HTML elements and JSF elements of the form

<h:code … >….</h:code>

JSF elements are server code and thus elements translated by the server to HTML and
send as part of server’s response. There are many such JSF elements, and there is nothing
wrong with mixing JSF elements and HTML elements. Also note that the above JSF view
uses styles. Styles are dealt with in the next book, but when you see the above code, it is
easy enough to interpret what each style means. Note that using styles you can define a
very large font. The view is a form since it contains a single form element, which has a
commandLink element that is translated by the server into a common link element. The
item has an action, which is the view that should be displayed if you click the link and
it is called gallery.xhtml. Although this view is not created, the application can easily be
translated and opened in the browser.

I will then show how to define a template that defines an overall design for a view. In
NetBeans, right-click on Web Pages and choose New and Facelets Template:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

150

JSF

150

When you click OK, you will get to the following window:

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

151

JSF

where you must choose a name and partly choose the design. I have entered the name
mainTemplate and selected a design that divides the view into four sections (top, left, bottom
and center). When you click Finish, NetBeans creates a JSF page:

mainTemplate.xhtml

In addition, a directory is created

resources/css

and including two style sheets. As the name says, resources are a directory for resources,
such as style sheets, but it can also be script codes or images. If you examine mainTemplate.
xhtml, the code is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//
EN" … > <html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
	 <h:outputStylesheet name="./css/default.css"/>
	 <h:outputStylesheet name="./css/cssLayout.css"/>
	 <title>Facelets Template</title>
	</h:head>
	<h:body>
	 <div id="top">
	 <ui:insert name="top">Top</ui:insert>
	 </div>
	 <div>
	 <div id="left">
	 <ui:insert name="left">Left</ui:insert>
	 </div>
	 <div id="content" class="left_content">
	 <ui:insert name="content">Content</ui:insert>
	 </div>
	 </div>
	 <div id="bottom">
	 <ui:insert name="bottom">Bottom</ui:insert>
	 </div>
	</h:body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

152

JSF

You must note a section is defined as an ui:insert element where, as default, a text is inserted
and it is this text that the FaceLets using the template will replace with their own content.
In fact, it’s a common JSF view that can be opened in the browser, and if you do, it is the
result as shown below. It does not matter so much, and a template is not meant to be a
true view, but as a design that other JSF views can apply. As you can see, the view gives
two error messages, and it is because the two lines in the header referring to the two style
sheets need to be changed:

<h:head>
	<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
	<h:outputStylesheet library="css" name="default.css"/>
	<h:outputStylesheet library="css" name="cssLayout.css"/>
	<title>Facelets Template</title>
</h:head>

If you then open the page again, the result is:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

153

JSF

153

and that is because the template now uses the two style sheets, and they can subsequently
be used by all views that use that template. I do not want to show the two style sheets
here, but you are encouraged to examine the contents of the two files, and if you compare
with the above window, you can easily interpret the content.

As can be seen from the above, a template (in this case) divides the view into four sections,
which are defined by an element of the form:

<ui:insert name="top">Top</ui:insert>

These items can be modified to have a more meaningful content, but other views are
supposed to include code in one or more of the four areas.

I will now add another view to the application called gallery.xhtml, but it should be created
as a Facelet Template Client :

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

154

JSF

When you click Next, you get the following window where you enter the name and select
the template to be used:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

155

JSF

and furthermore, you can select which sections in the template as this view are to insert
code in. The result is the following view:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
	<body>
	 <ui:composition template="./mainTemplate.xhtml">
	 <ui:define name="top">
	 top
	 </ui:define>
	 <ui:define name="content">
	 content
	 </ui:define>
	 </ui:composition>
	</body>
</html>

You should note that it is a JSF page and thus a view, but it uses the template and inserts
code in the top and the center. If you run the application, open the start page (index.xhtml)
and click on the link, opens the view gallery.xhtml, which displays the same window as
shown above.

The task now is to get something more meaningful in the four areas. I will state with the
template. First, I have created a sub directory images under resources and for this I have
copied a picture called thy.jpg. Then here I changed mainTemplate.xhtml to the following:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//
EN" … > <html xmlns="http://www.w3.org/1999/xhtml" … >
	<h:head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
	 <h:outputStylesheet library="css" name="default.css"/>
	 <h:outputStylesheet library="css" name="cssLayout.css"/>
	 <title>Facelets Template</title>
	</h:head>
	<h:body>
	 <div id="top">
	 <ui:insert name="top">
	 <h1>Poul's Website</h1>
	 </ui:insert>
	 </div>
	 <div>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

156

JSF

156

	 <div id="left">
	 <ui:insert name="left">
	 <h:form>
	 <h:commandLink value="My cars" action="mycars" />

	 <h:commandLink value="My gallery" action="gallery" />

	 </h:form>
	 </ui:insert>
	 </div>
	 <div id="content" class="left_content">
	 <ui:insert name="content">Content</ui:insert>
	 </div>
	 </div>
	 <div id="bottom">
	 <ui:insert name="bottom">
	 <h:graphicImage library="images" style="width: 100%" name="thy.jpg"/>
	 </ui:insert>
	 </div>
	</h:body>
</html>

That is, I have inserted code into three of the four areas. If you open the application and
click on the link on the home page, you get the following results (which is gallery.xhtml ):

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

157

JSF

In the left area there is a form that contains a menu with commandLink elements. The
first links to the view itself, while the other links to a view that has not yet been created.
You should note the bottom and how to insert an image. Note, in particular, how to style
the image to fill the entire window. Finally, there is the top that contains just h1 element,
but apparently this item is not used. The reason is that the top is overridden by gallery.
xhtmp, which inserts a default content in the top section, thus overriding the result from
the template.

Next task is to make the view galley.xhtml complete. The content must be a list of links
to images and you can see a picture by clicking a link. The view, like other views, has a
controller, but first I want to define a class that can represent an image:

package paweb.models;

public class Data
{
	private String name;
	private String text;

	public Data(String name, String text)
	{
	 this.name = name;
	 this.text = text;
	}

	public String getName()
	{
	 return name;
	}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

158

JSF

	public String getText()
	{
	 return text;
	}
}

where the class is located in the package paweb.models. It’s a fairly simple model class and
a usual Java class. Text is the value to be displayed on the screen, while name is the name
of the picture (or something else) that the class should represent. In practice, there would
probably be more properties attached to an image, and to illustrate it, I have defined
following derived class;

package paweb.models;

public class Photo extends Data
{
	public Photo(String name, String text)
	{
	 super(name, text);
	}

	public String toString()
	{
	 return getText();
	}
}

Then I have written a controller class to the gallery view:

package paweb.beans;

import java.util.*;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

import paweb.models.*;

@Named(value = "galleryController")
@SessionScoped
public class GalleryController implements Serializable
{
	private List<Photo> photos = new ArrayList();

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

159

JSF

159

	public GalleryController()
	{
	 photos.add(new Photo("lion", "Lion, a mail"));
	 photos.add(new Photo("cheetah", "Cheetah, maybe three siblings"));
	 photos.add(new Photo("leopard", "Leopard with a kill"));
	}

	public List<Photo> getPhotos()
	{
	 return photos;
	}
}

It is very simple controller with a single property, which is a list of Photo objects. Then I
have changed gallery.xhtml so it now inserts code in the center area:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//
EN" … > <html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
	 xmlns:f="http://xmlns.jcp.org/jsf/core"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">

http://s.bookboon.com/EOT

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

160

JSF

	<body>
	 <ui:composition template="./mainTemplate.xhtml">
	 <ui:define name="top">
	 top
	 </ui:define>
	 <ui:define name="content">
	 <h:form>
	 <h1>Some pictures from Africa</h1>
	 <h:dataTable value="#{galleryController.photos}" var="img">
	 <f:facet name="header">Photos</f:facet>
	 <h:column>
	 <h:commandLink value = "#{img.text}" action = "photoview">
	 <f:param name = "imagename" value = "#{img.name}.jpg" />
	 </h:commandLink>
	 </h:column>
	 </h:dataTable>
	 </h:form>
	 </ui:define>
	 </ui:composition>
	</body>
</html>

The content is a form with a dateTable element, and the table contains a number of
commandLink elements determined by the controller class. It is an example of an action
with a parameter, where the parameter is defined by a param element. If you then try the
program, you get the following window

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

161

JSF

The individual commandLink elements refer to a view that has not yet been created. First, I
have copied three more pictures to the resources/images folder (lion.jpg, leopard.jpg and cheetah.
jpg) and then created a JSF page called photoview.xhtml to display the image. Note that each
commandLink has a parameter named imagename and the value is the name of the image:

<f:param name = "imagename" value = "#{img.name}.jpg" />

Then there is photoview.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
	 xmlns:f="http://xmlns.jcp.org/jsf/core"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<body>
	 <ui:composition template="./mainTemplate.xhtml">
	 <ui:define name="content">
	 <h2>This is one of my pictures</h2>
	 <h:graphicImage library="images" style="width: 800px; height: 450px"
	 name="#{request.getParameter('imagename')}"/>
	 </ui:define>
	 </ui:composition>
	</body>
</html>

It is also a view that uses the template, but it only defines the code for the center section.
Here you insert an image and you should primarily note how to refer to the image’s name,
which is the parameter transferred from gallery.xhtml.

If you then try the application and click on one of the three links, opens a page that shows
an image. Note that the page shows the correct top section as defined in the template. Note
that you get back to the gallery page by clicking the link in the menu on the left.

The last thing missing about the gallery is the top section where it should add code to this
section. The goal is to show how to create and add composite component. It is a file of JSF
elements that can be inserted in another view and possibly in multiple views. In JavaServers
Faces, I have chosen JSP Composite Component :

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

162

JSF

162

Here I enter the name (in this case search) and where the component is to be placed.
NetBeans suggests resources/ezcomp, and it is recommended to keep this name. When you
click Finish, NetBeanns creates a file search.xhtml :

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

163

JSF

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:cc="http://xmlns.jcp.org/jsf/composite">
	<!-- INTERFACE -->
	<cc:interface>
	</cc:interface>
	<!-- IMPLEMENTATION -->
	<cc:implementation>
	</cc:implementation>
</html>

It is nothing but a simple skeleton, in which an interface part must define the component’s
attributes, while in the implementation section it is necessary to define the code to be
rendered by the browser. The finished component is shown below:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:h="http://xmlns.jcp.org/jsf/html"
	 xmlns:f="http://xmlns.jcp.org/jsf/core"
	 xmlns:cc="http://xmlns.jcp.org/jsf/composite">
	<cc:interface>
	 <cc:attribute name="searchList"/>
	 <cc:attribute name="searchAction"
	 default="#{searchController.searchData(cc.attrs.searchList)}"
	 method-signature="java.lang.String action(java.util.List)"/>
	</cc:interface>
	<cc:implementation>
	 <h:form id="searchForm">
	 <h:outputText id="error" value="#{searchController.errorText}"/>
	

	 <h:inputText id="searchText" styleClass="searchBox" style="width: 200px"
	 value="#{searchController.searchText}"/>
	 <h:commandButton id="searchButton" value="Search"
	 action="#{cc.attrs.searchAction}" />
	 <h:commandLink value="#{searchController.foundText}" action="photoview">
	 <f:param name = "imagename" value = "#{searchController.imageText}.jpg" />
	 </h:commandLink>
	 </h:form>
	</cc:implementation>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

164

JSF

Note, first, that I have added the two default namespaces regarding JSF elements. Then,
two attributes are defined, the first being a simple attribute called searchList. The other is
called searchAction and defines a method. It has a default value which is a method defined
in a named bean named SearchController that has the value of the searchList attribute as
a parameter. In addition, there is a definition of the method’s signature as a method that
returns a String and has a List as a parameter. The implementation section starts with an
outputStream, to be used for an error message from serachController (if you are looking
for something that does not exist). Next, there is an inputText where the user can enter a
search text and subsequently a commandButton whose action is the method defined in the
interface section. Finally, there is a commandoLink whose value is bound to a property in
searchController and whose action is photoview.xhtml. This link defines a parameter that is
also bound to a property in searchController.

As can be seen, this composite component uses a named bean:

package paweb.beans;

import java.util.*;
import javax.inject.Named;
import javax.enterprise.context.SessionScoped;
import java.io.Serializable;

import paweb.models.*;

@Named(value = "searchController")
@SessionScoped
public class SearchController implements Serializable
{
	private String searchText;
	private String errorText;
	private String imageText;
	private String foundText;

	public SearchController()
	{
	}

	public void searchData(List<Data> list)
	{
	 errorText = "";
	 for (Data data : list)
	 if (data.getText().toLowerCase().contains(searchText.toLowerCase()))
	 {

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

165

JSF

165

	 imageText = data.getName();
	 foundText = data.getText();
	 return;
	 }
	 imageText = "";
	 foundText = "";
	 setErrorText("Not found");
	}

	public String getSearchText()
	{
	 return searchText;
	}

	public void setSearchText(String searchText)
	{
	 this.searchText = searchText;
	}

	public String getErrorText()
	{
	 return errorText;
	}

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

166

JSF

	public void setErrorText(String errorText)
	{
	 this.errorText = errorText;
	}

	public String getImageText()
	{
	 return imageText;
	}

	public String getFoundText()
	{
	 return foundText;
	}
}

It defines four properties and must be used to search for images. T﻿he four properties are
used for:

1.	 searchText, like what is being searched for
2.	 errorText, which is an error message in the case that nothing are found
3.	 imageText, which is the text of the object found
4.	 foundText, which is the name of the object found

Otherwise, the main method is searchData() as the method called from the composite
component. The method has a parameter that is a list of objects of the type Data, which
is the list to be searched. Finding an object initializes the two properties imageText and
foundText and otherwise errorText is assigned a value.

After the component is complete, it must be used in gallery.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
	 xmlns:f="http://xmlns.jcp.org/jsf/core"
	 xmlns:h="http://xmlns.jcp.org/jsf/html"
	 xmlns:ez="http://xmlns.jcp.org/jsf/composite/ezcomp">
	<body>
	 <ui:composition template="./mainTemplate.xhtml">
	 <ui:define name="top">
	 <h2>Pouls website</h2>
	 <ez:search id="searchGallery" searchList="#{galleryController.photos}"/>
	 </ui:define>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

167

JSF

	 <ui:define name="content">
	 <h:form>
	 <h1>Some pictures from Africa</h1>
	 <h:dataTable value="#{galleryController.photos}" var="img">
	 <f:facet name="header">Photos</f:facet>
	 <h:column>
	 <h:commandLink value = "#{img.text}" action = "photoview">
	 <f:param name = "imagename" value = "#{img.name}.jpg" />
	 </h:commandLink>
	 </h:column>
	 </h:dataTable>
	 </h:form>
	 </ui:define>
	 </ui:composition>
	</body>
</html>

Here you should note how to use the component and here specifically how to specify the
list to be searched using the attribute defined in the component’s interface part.

Then the first part of the application is completed and I have to implement the part
corresponding to the first menu item in the left sector. It is in principle a repeat of much
of the above, but the following is made.

I have created a model class completely identical to Photo:

package paweb.models;

public class Car extends Data
{
	public Car(String name, String text)
	{
	 super(name, text);
	}

	public String toString()
	{
	 return getText();
	}
}

There is of course no reason for this class, and it is included only to show that in practice,
the contents of this class would be different from Photo.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

168

JSF

168

A CarController class has also been added, which corresponds to GalleryController, and the two
classes are basically the same, so I do not want to show the code here. A FaceLet carview.xhtml
has also been added, which is almost identical to photoview.xhtml. Then there is a FaceLet
cars.xhtml, but before I look at it, I will add a small change to the composite component:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml" … >
	<cc:interface>
	 <cc:attribute name="searchList"/>
	 <cc:attribute name="searchAction"
	 default="#{searchController.searchData(cc.attrs.searchList)}"
	 method-signature="java.lang.String action(java.util.List)"/>
	 <cc:attribute name="viewer"/>
	 <cc:attribute name="showAction"
	 default="#{searchController.show(cc.attrs.viewer)}"
	 method-signature="java.lang.String action(java.lang.String)"/>
	</cc:interface>
	<cc:implementation>
	 <h:form id="searchForm">
	 <h:outputText id="error" value="#{searchController.errorText}"/>
	

	 <h:inputText id="searchText" styleClass="searchBox" style="width: 200px"

http://s.bookboon.com/GTca

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

169

JSF

	 value="#{searchController.searchText}"/>
	 <h:commandButton id="searchButton" value="Search"
	 action="#{cc.attrs.searchAction}" />
	 <h:commandLink value="#{searchController.foundText}"
	 action="#{cc.attrs.showAction}">
	 <f:param name = "imagename" value = "#{searchController.imageText}.jpg" />
	 </h:commandLink>
	 </h:form>
	</cc:implementation>
</html>

I have expanded with two new attributes, one of which refers to a method in SearchController.
The goal is to parameterize the action to be performed if you click on the link. The method
in SearchController is

public String show(String name)
{
	return name;
}

After this change, the gallery.xhtml view must also be updated to initialize the component’s
attribute. Finally, cars.xhtml can be written as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
	 xmlns:f="http://xmlns.jcp.org/jsf/core"
	 xmlns:h="http://xmlns.jcp.org/jsf/html"
	 xmlns:ez="http://xmlns.jcp.org/jsf/composite/ezcomp">
	<body>
	 <ui:composition template="./mainTemplate.xhtml">
	 <ui:define name="top">
	 <h2>Pouls website</h2>
	 <ez:search id="searchGallery" searchList="#{carController.cars}"
	 viewer="carview"/>
	 </ui:define>
	 <ui:define name="content">
	 <h:form>
	 <h1>That is my cars</h1>
	 <p>The following … </p>
	 <table>
	 <ui:repeat var="car" value="#{carController.cars}">
	 <tr>
	 <td>
	 <h:commandLink value = "#{car.text}" action = "carview">

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

170

JSF

	 <f:param name = "imagename" value = "#{car.name}.jpg" />
	 </h:commandLink>
	 </td>
	 </tr>
	 </ui:repeat>
	 </table>
	 </h:form>
	 </ui:define>
	 </ui:composition>
	</body>
</html>

Note that another loop has been used. There is no particular reason why, in addition, if
you want to take care of how the table is built, for example because of styles.

Finally, the directorate resources/images are updated with three images, and the application
is executed, and if you choose the left menu My cars, you get the window:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

171

JSF

171

6.4	 THEMES

 .

http://s.bookboon.com/AlcatelLucent

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

172

JSF

If you have a web application, it is possible to apply themes where the application’s views
are rendered corresponding to which theme is selected. For example, an application may
appear differently depending on which user is logged in. Themes are based on templates,
and I will in this section show how it works. If you open the Contracts application, you
get the window above. That is, a simple window with a text. If you in the drop down list
select the dark theme and click Select, the window changes to:

The starting point is a usual JSF application called Contracts. In addition, I have added a
Resource Library Contract:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

173

JSF

and when clicking Next, I have assigned a name (default) and selected a template (named
template see below). NetBeans then creates a directory contracts/default with a template (and
two style sheets). I have then repeated it all and created another Resource Library Contract,
but this time with the name dark. Otherwise there are no differences.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

174

JSF

174

After I’ve created the two contracts, the content of the project is following, where there is
also a named bean named ThemeSelector added:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

175

JSF

The two templates are the same, but the idea is that they can be modified as desired. This
is not the case in this case, but the content is:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ,,, >
<html xmlns="http://www.w3.org/1999/xhtml" … >
	 <h:head>
	 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
	 <h:outputStylesheet library="css" name="default.css"/>
	 <h:outputStylesheet library="css" name="cssLayout.css"/>
	 <title>Facelets Template</title>
	 </h:head>
	 <h:body>
	 <div id="top" class="top">
	 <ui:insert name="top">Top</ui:insert>
	 </div>
	 <div id="content" class="center_content">
	 <ui:insert name="content">Content</ui:insert>
	 </div>
	 </h:body>
</html>

I have then modified index.xhtml to (altermnatively you could have created a new FaceLets
Template Client):

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns=" … >
	<h:body>
	 <f:view contracts="#{themeSelector.name}">
	 <ui:composition template="/template.xhtml">
	 <ui:define name="top">
	 <h:form>
	 <h:outputLabel for="selector" value="Select a theme"/>
	 <h:selectOneMenu id="selector" value="#{themeSelector.name}">
	 <f:selectItem itemLabel="Default" itemValue="default"/>
	 <f:selectItem itemLabel="Dark" itemValue="dark"/>
	 </h:selectOneMenu>
	 <h:commandButton value="Select" action="index"/>
	 </h:form>
	 </ui:define>
	 <ui:define name="content">
	 <p> … </p>
	 </ui:define>
	 </ui:composition>
	 </f:view>
	</h:body>
</html>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

176

JSF

Here you should note that it is all enclosed by a f:view element, as determined by the bean
object, determines which theme to use. Otherwise, the rest is simply code inserted into the
two sections that the template defines. Also note that the commandButton element at the
top performs an submit to the page itself, which means that the page is rendered based on
which theme is selected.

Using themes is quite simple, but for the time being, the two themes are the same and
there will be no difference if you choose one or the other theme. This is solved by changing
the two templates as well as the style sheets they use. I have changed the template for the
default theme to the following:

<h:body>
	<div id="top" class="top">
	 <ui:insert name="top">Top</ui:insert>
	</div>
	<div id="content" class="center_content">
	 <h2>The theme is default</h2>
	 <ui:insert name="content">Content</ui:insert>
	</div>
</h:body>

And the other template has been changed accordingly, just so the text is The theme is dark.
Finally, for the theme dark, I changed a single claas in cssLayout.css to

.center_content {
	 position: relative;
	 background-color: #444444;
	 color: #ffffff;
	 padding: 5px;
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

177

JSF

177

PROBLEM 3

In this task you must write a web application that opens a simple welcome page:

http://s.bookboon.com/BI

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

178

JSF

The content is not very important, but there must be a link to the form below. It should
illustrate that a person wishes to subscribe to newsletters (in this case newsletters from a wine
club or equivalent). The goal is to work with JSF elements, which I have not mentioned. It
is part of the task to find out what the individual elements are called and how they are used.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

179

JSF

When the form is sent to the server, it must be validated that some first name and last name
has been entered, and a legal email address has been entered. It must also be validated that
gender has been chosen. Finally, it must be validated that the contents of the two password
fields are the same.

Below is an example of a completed form:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

180

JSF

If you click Send, you will receive the confirmation page below, where you can click Edit
to change the entered data:

6.5	 UPLOAD IMAGES

To finish this chapter and JavaServer Faces I will show a small example of a web application,
where you can upload images to a web server. In fact, it is a common problem, so this
example, but it is quite easy. The example consists only of index.xhtml and a single bean:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" … >
<html xmlns="http://www.w3.org/1999/xhtml"
	 xmlns:f="http://xmlns.jcp.org/jsf/core"
	 xmlns:h="http://xmlns.jcp.org/jsf/html">
	<h:head>
	 <title>Upload image</title>
	</h:head>

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

181

JSF

181

	<h:body>
	 <h:form enctype="multipart/form-data">
	 <h2>Choose a file to upload to the server:</h2>
	 <h:inputFile value="#{uploadController.file}">
	 <f:ajax listener="#{uploadController.save}" />
	 </h:inputFile>
	 </h:form>
	</h:body>
</html>

It’s all done with a single JSF element called h:inputFile, which binds to a file property in a
bean. With this component you can browse the local file system and upload the image (and
even any file). Now, the image must also be saved, which happens with an ajax command.
Ajax is dealt with in the next book, and here you only have to take note of the syntax, but
the result is, that a method is called in the bean class, which is then responsible for saving
the image. The bean class is as follows:

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

182

JSF

package upload.beans;

import java.io.*;
import java.nio.file.*;
import javax.inject.Named;
import javax.enterprise.context.*;
import javax.servlet.http.Part;

@Named(value = "uploadController")
@SessionScoped
public class UploadController implements Serializable
{
	private Part file;
	private String uploads = System.getProperty("user.home") + "/tmp";

	public UploadController()
	{
	}

	public Part getFile()
	{
	 return file;
	}

	public void setFile(Part file)
	{
	 this.file = file;
	}

	public void save()
	{
	 try (InputStream input = file.getInputStream())
	 {
	 Files.copy(input, new File(uploads, file.getSubmittedFileName()).toPath());
	 }
	 catch (IOException ex)
	 {
	 }
	}
}

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

183

JSF

183

A problem associated with the application that needs to be solved is where the images
(files) must be saved. Obviously, the application must know where and there must be a
directory on the server that is witeable. In this example, a directory is selected under my
home directory, but in practice, of course, another solution is required. For example, you
can study how the problem is solved in the final example.

The class has a variable named file, and here you should especially note the type:

javax.servlet.http.Part

Otherwise, there is not much to notice besides the method save(), which creates a copy in
the selected directory of the uploaded file.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

184

A last example

7	 A LAST EXAMPLE

The task is to write a web application for a veteran car club where the club members can
presents their cars to the public. Thus, it is a typical web application that has two presentations:

1.	 the public page, which is the actual website and can be used by all users
2.	 an administration page that can only be used by the person (s) that has to administer

the site (web masters), and this part of the application will usually require logon

In this case there must be one or more web masters who can all and especially maintain
information about club members. The club’s other members should also be able to use the
administration part, but should only be able to maintain information about their own cars.

With regard to the public side, everyone must have access to it, and the site should basically
provide information about members’ cars and typically one or more pictures. In addition,
the site must be attached to a guestbook, where everyone has the opportunity to attach
a comment.

7.1	 ANALYSIS

The public page is generally simple and consists of the following views, where the arrows
show how to navigate the site:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

185

A last example

1.	 index is a home page or welcome page that gives a brief presentation of the site
2.	 cars is a search page where the user has the opportunity to search among members cars
3.	 car is a presentation page that shows details about a single car, including information

about the car’s owner
4.	 guests is the guest book where you get a table of contents sorted by date
5.	 guest shows what a particular guest has written
6.	 edit is a page where the user can write in the guestbook

With regard to the administration part, it must include the following pages:

1.	 logon is a logon page for webmasters and members
2.	 start is the admin part’s home page
3.	password is used to change password
4.	 showcars shows an overview of the individual members cars and for webmasters

all cars
5.	 editcar is used to edit information about a car, including to create a new car, and

to delete an existing car
6.	members shows an overview of club members – the function can only be used by

webmasters
7.	member used to edit information about a member including creating a new member

as well as deleting an existing member – the feature can only be used by webmasters
8.	delguest used to delete pages in the guestbook if something has been written, that

the club will not accept – the function can only be used by webmasters

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

186

A last example

186

The webmaster can specifically maintain cars not owned by a member. If so, it should
appear on the public page.

Data dictionary

Members:

-- number (which is a unique 5 digit integer)
-- name
-- address
-- zip code
-- mail (that is used as user name)
-- phone
-- password
-- description
-- user role (0 = default web master, 1 = web master, 2 = member)

Default web master is a standard web master (a superuser) created when the database is
created and can not be deleted. Other webmasters are, in principle, just a common member,
but with administrator rights.

http://s.bookboon.com/Subscrybe

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

187

A last example

Description is intended as a possibility that a member can give a presentation of himself
or his cars.

The guestbook:

-- name
-- zip code
-- mail
-- date (when it is written in the guestbook)
-- text

Cars:

-- country code (where the car is produced)
-- producer (for example Opel, Ford, …)
-- name
-- model designation
-- variant designation within the model
-- motor (for example V8)
-- effect (motor effect in HK and possible unit)
-- production year
-- owner (member)
-- description
-- picture (one or more pictures)

7.2	 DESIGN

The index.xhtml page shows the following view, which is a simple welcome page. At the
bottom there is a link to the public page and thus to cars.xhtml, while in the upper right
corner there is a link to the administration part and thus a link to login.xhtml:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

188

A last example

The application’s data must be stored in a database, except for images uploaded to a directory
on the server. The database should primarily have three tables:

1.	 to members
2.	 to cars
3.	 to the guestbook

and the complete database design is shown in the following script:

use sys;
drop database if exists veteran;
create database veteran;
use veteran;

create table guest (
	id int auto_increment primary key,
	name varchar(100),
	code char(4),
	mail varchar(50),
	date date,
	text text
);

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

189

A last example

189

create table owners (
	id char(5) primary key,
	name varchar(100),
	address varchar(100),
	code char(4),
	mail varchar(50),
	phone varchar(20),
	text text,
	role int default 1,
	passwd varchar(150)
);

create table brands (
	id int auto_increment primary key,
	country char(2),
	name varchar(100)
);

create table cars (
	id int auto_increment primary key,
	brand int,
	name varchar(100),
	model varchar(100),

http://s.bookboon.com/volvo

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

190

A last example

	variant varchar(100),
	motor varchar(100),
	effekt varchar(20),
	year int,
	owner char(5),
	text text,
	foreign key (brand) references brands (id),
	foreign key (owner) references owners (id)
);

create table image (
	id int auto_increment primary key,
	name varchar(100),
	car_id int,
	foreign key (car_id) references cars(id)
);

insert into owners (id, name, mail, text, role) values
("00000", "Web master", "poul.klausen@mail.dk", "Super User", 0);

The table image contains names of images (relative to the image directory). The reason for
this table is that more images may be attached to the same car. Similarly, there is a table
of brands that contain a list of car brands. The reason for this table is partly that many
cars have the same manufacturer, and that the car brand is to be used when searching cars.

The overall design is as follows:

where the directorate admin must contain all FaceLets regarding the administration part.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

191

A last example

A particular issue is security and how to ensure that unauthorized persons can not change
the content of the site’s database. In this case, security must be given a low priority. Partly
because the content of the page does not require special protection and one can not expect
anyone to use energy to attack the page, and partly because (and primarily) that I have
not yet addressed how security issues are addressed. To access the administration section,
a member (car owner) must enter his membership number and password. It must be the
responsibility of the member to create an appropriate password and it is stored encrypted
in the database. In addition to not claiming the strength of the password and that it is the
member’s responsibility to create a password, the biggest weakness is that the password is sent
in clear text (unencrypted) from client to server, and can thus be captured by an attacker .

7.3	 PROGRAMMING

The finished site consists of 15 facelets and additionally controllers (named beans), model
classes and other auxiliary classes. There is no full match between the 15 facelets and the
above navigation charts (the diagrams show only 14 views), and typically changes will
be made during the programming as to what views the completed solution will contain.
Nevertheless, I find it helpful to use the time to draw up the charts, even if the final result
differs, and the more careful you are in the analysis, the greater the chance that programming
means only minor adjustments.

Compared to many practical web applications, the current application is small and I will
generally not display the code for either facelets or Java classes, but I will explain how the
application is developed. However, you are encouraged to study the code, and as compared to
what is otherwise dealt with regarding web applications in this book, many details are solved.

The administration part

I will start with the management part what is typical for developing web applications of
this type. The public page can only be developed after adding data to the database.

To the model layer is added the following classes:

-- Brand
-- Car
-- Photo
-- Owner
-- Guest

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

192

A last example

192

which models the database’s tables. It’s all simple model classes, maybe close to Car, which
contain references to other objects:

In addition, there is the class Repository, which is a singleton with methods for maintaining
the database. The class is relatively complex (comprehensive), but does not contain anything
new compared to corresponding classes from other programs. Parameters for the database
(username and password) are stored in web.xml, as well as the name of the directory that
contains the uploaded images:

<?xml version="1.0" encoding="UTF-8"?>
<web-app … >
	….
	<welcome-file-list>

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

193

A last example

	 <welcome-file>faces/index.xhtml</welcome-file>
	</welcome-file-list>
	<listener>
	 <listener-class>veterancars.models.ParamsFactory</listener-class>
	</listener>
	<context-param>
	 <param-name>usr</param-name>
	 <param-value>pa</param-value>
	</context-param>
	<context-param>
	 <param-name>pwd</param-name>
	 <param-value>Volmer_1234</param-value>
	</context-param>
	<context-param>
	 <param-name>images</param-name>
	 <param-value>/home/pa/tmp</param-value>
	</context-param>
</web-app>

For images, they must be uploaded to a directory of write rights. Each time an image is
uploaded, a row is created in the table image and the row is assigned an auto number. This
number is at the same time used as the image file name, and if, for example, an image is
assigned to the number 123 (by the database server), the image is saved under the name
123.jpg. It is thus decided that the program will only support jpg images (photos).

All views regarding the administration are located in the admin folder, and almost one is
associated with a controller. When you select administration from the welcome page, you
will see logon.xhtml, where you must enter member number and password. Then you will
get to the management section’s welcome page, called start.xhtml. This page has a menu of
features at the top. Corresponding to the requirement specification, the administrative part
must have the following functions:

1.	Maintenance of car brands
2.	Maintenance of cars
3.	Maintenance of owners (members)
4.	Maintenance of the guestbook
5.	Change password

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

194

A last example

The first function is simple and can only be performed by a user with administrator privileges.
It includes two views:

1.	brands.xhtml, which shows an overview of all the car brands that have been created
and you are editing a car brand by clicking on it

2.	brand.xhtml which are used to create and maintain car brands

The next function is the most comprehensive and can be performed by everyone, but if
you are not created with administrator right, only your own cars will be displayed. The
funtion has three views:

1.	 cars.xhtml, which shows an overview of all cars grouped by the car brand, so if
you click on a car brand, you get all the cars for this brand and click on a car,
you get all the car details and there is also a link so you can edit the information
about the car

2.	 car.xhtml, which is used to create and maintain information about a car
3.	 showcar.xhtml, which shows details about a car and including any pictures

When this feature is complex, it is partly because of uploading of images, where it should
be possible to edit the caption as well as showcar.xhtml being able to display an image (the
contents of a file). The last problem is solved with a servlet.

The third function reminds of the first function and can be performed by all users with
administrator privileges. The function has two views:

1.	owners.xhtml, showing an overview of all owners
2.	owner.xhtml, used to create and edit owner (member) information

After implementing these functions, I have written the code to the public page.

The public side

From the welcome page you will get to main.xhtml, which is the web site’s central page. Here
you can click on cars using a left-hand menu on where cars are grouped by car brand. You
can also search for a car using any text that searches for the car brand, name, model and
text. The cars that match are shown in a drop-down box from which you can choose a car.

At the top there is also a link to the guestbook, which consists of two views:

1.	 guests.xhtml, which allows to search the guestbook where you can search by date
or enter a search text for search on name and in the text itself

2.	 guest.xhtm, which allows you to write in the guestbook

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

195

A last example

195

Completion of the administration part

Lastly, I have completed the administration part. The password change function is simple and
consists only of a single view with a controller. The last feature also has just a single view
and is virtually identical to guests.xhtml and uses the same controller. The only difference
is that it is possible to delete a page in the guestbook.

7.4	 DEPLOYMENT

In order for a web application to be executed (opens in the browser), the application must
be installed on the Glassfish server, a process called deployment. For the time being, I have
ignored everything about it, as NetBeans does it quite automatically on a local running
Glassfish server. I will now, as an example, show how you can deploy the current application
on another machine. The prerequisite is that the machine has a running Glassfish server as
well as a running database server. The process requires two files:

1.	veteran.sql, which is the SQL script to create the database
2.	VeteranCars.war, which is the war file with the web application (found in the

project’s dist directory)

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

196

A last example

The first step is to create the database, which simply consists in running the above script.
Next, a directory must be created for images. Note that if you want a database of data, you
can backup the database from the developer machine and create a restore of it, while also
remembering to copy the images from the developer machine.

For deployment, open the admin program in the browser:

Here you have to click on Applications on the left side and then on the tab Deploy … and
then you can browse to the war file (see below). All other settings can be retained as default,
and then click OK, the application will be deployed.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

197

A last example

All that remains is to ensure that the parameters of web.xml for the database server and
the directory for images, respectively, are correct. You can edit the file by clicking on the
apllication name and selecting the Descriptor tab (see below). Here is a link to web.xml,
where you can edit the file.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

198

A last example

198

Then everything should be ready and the application can be opened in the browser (on
another machine) by typing (assuming that the IP address is correct):

http://192.168.1.48:8080/VeteranCars

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

199

A final remark

8	 A FINAL REMARK

The example in the previous chapter should be perceived as a form of status of this
introduction to web applications, and it is also a classic example of a web application. The
question is then what’s missing before you’re fully trained as a web developer – and there’s
more and more than I get in these books. I would like to end up with a little on the above
application, and in particular the shortcomings of the application and the requirements
for web applications in practice and thus topics that are dealt with to some degree in the
following two books. I will look at the program in relation to the following 5 headings:

1.	Maintenance friendly
2.	Attractive user interfaces
3.	Client side programming
4.	Authentication and security
5.	Distribueret programmering

Maintenance friendly

In this context, thinking about maintenance, I do not think so much about the program’s
beans and other Java classes, where there is not much to add to what is said otherwise
about classes in the previous books in this series, but in instead, the maintenance of the
individual facelets. Let me instantly confirm that the application leaves much to be desired
at this point. Perhaps this example is ok, as it is a small application, but a larger application
developed in the same way as the above will be hopeless to maintain. The problem is the
use of styles, where styles are used in many elements around the individual views. There
is nothing wrong with styles and that’s exactly the meaning, that the layout and look and
feel of a web application’s views should be implemented by using styles but it should be
done using class’s defined in style sheets and not enough with that, it must be based on a
well-defined plan for how the user interface should look and work. In the current example,
individual items are styled ad hoc as there has been a need. It means partly lacking consistency
in styling elements, and partly that it is hopeless (and at least time consuming) to change
how the individual elements should appear as you have to go around in all views and find
the individual elements.

In fact, I have not mentioned styles or style sheets yet, but just used styles as needed and
without comments. This is one of the topics in the following book, where I in generally
will focus on client side of web applications.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

200

A final remark

Attractive user interfaces

Looking at proprietary web applications, one quickly recognizes that much energy has been
used for a web application to be great (whatever it is) and user-friendly, so users want to
visit the site. How to achieve it is not the subject of these books, and although it is based
on individualism and fortunate beliefs, there are theories for how a web site should be
developed to make it user-friendly and easy to understand and use. These include the use
of colors, font and font size, graphics, and ease of navigating the site.

The current example is missing a lot at that point, and as another problem, the application
is hard-coded to a large screen (the individual view elements have a fixed size) that does not
work. It can also be mentioned that nothing has been done to ensure that the application
is browser independent, which are also factors that must be considered in practice.

Client side programming

Often, you will be interested in something dynamic on the client side and without the
need for a request to the server. It requires the browser to execute program code, and here
is the preferred JavaScript, which is interpreted code. Today’s web applications simply can
not be developed without the use of client code, and the next book will therefore include
an introduction to JavaScript, which is a simple programming language with the same
syntax as Java.

If you look at what I’ve mentioned in this chapter, it deals only with the client side and thus
the browser. The purpose of the current example is to show programming of the server side,
but as shown, there is another side of a web applications that this application either does
not use or does not use in a particularly good way. That is the subject of the next book.

Authentication and security

A very central issue in developing web applications is security. As mentioned under the
design, it is also a place where this application leaves much to be desired, simply because I
have not yet addressed what it takes, but it is also a subject being dealt with later.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

201

A final remark

201

Basically, it is about protecting the data that a web application maintains, as well as ensuring
that the program code performed on the client’s machine can not cause damage. Since everyone
can in principle send a request to a web server, it is important to ensure that unauthorized
users can not get unwanted access to data, and this is done by, for example, authentication
where a user must have a login, and they must also ensure data sent between server and
client, which occurs by encryption. It sounds simple, but it’s no matter what the many
attacks on it solutions also tells. The second issue to ensure that no malicious program code
is downloaded to the client’s machine is solved using special software (antivirus programs)
that monitors the data traffic, but also by ensuring that the code that the browser should
perform is such, that it can not cause harm by limiting what the code may be allowed. It’s
also not easy, and again, there are a lot of examples that client machines have been attacked
by unwanted software.

The conclusion is that security associated with web applications plays an increasing and
extremely important role. There are, however, a solution, namely, not to use the Internet,
but as our world looks today, it’s not a viable way. It’s a little like that would stop using
power, which most probably would also reject as an option. There is nothing but recognition
that solutions are to develop secure it solutions – if that is possible?

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

202

A final remark

Distributed programming

A program like VeteranCars is not a proprietary program, as it is a program that runs with a
database on a web server, but in practice many web applications will be distributed programs.
Based on the current program, there was nothing in the way that the Glassfish server and
database server could be on two different machines, and for example, the uploaded images
could be placed on a third machine. Similarly, with reference to what is otherwise said in
this chapter, some of the code could be performed on the clients’ machines. In fact, you
could think about it and consider the individual Java objects on the server as objects that
were instanted and placed around on different machines and lived as services that these
machines could then make available to clients such as web servers, but also common client
machines with installed stand alone applications or mobile phones.

This means a completely different view of programs and a much greater flexibility where a
program performs its work by using services that different machines make available over a
network that, in practice, is often the Internet. The development of such applications means
new demands for the developers, not to mention security requirements. Development of
such programs is the subject of the book Java 13.

The conclusion to all is that the development of web applications and distributed applications
requires knowledge of a number of technologies and Java APIs, and a large part of the
following books will deal with these things.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

203

Appendix A: Installation of Glassfish

APPENDIX A: INSTALLATION
OF GLASSFISH

To install NetBeans bundle with Java EE and Glassfish you go to the download page
for NetBeans:

https://netbeans.org/downloads/

Here, select the version in column 2 and download it in the usual way:

After the package is downloaded you must give execute right, after which the program is
installed with the command (assuming that your current directory is where the package
is downloaded):

sudo sh netbeans-8.2-javaee-linux.sh

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

204

Appendix A: Installation of Glassfish

204

Then the rest goes by itself (Fedora 23). However, you must specify where your Java is installed
(see below). Once the installation is complete, both NetBeans and Glassfish are installed.

In some Fedora distributions, I have encountered problems (Fedora 25), where the installation
program terminates with an exception. If you meet it, try the following commands as root:

xhost +
sh netbeans-8.2-javaee-linux.sh
xhost -

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

205

Appendix A: Installation of Glassfish

Back there is only the start of the Glassfish server. Open a terminal and set your current
directory to the glassfish server, for example

cd /usr/local/glassfish-4.1.1/bin

After that, the server can be started with the command:

sudo sh asadmin start-domain domain1

You can test that the server is running by enter the address in the browser:

localhost:8080

and in the same way you can test that the admin server is running by entering the address

localhost:4848

If you want to stop the server, you can use the command

sudo sh asadmin stop-domain domain1

and if you want to install the server as a service, you can use the command:

sudo sh asadmin create-service domain1

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

206

Appendix B: HTTP

APPENDIX B: HTTP

Before I go on, I will add a few remarks about the HTTP protocol. A web application, as
already described, consists of a number of files (web pages) located on a web server. These
files (web pages, images, etc.) are used by clients who download the files and display them
in a browser. That is a client is a regular PC with a browser while a web server is a computer
(a server) that runs a program (a service) called a web server. The web server constantly
listens on a port (for example 8080) after requests from clients, and in case of a request
(a request on a particular page), the web server sends a response as a HTML document to
the address to which the client’s request relates. Specifically, the client enters the address of
a web page in his browser, for example.

www.torus.dk

and the browser will then convert the name to an IP address using the DNS system, after
which the browser opens a socket to the server via a port (the default is 80). Then the web
server can reply back with a response in the form of HTML, which the browser can then
interpret and display as a web page.

From the server, more things can happen. In simplest cases a client request regarding a static
HTML page, and if so, the server should do nothing but load the page from the machine’s
disk and send it to the client’s browser. Today, however, it will often be a dynamic web
page – for example a servlet and client’s request regarding then in reality a program. The
web server loads that application and executes it. Often it will include database operations
either because the application requires data from a database or also because the client has
sent data with the request, which must be stored in a database. In any case, the program
that the web server executes will generate HTML (whose content may be dynamically based
on the content of a database) and send this HTML to the client.

In order for this client/server architecture to work, agreements or rules that exactly determine
the format of the client requests and server responses are required, and this is where HTTP
enters the picture as the name of that protocol (a protocol is a set of rules), which indicates
how the communication between client and server should be.

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

207

Appendix B: HTTP

207

HTTP stands for HyperText Transfer Protocol and is a protocol belonging to the application
layer, and typically implemented over TCP / IP. It is a stateless protocol that, as mentioned,
is based on request and response, where a client application sends a request to a server and
where the server responds to the client with a response. That the protocol is stateless means
that after the server has sent the response, it has forgotten everything about the client.
The server thus stores no information about its clients, and whenever a client requests
the server, it is perceived by the server as a new request. That the HTTP protocol is thus
stateless, presents many challenges in connection with web applications, and there are several
techniques to cope with these challenges, where I have already mentioned both cookies and
session objects. The current version of http is called version 1.1.

A URL is a reference to a particular resource (file) on the Internet and generally has the
following format:

http://Servernavn/Filenavn

An example of an URL could be

http://www.eadania.dk/education/it/index.xhtml

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://Servernavn/Filenavn
http://www.employerforlife.com

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

208

Appendix B: HTTP

Here www.eadania.dk is the server name, while education/it/index.xhtml is the name of the
file on the server relative to a directory determined by the server. Exactly an URL format is

http://Servernavn:port/Filenavn

where port is the port number used by the web server, but if nothing is specified, the browser
will use port 80, which is standard on the Internet.

In HTTP, a client request and response from a server consist of three parts:

-- request- or response line
-- a header
-- data

A web-transaction consist of

-- a client request
-- a server response

and it is initiated by the client by establishing a connection to the server at a predetermined
port. Default is, as mentioned, port 80. The client then sends an HTTP command followed
by the document address and the version of the protocol that is used. It could, for example, be

GET /index.htm HTTP/1.1

Next, the header is sent, consisting of a number of lines of the form

Keyword: Value

where each line ends with a carriage return and a line feed. As an example, it could be

User-Agent:Lynx/2.4 libwww/5.1k
Accept:image/gif, image/x-xbitmap, image/jpeg, */*

After the last header line, a blank line is sent, after which it may follow data to be sent to
the server and it all ends with another blank line.

http://www.eadania.dk
http://education/it/index.xhtml
http://Servernavn:port/Filenavn

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

209

Appendix B: HTTP

A command associated with a request is also called for a method and there are 7 methods:

Method Description

OPTIONS Used to ask a server about what options it offers.

GET Asks the server to return the document that the document address specifies.

HEAD
In principle, works as GET, but the server does not return

the actual content of the document. It is used to test if the
document has been changed since the last request.

POST Used to send a data block to the server along with a request.

PUT
It is the opposite command to GET and stores the

data block on the document address.

DELETE Deletes the document on the server that the document address specifies.

TRACE
Used to track a request’s route through different firewalls and proxy servers

and used in connection with debugging of complex network issues.

As mentioned, a response from a server also consists of three parts. The first line has the format

Protocol Statuscode Description

and as an example it could be

HTTP/1.1 200 OK

Then, the server’s header contains information about the server and the document that is
being sent. The header consists of lines according to the same pattern as a request, and it
ends in the same way with a blank line. After the header comes the data block, which may
be a document, an output from a program or possibly an error message.

One of the differences between HTTP / 1.0 and HTTP / 1.1 is that in 1.1, the connection
is not terminated after the server has completed its response. The reason is that many HTML
documents contain references to other files such as images, etc., and the client may therefore
request such resources without having to re-establish the connection.

The HTTP protocol defines many headers, but the most important is the following where
Q stands for request while S is for response:

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

210

Appendix B: HTTP

210

Header Q S Description

Accept: x Specifies what types the client will accept.

Accept-Charset: x Specifies which character sets the browser can accept.

Accept-Encoding: x
Specifies what types of encodings the client knows. If this
header is omitted, the client will accept all encodings.

Accept-Language: x Specifies which languages the client accepts.

Age: x Used in conjunction with cache control.

Allow: x
Specifies what methods the resource on the document
address can respond to.

Authorization: x Used in conjunction with digital signatures.

Cache-Control: x x
Used by proxy servers and describes how to handle request
and response.

Code: x Defines an encoding of the data block. Standard is Base64.

Content-Base: x
Used to solve relative URLs in the returned document. This
header overrides Content-Location.

http://s.bookboon.com/elearningforkids

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

211

Appendix B: HTTP

Header Q S Description

Content-Encodning: x
Indicates an encoding applied to the document before it is
transmitted.

Content-Language: x Indicates the natural language for the content.

Content-Length: x The length of the data block in bytes.

Content-Location: x Specifies the location of the document being sent.

Content-MD5: x Used for a checksum for the data block.

Content-Type: x Specifies the type of data being sent.

Expires: x Specifies a date for data to be perceived as obsolete.

From: x The client’s email address.

Host: x The host’s name from the URL.

Last-Modified: x Specifies where the document sent last has been changed.

Location: x
Used for redirect to another address for example in case of
an error.

Referrer: x The source for the current request.

User-Agent: x
The browser’s signature that is used to test which browser a
request is coming from.

Warning: x Used for additional information in connection with a response.

As mentioned above, HTTP defines seven methods, and GET and POST are the most
important. GET is the simplest and simply consists in sending a request to a server that it
should send a document with a given document address. That is there is no data block in
connection with a GET. The document that GET refers may be a program – for example
a servlet – and you can transfer data to such a program. This happens as part of the URL:

GET /index.xhtml?code=7800&date=20030423 HTTP/1.1

and you would in the browser’s address field types

http://server:8080/index.xhtml?code=7800&date=20030423

JAVA 11: WEB APPLICATIONS AND
JAVA EE: SOFTWARE DEVELOPMENT

212

Appendix B: HTTP

212

Here two data elements are transferred to the page index.xphtml. The question mark after
the document address indicates that a parameter is sent in pairs

keyword=value

If more parameters are sent, each pair must be separated by &.

POST is different as data is encapsulated in the data block and the method is used when
larger and more complex data sizes are sent to the server. With POST it is possible to
enclose data of different types in the same request as well as to send binary data to the
server. Another important difference between GET and POST is that when GET data is
added to the URL, they are also visible to the user in the browser’s address bar, which is
not always desirable. This is not the case with the POST method. In addition, it should be
noted that the server may have limitations regarding the length of an URL, and thus how
many data can be sent with GET.

AXA Global
Graduate Program

Find out more and apply

http://s.bookboon.com/AXA

	Foreword
	1	Introduction
	1.1	The development tool

	2	Servlet
	Exercise 1
	2.1	Change address 1
	Exercise 2

	3	�Parameters and sessions and more
	3.1	Parameters to servlets
	3.2	Sessions
	3.3	Redirection
	3.4	Cookies
	Exercise 3

	4	JavaBeans
	5	JSP
	5.1	Calculations
	5.2	Functions
	Problem 1
	5.3	JSP documents
	5.4	Change address 2
	Exercise 4

	6	JSF
	6.1	ChangeAddress3
	6.2	Page navigation
	Problem 2
	6.3	Templates
	6.4	Themes
	Problem 3
	6.5	Upload images

	7	A last example
	7.1	Analysis
	7.2	Design
	7.3	Programming
	7.4	Deployment

	8	A final remark
	Appendix A: Installation
of Glassfish
	Appendix B: HTTP

