“Introduction to
Web Serwces with

Kiet T. Tran, PhD

Introduction to Web Services with Java

Download free eBooks at bookboon.com

Introduction to Web Services with Java
15t edition

© 2015 Kiet T. Tran, PhD & bookboon.com
ISBN 978-87-403-0509-8

Download free eBooks at bookboon.com

http://bookboon.com

Introduction to Web Services with Java

Contents
Preface
List of Figures
Table of Listings
Table of Tables
1 Introduction
1.1 Browsing the Internet
1.2 Web Service architecture
1.3 Benefits of Web Services
1.4 Program a HelloWorld Web Service
1.5 Host a Web Service
1.6 Verify a Web Service
1.7 Test a Web Service with SOAPUI

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

4

Download free eBooks at bookboon.com

Contents

10

12

14

15
17
18
23
23
29
29
32

Prof. Dr. Nick H.M. van Dam

21st Century Corporate
Learning & Development

Click on the ad to read more

http://s.bookboon.com/Download_Free

1.8 Create a Web Service Client 34

1.9 Run a Web Service Client 37
1.10 References 37
2 SOAP 38
2.1 Examples of SOAP messages 39
2.2 Mapping SOAP to HTTP 42
2.3 SAA]J Client 45
24 Summary 48
2.5 References 48
3 Web Service Description Language (WSDL) 50
3.1 WSDL structure 50
3.2 WSDL Interface 54
3.3 WSDL Implementation 55
3.4 References 56
4 A Sample Web Service Application 57
4.1 A Sample application 57
42 Develop a Web Service 73

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

s
A

Download free eBooks at bookboon.com

http://s.bookboon.com/osram

Introduction to Web Services with Java Contents

4.3 Deploy Web Services 103
4.4 Check WSDL and XSD 104
4.5 Test Web Services with SOAPUI 112
4.6 Develope a Web Service Consumer 115
5 Apache CXF and Tomcat Server 125
5.1 Configuration Parameters 125
5.2 Apache Tomcat Server 125
5.3 Develop CXF Web Service 125
5.4 Deploy the Service 136
5.5 Testing services with SOAPUI 136
5.6 Develop a Web Service Consumer 142
6 Apache CXF and Oracle WebLogic Server 149
6.1 Oracle WebLogic Server 12 149
6.2 Deployment Diagram 150
6.3 Creating a WebLogic Domain 150
6.4 Deploy the Web Service 157
6.5 Test CXF Web Service with WebLogic Test Tools 162
6.6 Run the Client Application 167

360°
thinking

Deloitte

Discover the truth at WWW.dClOitte,CalcareerS © Deloitte & Touche LLP and affiliated entities.

6 Click on the ad to read more
Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

Introduction to Web Services with Java

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

SIMPLY CLEVER

Appendix A - Development Environment

Install Java Development Kit (JDK) 6

Install Eclipse Interactive Development Environment (IDE)
Install MySQL Community Server Database

Install Oracle Fusion Middleware Software

Install Apache Tomcat server

Apache CXF

Install SOAPUI software

Source Code

Endnotes

Contents

169
169
169
173
174
175
175
176
176

177

We will turn your CV into
an opportunity of a lifetime

= ‘:. e :
' .!I -n I{i %
i j“

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

7

Download free eBooks at bookboon.com

Click on the ad to read more

http://www.employerforlife.com

Preface

This book, which is based on lectures I provided at Trident University International, focuses more on the
details of a hands-on approach to Web Service programming than its specifications; however, in order
to help readers grasp the concept more easily, we provide a brief introduction to Web Service, SOAP,
and WSDL in the first three chapters. Many details of the specifications are intentionally glossed over,

however, so that the content remains manageable.

Objectives

o To understand the basic concepts of Web Services:
- SOAP
- WSDL

o To develop basic Web Services using the following major programming tools:
- Java JDK 6 or later
- Apache CXF 2.7 or later
- Oracle Middleware WebLogic Server (WLS) 12.1 or later

Background requirements for this book:

» Basic Java programming experience
+ Basic understanding of Web programming

 Basic understanding of XML

Web Service (WS) is a technology, process, and software paradigm that provides support for business
integrations mainly over an Internet-based environment. This book presents basic concepts of WS, protocol
stack, and applications. In addition to studying the three supporting standards SOAP, WSDL, and UDDI,
students will learn how to implement WS using Java-centric technologies such as JAXP, JAXRPC, SAA]J,
and JAXB. Students will also study how business processes can be implemented using WS via BPEL.

WS is a software application identified by a URI whose interfaces and binding are capable of being defined,
described, and discovered by XML artifacts, and it supports direct interactions with other software

applications using XML-based messages via Internet-based protocols (W3C: http:// www.w3.org/TR/

ws-desc-regs). WS is mainly for machine-to-machine communication. The WS standard relies on other
standards — namely, SOAP, WSDL, and UDDI - to function efficiently. SOAP is an application protocol
that is used to transmit messages between a WS client and a WS server. HTTP is the transport protocol
of choice for SOAP; however, JMS and SMTP protocols have also been used. WSDL is used to describe
the service that an external application can call. UDDI is used to publish and advertise services so that

they can found and used by others. UDDI also uses SOAP as its application protocol.

Download free eBooks at bookboon.com

http://%20www.w3.org/TR/ws-desc-reqs
http://%20www.w3.org/TR/ws-desc-reqs

- Chapter 1 - Introduction. This chapter provides an overview of Web Services. It presents a
brief background of past enterprise integration difficulties and the benefits that a WS can
offer. This chapter introduces a beginning-level WS program using Java Web Services.

- Chapter 2 - SOAP. Using the example from the previous chapter (i.e., a WS that exchanges a
complex data structure), this chapter explains how basic SOAP message exchange works.

- Chapter 3 - WSDL. This chapter offers an in-depth look at how a service can be described
and understood by others. A more complex WS application is then built upon the previous
module exercise.

- Chapter 4 - A Sample Application

- Chapter 5 — Apache CXF and Tomcat Server

- Chapter 6 - Deployment of CXF Application on Oracle WebLogic Server 12

- Chapter 7 — Appendix A — Development Environment

The book focuses on the working mechanism of WS with a hands-on programming exercise using a
basic Java WS framework. This framework works on a standalone Java application, an Oracle WebLogic
Server (WLS), and an Apache Tomcat server. Thus, readers are expected to have sufficient knowledge
of Java and XML.

Download free eBooks at bookboon.com

List of Figures

Figure 1-1 Early Web applications

Figure 1-2 Two-tier Web application

Figure 1-3 An n-tier Web architecture

Figure 1-4 Man-machine interaction

Figure 1-5 Remote Procedure Call (RPC)

Figure 1-6 Business-to-Business integration

Figure 1-7 Sequence diagram of SOAP

Figure 1-8 Web Service architecture

Figure 1-9 An Eclipse Java project for the HelloWorld Web Service
Figure 1-10 The WSDL of the HelloWorld Web Service
Figure 1-11 The XML schema associated with the HelloWorld Web Service.
Figure 1-12 Create a SOAPUI project for the HelloWorld Web Service
Figure 1-13 Opening the HelloWorld WSDL

Figure 1-14 Call an operation (method) of a Web Service
Figure 2-1 SOAP message structure

Figure 2-2 SOAP message exchange

Figure 3-1 WSDL structure

Figure 3-2 Linkages inside WSDL

Figure 4-1 An n-tier application

Figure 4-2 Use cases

Figure 4-3 Sequence diagram of a getEmployee operation
Figure 4-4 A simple deployment diagram

Figure 4-5 Database schema (Chua Hock Chuan)

Figure 4-6 Java project: data-svc

Figure 4-7 Select import type

Figure 4-8 Import archive file screen

Figure 4-9 Java build path

Figure 4-10 JAR selection screen

Figure 4-11 Java build path

Figure 4-12 java-ws Java project

Figure 4-13 Create a SOAPUI project

Figure 4-14 List of operations of a Web Service

Figure 4-15 Execute SOAP operations

Figure 4-16 Create a new SOAPUI project 3

Figure 4-17 Activities for creating a Web Service client

Figure 4-18 Screenshot of java-ws-client Java project

Download free eBooks at bookboon.com

Figure 5-1 Class diagram for a CXF Web Service

Figure 5-2 Deployment diagram for a CXF Web Service
Figure 5-3 Activities for creating a Web Service application
Figure 5-4 Screenshot of a dynamic Web project

Figure 5-5 Creating a new SOAPUI project

Figure 5-6 Executing a Web Service operation

Figure 5-7 Screenshot of cxf-ws-client Java project

Figure 6-1 Deployment diagram for CXF Web Service application and Oracle WebLogic server
Figure 6-2 Creating a WLS domain

Figure 6-3 Adding extensions (JAX-WS and JAX-RPC)
Figure 6-4 Enter the domain name

Figure 6-5 Enter user ID and password

Figure 6-6 Select a default JDK

Figure 6-7 Adding a configuration

Figure 6-8 Configuration summary of the domain

Figure 6-9 Status of the domain creation

Figure 6-10 Output of a WLS administration server

Figure 6-11 OracleWLS console login screen

Figure 6-12 Oracle WLS deployment screen

Figure 6-13 Oracle WLS install application screen

Figure 6-14 Type of deployment

Figure 6-15 Additional settings for the deployment application process
Figure 6-16 Deployment verification

Figure 6-17 Select the Web Service application for testing
Figure 6-18 Display of the Web application

Figure 6-19 WebLogic test client

Figure 6-20 Prepare to run getEmployee operation

Figure 6-21 Result of a call to getEmployee operation
Figure 7-1 Create a Java project for the Eclipse IDE

Figure 7-2 Java settings screen

Figure 7-3 Create a dynamic Web project

Figure 7-4 Options for a dynamic Web project

Figure 7-5 Additional Java options

Figure 7-6 Finishing up the creation of a dynamic Web project

Figure 7-7 Working Tomcat console screen

Download free eBooks at bookboon.com

Table of Listings

Listing 1-1 HelloWorld.java

Listing 1-2 HelloWorld.java with Web Service Annotations
Listing 1-3 Server.java class

Listing 1-4 HelloWorld WSDL

Listing 1-5 HelloWorld XSD

Listing 1-6 A SOAP Request Message

Listing 1-7 A SOAP Response Message

Listing 1-8 A HelloWorld Web Service Client
Listing 2-1 A SOAP Message Request

Listing 2-2 A SOAP Message Response

Listing 2-3 A SOAP Fault

Listing 2-4 An HTTP Post

Listing 2-5 Another HTTP Post

Listing 2-6 An HTTP Response

Listing 2-7 Another HTTP Response

Listing 2-8 HelloWorldSOAPClient.java class Using SAA]
Listing 3-1 Sample WSDL

Listing 3-2 Another Sample WSDL

Listing 4-1 DbConfig.java class

Listing 4-2 SvrConfig.java class

Listing 4-3 Employees Table Definition

Listing 4-4 Employee.java Class

Listing 4-5 Data Type of ‘Employee’ Within XSD
Listing 4-6 Activities for Writing Web Services with Java
Listing 4-7 A Class Diagram

Listing 4-8 DbConnection.java class

Listing 4-9 EmployeeDao.java class

Listing 4-10 EmployeeDaoTest.java Class

Listing 4-11 JUnit Test Result

Listing 4-12 build.xml for data-svc Java Project
Listing 4-13 EmployeeDocData.java Class
Listing 4-14 EmployeeRpcData.java Class
Listing 4-15 Server.java Class

Listing 4-16 build.xml for java-ws Java Project
Listing 4-17 WSDL of a DOCUMENT Style
Listing 4-18 Schema (XSD) of a Web Service

Download free eBooks at bookboon.com

Introduction to Web Services with Java Table of Listings

Listing 4-19 WSDL of a RPC Style

Listing 4-20 XSD of a Web Service (RPC)

Listing 4-21 An Additional XSD of a Web Service

Listing 4-22 EmployeesDocClient.java Class

Introduction to Web Services

Listing 4-23 EmployeesRpcClient.java Class

Listing 5-1 EmployeeDatalf.java Class with Web Service Annotations

Listing 5-2 EmployeeData.java: An Implementation of a Web Service Interface
Listing 5-3 Content of web.xml

Listing 5-4 Content of beans.xml

Listing 5-5 Content of build.xml for cxf-ws Dynamic Web Project

Listing 5-6 A WSDL of a CXF Web Service Application

Listing 5-7 EmployeeDataClient.java class

Listing 5-8 Content of build.xml for cxf-ws-client Java Project

Listing 6-1 Content of weblogic.xml to be Included for cxf-ws.war Web Application
Listing 6-2 WSDL for CXF Web Application on Oracle WebLogic Server
Listing 7-1 A DDL for Creating Employees table

o™

e-learning
for kids

#The number 1 MOOC for Primary Education
e Free Digital Learning for Children 5-12
®15 Million Children Reached

About e-Learning for Kids Established in 2004, e-Learning for Kids is a global nonprofit foundation dedicated to fun and free learning on the
Internet for children ages 5 - 12 with courses in math, science, language arts, computers, health and environmental skills. Since 2005, more
than 15 million children in over 190 countries have benefitted from eLessons provided by EFK! An all-volunteer staff consists of education and
e-learning experts and business professionals from around the world committed to making difference. eLearning for Kids is actively seeking
funding, volunteers, sponsors and courseware developers; get involved! For more information, please visit www.e-learningforkids.org.

13 Click on the ad to read more
Download free eBooks at bookboon.com

http://s.bookboon.com/elearningforkids

Table of Tables

Table 1. Database Configuration Parameters

Table 2. Server Configuration Parameters

Download free eBooks at bookboon.com

1 Introduction

Objectives

After studying this chapter, you should be able to:

Describe basic elements of a Web Service application

Compare and contrast the purposes of Web and Web Service applications

Describe the benefits of Web Services

Write a simple Web Service application using Java Development Kit (JDK) 6 or later

MR

Verity and test a Web Service application
In the early days of the Internet, Web applications delivered static webpages via HTML. Certainly, the

development of websites was simpler; however, static content can quickly become outdated; thus, the

content management of a website is important.

Browier

Figure 1-1 Early Web applications

Internet-basenl
[TER=)
nebwork

Wek Server

In order to provide dynamic content to Web users, 2-tier web applications were realized with the
introduction of the Common Gateway Interface (CGI), which retrieves content from external data
resources, such as a database. CGI acts as a client in the traditional client-server architecture. A CGI
script processes the request and returns the result to the Web server. The server then formats the contents

in HTML and returns to the browser for display.

CGI suffered many drawbacks that necessitated changes to the 2-tier architecture. The database was often
running on the same machine; therefore, making backups of the data was difficult. CGI was running as a
separate process, so it suffered from a context-switching penalty. CGI was not designed for performance,

security or scalability.

| rite et~

Browser ITE.F.I";I::: : Whe b SEreer T

Figure 1-2 Two-tier web application

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

Nowadays, n-tier Web application architecture is commonly used. In this architecture, middleware or
an application server is introduced to connect the Web server and the database more efficiently. The
performance of an n-tier application is improved because Web servers, middleware and databases can
be hosted by separate machines. Each tier can be replicated for the purposes of load balancing. Security
is also improved because data is not stored on the Web or application server, which makes it harder for

hackers to gain access into the database where data is stored.

Irternet-based An-nﬂnﬂun |
Brosner {TORAR ety Career
e iaad |“Iﬂﬂlnul|lr |

Figure 1-3 An n-tier web architecture
A web and an application servers are often run on the same machine; however, it is best practice to run

the database server on a separate machine. In a software development environment, all three servers can

be hosted on a single machine. In this book, a server is often refered to a software application.

-

‘mtiia IrAX?A Graduate
:

Graduz

Find out more and apply

redefining / standards

16 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/AXA

1.1 Browsing the Internet

Before the conception of Web 2.0 (around 1999), the basic use of the World Wide Web (WWW) and
the Internet was simple and based on the traditional client-server model with older technologies such
as Remote Procedure Call (RPC) or Transaction Processing (TP) Monitors or other middleware that

permitted programmable clients.

Consider a typical use case of a person browsing the Internet by means of a browser. The Web server
in this example serves dynamic HTML pages using Java Server Pages (JSP) technology. In addition, it
uses Enterprise Java Bean (EJB) or Plain-Old-Java-Object (POJO). JSP is oriented toward the delivery
of webpages for the presentation layer. EJBs or POJOs are usually used for processing business rules.

There are thousands of Web applications that use Java/JEE technology.

.
1 h} = Breswser
b

HINL aver HITF

senvietf ISP

Java B4

Erds/ PO

J0ac

L

Datampse

Figure 1-4 Man-machine interaction

The Internet architecture was originally designed for human users. HT'TP protocol was for exchanging
documents (Web or HTML pages). HTML was designed for basic graphical user interface (GUI)
applications. Computing resources on a web browser are often idle while the user is browsing the
Internet. These available resources prompted the idea of providing more robust web browsing experience.
In addition, the idea of business-to-business (B2B) data exchange model also became more feasible.

Accordingly, the WS architecture was introduced to support this new type of data exchange.

Download free eBooks at bookboon.com

1.2 Web Service architecture

A service can be one of the three types of interaction: man-to-man, man-to-machine, or machine-to-
machine. A restaurant service is an example of man-to-man interaction. A person withdrawing money
from an Automated Teller Machine (ATM) is an example of man-to-machine interaction. Machine-to-
machine interaction is exemplified by a handheld device, such as a smart device (e.g., a phone or a tablet),
synchronizing its address book with Microsoft Outlook. A Web Service is a type of machine-to-machine
interaction that uses specific Web standards and technology. A Web Service is a set of programming

interfaces, not a set of webpages.
This section begins with a basic definition of a Web Service in order to establish a basic understanding
for use in later chapters. More complex aspects of Web Services will be easier to understand when the

basic concept of a Web Service is properly explained.

According to W3C website, http://www.w3.org/TR/ws-desc-regs:

A Web Service is a software application identified by a URI whose interfaces and binding are
capable of being defined, described and discovered by XML artifacts and [that] supports direct
interactions with other software applications using XML based messages via Internet-based

protocols.

A Web Service must involve a Web-based protocol, such as HTTP or Simple Mail Transfer Protocol
(SMTP). Other transport protocols may be used, but HT'TP is the most common one being used. HTTPS
uses Secure Socket Layer (SSL) or Transport Secure Layer (TLS) for secured transport of data. In regard
to software development concerns, the difference between HTTP and HTTPS is trivial. HTTP, thus, is
used throughout this text.

A Web Service is a software application that requires interaction with another application. WS is a
software integration technique for a B2B type of integration. Here, one application acts as a service

provider (server) and the others act as service consumers (clients). This is a many-to-one relationship.

‘Interface’ is defined as “[The] point of interaction or communication between a computer and any other

entity” (http://www.thefreedictionary.com). An interface can also be described as an “abstraction of a

service that only defines the operations supported by the service (publicly accessible variable, procedures,
or methods), but not their implementation” (Szyperski, 2002). For example, in Java, an interface can be

defined and then implemented by a concrete class.

Download free eBooks at bookboon.com

http://www.w3.org/TR/ws-desc-reqs
http://www.thefreedictionary.com

Introduction to Web Services with Java Introduction

Web Service Description Language (WSDL) specifies the service interface and the rules for binding the
service consumer and the provider. According to the specification of WSDL 1.1, WSDL is defined as
“an XML format for describing network services as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information” (http://www.w3.org/TR/wsdl). WSDL

defines how a consumer can interact with a service via a concrete network protocol and message format

using eXtended Markup Language (XML).

XML is a profile (subset) of Standard Generalized Markup Language (SGML). SGML is a metalanguage,
i.e., a language that describes other languages. Unlike HyperText Markup Language (HTML), which is
used to serve static webpages, XML allows the author to create his or her own tags. Thus, XML facilitates

the data and document processing functions.

Web Service relies on Simple Object Application Protocol (SOAP) as its transport. As its name implies,
SOAP is a lightweight protocol that can be used to exchange structured messages (i.e., XML). SOAP 1.2
is the latest version. WSDL 1.1 supports SOAP 1.1, HTTP GET/POST, and MIME.

A service can be defined, published and discovered using some type of service registry. Current supporting
service registries include electronic business XML (ebXML), Universal Discovery, Description and
Integration (UDDI), and Metadata Registry (MDR). UDDI is usually a good idea; however, it is not

widely used except in a private network of services.

Ijoined MITAS because L,
I wanted real responsibility www.discovermitas.com

Month 16

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

19 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.w3.org/TR/wsdl
http://s.bookboon.com/mitas

Introduction to Web Services with Java Introduction

RPC is a powerful technique that provides distributed computing capabilities across a network of
machines. RPC is a form of interprocess communication that enables function calls between applications
that are located across different (or the same) locations over a network. It is best suited for client-server

programming.

Machine Machin

callrpc()

Figure 1-5 Remote Procedure Call (RPC)

Web Services can be used to help solve several problems in Enterprise Application Integration (EAI).
Integrating existing applications for a business solution is a complex and time-consuming task.
Applications that were written in different computer languages, such as C/C++, JAVA, Visual Basic, and
FORTRAN, have unique logical interfaces to the external world, which makes the integration of these
applications difficult, complex and time-consuming. Applications that are running on different machine
architectures, such as SUN, Personal Computer, IBM Mainframes, IBM A/S 400, have unique physical
interfaces to the external world. Integrating these applications is also challenging. Applications running
on machines that are interconnected through a network are also difficult to integrate. The challenges of

EAI arise in three main areas:

o Language barriers - XML is a standardized language that is used for message exchange
o Platform barriers - SOAP has been implemented on many platforms (e.g., Unix, Windows)

o Network barriers - HTTP and SMTP are standardized network protocols

20

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

WS can serve as an enabling technology for application integration. WS, as mentioned earlier, places
thes following major standards in focus: XML, SOAP, WSDL, UDDI and HTTP.

lnlernet
Frewal - —_ i —_— Feemal
PP
*
Rl e e e
: !
T T e] | APl Lo S
- — e S
e Bt~ - 0
- - - .
LEgary ingany Lrpey Legacy
A Appilzaminn gyl i Appration
[LTLFEHES [aF i RTTFIT

Figure 1-6 Business-to-Business integration

SOAP sequence diagram

Client Stubs SOR Network oA Adapters Servig
Processor Processor
[l [l [l [l

Figure 1-7 Sequence diagram of SOAP

21

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

Service requester — the client that consumes or requests the service
Service provider - the entity that implements the service and fulfill the service requests

Service registry — a listing like a phonebook where available services are listed and described in full

(M0]
-‘.
|_l. i gy "':
'\ ol e |]
¥ 3 o
& *,
Soar
F) = —h
_ . Prireuled \
Redjisest ant o s L,
= fnd T el
L ' ' el
WL

Figure 1-8 Web Service Architecture

&’ DUSiness

W school 9 3%

OF MIM STUDENTS ARE
WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRAD

MASTER IN MANAGEMENT

- STUDY IN THE CENTER OF MADRID'AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
THAT THE CAPHAEOESPAIN'OFEERS

+ PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
PROFESSIONAEGOAES

- STUDY A SEMESTER'ABROAD AND BECOME"A GLOBAL CITIZEN'WITH THE'BEYOND BORDERS
EXPERIENCE

Length: 10 MONTHS

Av. Experience: 1 YEAR
Language: ENGLISH['SPANISH:
Format: FULL-TIME

Intakes: SEPT | FEB

5 SPECIALIZATIONS #10 WORLDWIDE I 55 NATIONALITIES

PERSONALIZE YOUR PROGRAM AN M ENT IN CLASS

FINANCIAL TIMES

www.ie.edu/master-management | mim.admissions@ieedu | @ © Follow us on IE MIM Experience

22 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/MIMEnglish

1.3 Benefits of Web Services

Web Services provide many benefits:

1. Platform-independent: Web Services are now available in nearly all platforms:
a) Hardware: mainframe, midrange, personal and mobile devices

b) Operating systems: UNIX, Windows, Mainframe OS, Android, and iPhones
Reuse of existing networking infrastructure: HT'TP, SMTP, and JMS protocols
Loose-coupling of software components promotes software reuse

Reduced integration cost and increased integration speed

AR

Open architecture and communication protocols

14 Program a HelloWorld Web Service

The concept of a Web Service can be difficult to comprehend without seeing a concrete example of how
a Web Service is created and used. The top-down approach starts with a WSDL file that describes the
services. The top-down approach may increase the level of interoperability and allow more control of
the WS, wehereas the bottom-up approach starts at the low level of the Java bean or enterprise Java bean

(EJB) and is faster and easier.
The following steps can be used to create and test a simple WS application:

1. Run Eclipse IDE, create a new Java project, and name it ‘java-ws.

2. Run Server.java as a Java program.

3. Verify the WSDL and the associated schema for the service endpoint:
http://localhost:9999/HelloWorld ¢wsdl.

4. Use SOAPUI software to test the HelloWorld Web Service.

5. Create Java Web Service client code.

1.4.1 Create a Project

In the example above, the bottom-up approach is used. This example requires Java 6 or later. A Web
Service called ‘Hello World’ is created with the method called ‘say, which requires one String parameter.

To create a Java project under Eclipse IDE, perform the following steps:

1. Run Eclipse IDE.

2. Choose File - New — Java Project. Use all default and name it ‘java-ws.

3. Expand the java-ws project, then right-click on the src directory and choose New —
Package. Name the package ‘com.bemach.ws.hello.

4. Similarly, create another Java package com.bemach.ws.server.

5. Create two Java classes — com.bemach.ws.hello.HelloWorld.java and com.bemach.ws.server.

Server.java.

Download free eBooks at bookboon.com

http://localhost:9999/HelloWorld?wsdl

Introduction to Web Services with Java Introduction

1.4.2 Create a Web Service

A classic HelloWorld class of Java can be written in a few lines of code. The purpose is to make sure that

a Java Virtual Machine is properly installed and ready for programming.

Listing 1-1. HelloWorld.java

package com.bemach.ws.hello;
/*k*
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

public class HelloWorld {
public String say (String name) {
return String. format ("Hello, %s!", name);

public static void main (String[] args) {
String msg = new HelloWorld() .say("Johnny, B. Good");
System.out.println (msqg) ;

Output:

Hello, Johnny B. Good!

In this way, the HelloWorld program is transformed into a WS application. This is a basic WS application
using the reference implementation of JAX-WS by the Java language.

To transform the HelloWorld program from a simple Java bean into a Java WS application, four WS
annotations — namely, @WebService, @SOAPBinding, @ WebMethod and @WebParam - are decorated

as follows:

24

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

Listing 1-2. HelloWorld.java with Web Service Annotations

package com.bemach.ws.hello;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

@WebService
@SOAPBinding (style=SOAPBinding.Style.DOCUMENT)
public class HelloWorld {
private static final Logger LOG = Logger.getLogger (HelloWorld.class.getName ()) ;

@WebMethod
public String say (CEWebParam(name="name") String name) {
LOG.info ("Web service is called!"™);

return String. format ("Hello, %s!", name);

public static void main (String[] args) {
String msg = new HelloWorld() .say("Johnny, B. Good");
LOG.info (msqg) ;

Annotations indirectly affect the sematics of the program via tools and libraries. The @WebService
annotation indicates that the class will implement a WS. The @SOAPBinding annotation indicates the
style of the SOAP to be used. In this example, the style is DOCUMENT as opposed to RPC. @ WebMethod
indicates an operation of the WS to be created. Lastly, the @WebParam indicates how the parameter is
named inside the WSDL.

14.3 Create a HTTP Server

To host the service endpoint, a WS requires an HTTP server. An Apache JEE Tomcat server can be used;
however, a basic server can be created using only Java. In this example, we created an Endpoint with a
specific URL that ties to an implementation of the WS. In this case, the URL is http://localhost:9999/

java-ws/hello and the implementation is the HelloWorld object svc.

25

Download free eBooks at bookboon.com

Introduction to Web Services with Java

Listing 1-3. Server.java class

Introduction

package com.bemach.ws.server;

import java.util.logging.Logger;

import javax.xml.ws.Endpoint;

import com.bemach.data.DbConfig;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import javax.xml.ws.EndpointReference;

import com.bemach.ws.doc.employees.EmployeeDocData;
import com.bemach.
import com.bemach.

ws.hello.HelloWorld;
ws.rpc.employees.EmployeeRpcData;

/**
*/

public final class Server {

private Server () {

}

dbCfg.setHost (DB _HOST) ;
dbCfg.setPort (DB _PORT) ;
dbCfg.setDb (DB _SID) ;
dbCfg.setUid (DB USER) ;
dbCfg.setPsw (DB _PSW) ;
return dbCfg;

}

private static final Logger LOG = Logger.getLogger (Server.class.getName ())
private static final String MYSQL DRIVER="com.mysql.jdbc.Driver";

private static final String DB HOST = "saintmonica";
private static final String DB PORT = "3306";
private static final String DB SID = "employees";
private static final String DB USER = "empl 1";

private static final String DB PSW = "password";

protected static DbConfig getDbConfig () {
DbConfig dbCfg = new DbConfig () ;
dbCfg.setDriverName (MYSQL DRIVER) ;

private static final String HOST NAME = "localhost";
private static final String PORT NO = "9999";
private static final String HELLO SVC NAME = "java-ws/hello";
private static final String RPC EMPL SVC NAME = "rpc/employees";
private static final String DOC EMPL SVC NAME = "doc/employees";
private static final String PROTOCOL = "http";

26

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

protected static SvrConfig getSvrConfig() {
SvrConfig svrCfg = new SvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenInterface (HELLO SVC NAME) ;
svrCfg.setlListenProtocol (PROTOCOL) ;
return svrCfg;

protected static Endpoint publish(SvrConfig cfg, Object svc) {
String url = String.format("%s://%s:%s/%s",
cfg.getlListenProtocol (),
cfg.getlListenHostname (),
cfg.getListenPort (),
cfg.getListenInterface());
Endpoint ep = Endpoint.publish(url, svc);
EndpointReference epr = ep.getEndpointReference () ;
LOG.info ("\nEndpoint Ref:\n"+epr.toString()):;
return ep;

protected static void startHelloWorld() {
SvrConfig cfg = getSvrConfig() ;
cfg.setListenHostname (HOST NAME) ;
cfg.setlListenInterface (HELLO SVC NAME) ;
cfg.setListenPort (PORT NO) ;
cfg.setlistenProtocol (PROTOCOL) ;

HelloWorld hello = new HelloWorld():;
publish(cfg, hello);
LOG.info ("HelloWorld service started successfully ...");

protected static void startRpcEmployees () {
SvrConfig svrCfg = getSvrConfig();
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenInterface (RPC_EMPL SVC NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenProtocol (PROTOCOL) ;
DbConfig dbCfg = getDbConfig() ;
svrCfg.setDbCfg (dbCfqg) ;

EmployeeRpcData rpcEmpl = new EmployeeRpcData (dbCfgqg) ;
publish(svrCfg, rpcEmpl);
LOG.info ("Employees (RPC) service started successfully ...");

27

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

protected static void startDocEmployees () {
SvrConfig svrCfg = getSvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenInterface (DOC EMPL SVC NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenProtocol (PROTOCOL) ;
DbConfig dbCfg = getDbConfig() ;
svrCfg.setDbCfg (dbCfqg) ;

EmployeeDocData docEmpl = new EmployeeDocData (dbCfg) ;
publish(svrCfg, docEmpl);

LOG.info ("Employees (Document) service started successfully ...");

}

/**
* Start WS Server with multiple service endpoints...
*
* @param args
*/
public static void main(String[] args) ({
startHelloWorld() ;
startRpcEmployees () ;
startDocEmployees() ;

“I studied
English for 16 P
L]

years but... »
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

" unique course download

— p— AIIINI l&l " '

28 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/EOT

When the Server program runs, it calls the startHelloWorld method to create a WS implementation that
ties with a unique URL. The endpoint is then published and ready for receiving requests from a remote

client. For this simple program, Ctrl-C can be used to stop the server.

The DbConfig.java class is a simple placeholder for the required parameters for database access and for
the URL. In a later example, Java code is used to implement data access to the database. Remember,
though, that this is sample code; therefore, the password is displayed or stored in the clear. In a business

or secure environment, passwords are entered each time or stored encrypted.

1.5 Host a Web Service

In Eclipse IDE, perform the following actions:

1. To run, open Server.java class. Choose Run — Run As — Java Application.

An Eclipse project would look like this:

= [S Y " S— - - =N

Figure 1-9 An Eclipse Java project for the HelloWorld Web Service

1.6 Verify a Web Service

View the HelloWorld’s WSDL:

Open a browser and go to this URL: http://localhost:9999/java-ws/hello?WSDL

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?WSDL

Introduction to Web Services with Java Introduction

Listing 1-4. HelloWorld WSDL

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://hello.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://hello.ws.bemach.com/"
name="HelloWorldService">
<types>
<xsd:schema>
<xsd:import namespace="http://hello.ws.bemach.com/"
schemalocation="http://localhost:9999/java-ws/hello?xsd=1" />
</xsd:schema>
</types>
<message name='"say'">
<part name="parameters'" element="tns:say" />
</message>
<message name='"sayResponse'">
<part name="parameters" element="tns:sayResponse" />
</message>
<portType name="HelloWorld">
<operation name="say'">
<input message="tns:say" />
<output message='"tns:sayResponse" />
</operation>
</portType>
<binding name="HelloWorldPortBinding" type="tns:HelloWorld">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="say'"> [
<soap:operation soapAction="" /> Encmhngsbde
<input>

<soap:body use="literal" />
</input>
<output> Service endpoint
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="HelloWorldService">
<port name="HelloWorldPort" binding="tns:He WorldPortBinding'>
<soap:address location="http://localhost:9999/java-ws/hello" />
</port>
</service>
</definitions>

Figure 1-10. The WSDL of the HelloWorld Web Service

To view the associated XML schema, go to this URL: http://localhost:9999/java-ws/hello?xsd=1

30

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?xsd=1

Introduction to Web Services with Java Introduction

Listing 1-5. HelloWorld XSD

<xs:schema xmlns:tns="http://hello.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
version="1.0" targetNamespace="http://hello.ws.bemach.com/">
<xs:element name="say" type="tns:say" />
<xs:element name="sayResponse" type="tns:sayResponse" />
<xs:complexType name="say">
<xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="sayResponse">
<xs:sequence>
<xs:element name="return" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schema>

Figure 1-11. The XML schema associated with the HelloWorld Web Service.

Excellent Economics and Business programmes at:

/2 A\

university of e AACSB
groningen b ACCREDITED

i

| -
“The perfect start
of a successful,

., international career’
4 2 HERE
sy o A CLICK

| to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

9

="

www.rug.nl/feb/education

31 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Introduction to Web Services with Java Introduction

1.7 Test a Web Service with SOAPUI

SOAPUI is a software that enables software developers and integrators to test Web Services. Similar to

Eclipse IDE, SOAPUI is a project-based application.

1. Run SOAPUI program.
2. Select File - New SOAPUI project.
3. Fill in the Project Name and the Initial WSDL/WADL.

Haw Easgpil Projact
Erauti § faw nepll] Progect i the workioacs

Projectame: el weord W]

- e—

Pritiad WROLANAM T | Fiig ecalbeedl: SERE el wn hilla Mg

Er il Qignanitt (o] Ervdite saviple requaats ki Al opsi et

Croate Tenthute: [Cranten o Temiuts for ta rrperied WADL or WAt

Croate Mockfanies: [| Cranted o Wab Senice Smulstion of B imperted WiHL

Add FIET Sarvice

Rt Putfer: [Stores ol e pathes . pragustt ralatuonly b repect e (s v
Crate Wkt TamCane: || Cronten o Totlass wih 8 Wb Becondeg fekiaon for kanchonal web litng

@) (o] [can]

Figure 1-12 Create a SOAPUI project for the HelloWorld Web Service
To execute a SOAP operation, take the following steps:
. On the left panel, double-click on Request 1.

Fill in the blank between <arg0> and </arg0>.
. Click on the green triangle on the top left panel of the request.

. View the SOAP response on the right panel.

Click here
to run
—— T L ——— !; i i
— i Bt ‘; -, E— - S N — S -
—_—— - s

Figure 1-13 Opening the HelloWorld WSDL

32

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

To troubleshoot at the HTTP layer, click on the ‘http log’ button on the bottom of screen.

B jmn ey
Bw O A -
e i e L]
[s p—— L L] o il
r ol wem e b ol e~ e - e
B ——o .
-8] —pys
2 H e —
- =
& i =
B e e bmrrs. e
o
b — -
am
—— o — -
o o e s - -
e T
o e | i i g ey o e
] | ’
= -
- B a
——

Figure 1-14 Call an operation (method) of a Web Service

1.7.3.1 SOAP Request:

The SOAP processor generates this request and sends it across the network to a WS invoking an operation

say with a simple String argument.

Listing 1-6. A SOAP Request Message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:hel="http://hello.ws.bemach.com/">
<soapenv:Header />
<soapenv:Body>
<hel:say>
<name>Johnny B. Good</name>
</hel:say>
</soapenv:Body>
</soapenv:Envelope>

1.7.3.2 SOAP response:

A SOAP response shows a simple return of a message string.

Listing 17. A SOAP Response Message

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns?:sayResponse xmlns:ns2="http://hello.ws.bemach.com/">
<return>Hello, Johnny B. Good!</return>
</ns2:sayResponse>
</S:Body>
</S:Envelope>

33

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

1.8 Create a Web Service Client

A WS client code is simple to write; however, the amount of code required behind the scenes in order to
ease the amount of coding on the client side can be substantial. Generated code enables a client application
to call WS operations as it would normally do with another Java bean. This makes the programming of
a client WS application a bit simpler. In the next chapter, we will use SAAJ APIs to create a Java client
code that calls the HelloWorld Web Service.

The process of creating a Java Web Service client to call the HelloWorld Web Service involves the

following steps:

1. Create a java-ws-client project in Eclipse.
2. Generate WS client stub from a service endpoint (http://localhost:9999/java-ws/hello?WSDL).

3. Write a Java client class.

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

visit to

vvyvVvyyVvyy

find out morel

Note: LIGS University is not accredited by an

nationally recognized accrediting agency listed

by the US Secretary of Education.
ore info here.

—

34 Click on the ad to read more

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?WSDL
http://s.bookboon.com/LIGS

1.8.1 Create a Project

1.8.2 Generate Web Service Stub

First, a generated WS client code is generated using a readily available tool, wsimport, from the Java

JDK package. Second, a client code is written using the generated code.

Open a command prompt or a Unix terminal.
Go to the java-ws-client project directory.
Create a ‘generated’ directory.

Create a ‘lib’ directory.

Go to the ‘generated’ directory.

SR A S o o

Run the following command:

wsimport -d . http://localhost:9999/7ava-ws/hello?wsdl

7. Package the generated client code:
jar cvf ../java-ws-generated.jar *

8. Move the java-ws-generated.jar file to the ‘lib’ directory.

1.8.3 Create Web Service Client

9. Return to Eclipse and refresh the Java project:
a) Choose java-ws project.
b) Choose File — Refresh.
c) From project properties, choose Java Build Path/Libraries.
d) Click on Add JARs and add the java-ws-generated.jar file.
e) Click OK.

10. Create a new Java package: com.bemach.ws.hello.client.

11. Create a new Java class: HelloWorldClient.java.

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?wsdl

Introduction to Web Services with Java Introduction

Listing 1-8. A HelloWorld Web Service Client

package com.bemach.ws.hello.client;
/‘k‘k
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import com.bemach.ws.hello.HelloWorld;
import com.bemach.ws.hello.HelloWorldService;

/‘k‘k

* The following code is a normal way of going about to call

* a web services using Java code.

* It is much easier to comprehend.

*

*/
public class HelloWorldWSClient ({

private static final Logger LOG = Logger.getLogger (HelloWorldWSClient.

class.getName ());

public static void main(String[] args) {
HelloWorldWSClient client = new HelloWorldWSClient () ;
try {
client.say ("Johnny B. Good");
} catch (Exception e) {
LOG.log (Level.SEVERE, "ERROR:"+e) ;

public void say (String name) throws MalformedURLException {
LOG.info ("service ... ");

QOName gName = new QName ("http://hello.ws.bemach.com/", "HelloWorldService");
URL url = new URL("http://localhost:9999/java-ws/hello");

Service service = HelloWorldService.create(url, gName);

HelloWorld port = (HelloWorld)service.getPort (HelloWorld.class);

String returnMsg = port.say(name);
LOG.info ("return: "+returnMsg);

36

Download free eBooks at bookboon.com

Introduction to Web Services with Java Introduction

1.9 Run a Web Service Client
Output

Web Service response: Hello, Johnny B. Good!

1.10 References

Gottschalk, K., Graham, S., Kreger, H., & Snell, J. (2002). Introduction to Web Services architecture.
IBM Systems Journal, 41(2), 170-177.

Kleijnen, S., & Raju, S. (2003). An Open Web Services Architecture. Queue, 1(1), 38-46.

Martin, J., Arsanjani, A., Tarr, P,, & Hailpern, B. (2003). Web Services: Promises and Compromises.
Queue, 1(1), 48-58.

37 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/GTca

2 SOAP

Objectives

After reading this chapter, you should:

Possess a basic understanding of SOAP

Be able to describe the structure of a SOAP message

Understand how to process a SOAP message

Be able to map a SOAP to a transport protocol

Be able to write a simple SOAP client using SOAP with Attachment for Java (SAAJ)

MR

SOAP was an improvement of XML-RPC (Remote Procedure Call) that made it possible to use XML to
represent data between two systems. Initially, SOAP message structure was relatively simple. Since SOAP
used HTTP protocol, it was tunneled through firewall using the Internet infrastructure. According to
World Wide Web Consortium (W3C), SOAP is defined as follows (http://www.w3.org/ TR/2007/REC-
soapl2-part1-20070427/):

...a lightweight protocol intended for exchanging structured information in a
decentralized, distributed environment. It uses XML technologies to define an extensible
messaging framework providing a message construct that can be exchanged over a
variety of underlying protocols. The framework has been designed to be independent

of any particular programming model and other implementation specific semantics.

SOAP was implemented as a plug-in to many middleware platforms and enabled data exchange over
the Internet in addition to intranet. The initial emphasis on RPC thus allowed SOAP to become widely
implemented as a wire-protocol over the Internet. Eventually, the need for interactions other than RPC
led to the Documentation type of exchange. Protocols other than HTTP have also emerged over the
years (e.g., SMTP and JMS).

SOAP Version 1.2 is a lightweight protocol intended for exchanging structured information in

a decentralized, distributed environment (http://www.w3.org/TR/soapl2-partl/#intro). SOAP

specifications provide a formal set of conventions that governs how SOAP messages are generated and

accepted by SOAP nodes (i.e., senders, receivers and intermediaries).

Download free eBooks at bookboon.com

http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

Introduction to Web Services with Java SOAP

SOAP XML Payload

A SOAP message is enclosed in a SOAP envelope that contains a SOAP header and a SOAP body. The
SOAP body is mandatory, whereas the SOAP header is optional. The SOAP message is the basic unit of
communication between SOAP nodes. A SOAP node can transmit, receive or relay a SOAP message.
The responsibility of the ultimate destination is to process SOAP messages according to the standard.
A SOAP message traverses between a SOAP sender and a SOAP receiver. The message path may have
SOAP intermediary nodes in a distributed computing environment. These SOAP intermediaries are

thought of as ‘men-in-the-middle, which can cause significant security problems.

The two major message exchange patterns that SOAP supports are 1) request-response (in-out) and 2)
request (in-only). The first pattern is often used where a SOAP request is processed and a SOAP response
is returned to the SOAP sender node. The second pattern is used when the SOAP sender has no interest
in receiving a response (e.g., notification). A SOAP response may be returned in an asynchronous mode.
For example, a server may take a long time to process a SOAP request. Instead of waiting for this request

to be completed, a SOAP client may receive a callback when the server completes the processing.

Emvclop

Figure 2-1. SOAP Message Structure

2.1 Examples of SOAP messages

The following shows SOAP messages in three forms: requests, responses and faults.

s/ =

e ¥
!ﬂ“ Riuit
-
I L.‘;
SOAP Cliant SO

Figure 2-2 SOAP message exchange

39

Download free eBooks at bookboon.com

Introduction to Web Services with Java SOAP

Messages can be exchanged using HTTP protocol; thus, firewalls would allow the messages to pass
through. SOAP messages can also ride naturally over a secure channel using HTTPS protocol as well.
SOAP promotes a loose-coupling computing paradigm where the knowledge of software components

is limited to interface of the service.

2.1.1 SOAP request message

The request represents an invocation of getEmployee method with an emplNo parameter of 100011. Note
that the body contains a single body block with one XML element, <emp:getEmployee>. A request is
marshalled (serialized) into an XML document prior to transport across the network to a remote SOAP
server. When the message arrives at the server, it is ‘un-marshalled’ by a SOAP engine and the targeted

method is invoked.

o A SOAP header is not used in this case.
o The SOAP body consists of a single element, emp:getEmployee.

« getEmployee: To get an employee record, an employee number (emplNo) is required.

www.alcatel-lucent.com/careers

¥, N

‘: Ly
Ae 4

e

F

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

40 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/AlcatelLucent

Introduction to Web Services with Java SOAP

Listing 2-1. A SOAP Message Request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:emp="http://employees.ws.bemach.com/™>
<soapenv:Header />
<soapenv:Body>

<emp:getEmployee>

<emplNo>100011</emplNo>

</emp:getEmployee>

</soapenv:Body>

</soapenv:Envelope>

2.1.2 SOAP response message

When the SOAP server successfully processes a request, a response is then marshaled into an XML
document and returned as a part of HTTP response to the client. The client SOAP engine then un-

marshals the message to further process the result of the call.

o A SOAP header is not used.
o The SOAP body has a single element, ns2:getEmployeeResponse. Note that namespace, ns2,
is used and referenced.

« Within the SOAP body, an employee record is returned.

Listing 2-2. A SOAP Message Response

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:getEmployeeResponse xmlns:ns2="http://employees.ws.bemach.com/"
xmlns:ns3="http://bemach.com">
<return>
<emplNo>100011</emplNo>
<firstName>Shmuel</firstName>
<lastName>Birge</lastName>
<birthDate>1956-07-20T00:00:00-04:00</birthDate>
<gender>M</gender>
<hireDate>1989-11-23T00:00:00-05:00</hireDate>
</return>
</ns2:getEmployeeResponse>
</S:Body>
</S:Envelope>

2.1.3 SOAP fault message

If a request contains an invalid employee number, then a SOAP fault message can be optionally returned.
A SOAP fault may contain messages that help the client to resolve an error or unexpected condition. It

must include a fault code, fault string, and a detailed error message.

41

Download free eBooks at bookboon.com

Introduction to Web Services with Java SOAP

Listing 2-3. A SOAP Fault

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<S:Fault xmlns:ns4="http://www.w3.0rg/2003/05/soap-envelope">
<faultcode>S:Server</faultcode>
<faultstring>No such employee!</faultstring>
<detail>
<ns2:SOAPException xmlns:ns2="http://employees.ws.bemach.com/"
xmlns:ns3="http://bemach.com">
<message>No such employee!</message>
</ns2:SOAPException>
</detail>
</S:Fault>
</S:Body>
</S:Envelope>

The basic assumption is that all data types are exchanged between SOAP nodes in XML format. In
reality, not all data should be translated into XML (e.g., binary image, proprietary data formats). Thus,
a proposed solution is to use SOAP attachments similar to the email protocol. There are problems
with this approach, though, in that scalability can become an issue. Furthermore, not all SOAP engine
implements SOAP attachment; thus, compatibility becomes an issue between SOAP nodes. This does

not discount the overhead of an attachment.

2.2 Mapping SOAP to HTTP

The SOAP message exchange maps nicely into HTTP protocol. In this example, an HTTP POST is used

for invocating a SOAP method on a server:

Listing 2-4. An HTTP Post

POST /java-ws/hello HTTP/1.1

Accept-Encoding: gzip,deflate

Content-Type: text/xml;charset=UTF-8
SOAPAction: ""

Content-Length: 298

Host: localhost:9999

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:hel="http://hello.ws.bemach.com/">
<soapenv:Header/>
<soapenv:Body>
<hel:say>
<!-Optional:->
<name>Johnny B. Good</name>
</hel:say>
</soapenv:Body>
</soapenv:Envelope>

42

Download free eBooks at bookboon.com

Introduction to Web Services with Java SOAP

Listing 2-5. Another HTTP Post

POST /rpc/employees HITP/1.1

Accept-Encoding: gzip,deflate

Content-Type: text/xml;charset=UTF-8
SOAPAction: ""

Content-Length: 290

Host: localhost:9999

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.1.1 (java 1.5)

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:emp="http://employees.rpc.ws.bemach.com/">
<soapenv:Header/>
<soapenv:Body>
<emp:getEmployee>
<emplNo>10002</emplNo>
</emp:getEmployee>
</soapenv:Body>
</soapenv:Envelope>

In this case, a return of an HTTP POST for a SOAP response is relatively simple:

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd « 2" place: MSc Management of Learning
. - 2" place: MSc Economics
ECOHOm |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

43 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.mastersopenday.nl

Introduction to Web Services with Java

Listing 2-6. An HT'TP Response

SOAP

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: text/xml;charset="utf-8"

Se
<?xml version="1.0" ?><S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Body>

88
<ns2:sayResponse xmlns:ns2="http://hello.ws.bemach.com/"><return>Hello,
Johnny B. Good!</return></ns2:sayResponse></S:Body></S:Envelope>

Listing 2-7. Another HTTP Response

HTTP/1.1 200 OK

Transfer-encoding: chunked
Content-type: text/xml; charset=utf-8
Date: Thu, 11 Apr 2013 10:20:49 GMT

S5e
<?xml version="1.0" ?><S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"><S:Body>

167

<ns3:getEmployeeResponse xmlns:ns2="http://bemach.com"
xmlns:ns3="http://employees.rpc.ws.bemach.com/"><return><emplNo>10002</
emplNo><firstName>Bezalel</firstName><lastName>Simmel</
lastName><birthDate>1964-06-02T00:00:00-04:00</birthDate><gender>F</
gender><hireDate>1985-11-21T00:00:00-05:00</hireDate></return></
ns3:getEmployeeResponse></S:Body></S:Envelope>

0

44

Download free eBooks at bookboon.com

Introduction to Web Services with Java

2.3 SAAJ Client

SOAP

A SOAP with Attachment API for Java (SAA]J) is more complex to write. It allows the developers to gain

direct access to methods of creating SOAP messages. You can manipulate XML directly using Java APIs.

Unlike the example in Chapter 1 of writing the client code that uses JAX-RPC, writing an SAAJ client

can be laborious. SAAJ allows a small footprint and support for binary data; however, it is difficult to

work with in various binary data formats.

The steps for creating a SOAP client using SAAJ are as follows:

Create a SOAP connection (URL).
Send the SOAP message to the SOAP server.

Process the response message.

A

Create a SOAP message that includes a SOAP header and SOAP body.
Add necessary elements to the SOAP header and SOAP body.

A SOAP client can be written in Java with a basic understanding of SOAP messages. A client code of

the HelloWorld service is as follows.

] Iy
i N 4

8 stfatedic MArkefifid
Management,

inancial BI

conomics
/ Leadership &8
‘ Organlsationg
Shipping Psyclalag

_,,/ n ageetl .

|

NORWEGIAN /'{_._ EFMD
BUSINESS SCHOOL EQUIS

EREDITED

=rnatlonalse
Busine
_-____‘_‘—‘—-

-,

R
\

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

45

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/BI

Introduction to Web Services with Java

Listing 2-8. HelloWorldSOAPClient.java class Using SAA]

SOAP

package com.bemach.ws.hello.client;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;

import java.util.Iterator;

import java.util.logging.Logger;

import javax.xml.soap.MessageFactory;
import javax.xml.soap.Name;

import javax.xml.soap.SOAPBody;

import javax.xml.soap.SOAPBodyElement;
import javax.xml.soap.SOAPConnection;
import javax.xml.soap.SOAPConnectionFactory;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPFactory;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPMessage;

*

/
The following code is a complex way of go about calling a
Web services using Java code.

There are times this is necessary.

L S R

/
public final class HelloWorldSOAPClient ({
private static final Logger LOG = Logger.getLogger (HelloWorldSOAPClient.
class.getName ());
/‘k*

*

xmlns:m="http://hello.ws.bemach.com/">
<soapenv:Header/>
<soapenv:Body>
<m:say>
<arg0>Johnny</arg0>
</m:say>
</soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

46

Download free eBooks at bookboon.com

Introduction to Web Services with Java SOAP

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:sayResponse xmlns:ns2="http://hello.ws.bemach.com/">
<return>Hello, Johnny!</return>
</ns2:sayResponse>
</S:Body>
</S:Envelope>

*/
private HelloWorldSOAPClient () {}

public static void main (String[] args) {
try {
// 1. Create a SOAP Message
SOAPFactory sf = SOAPFactory.newlInstance();
MessageFactory mf = MessageFactory.newInstance();
SOAPMessage sm = mf.createMessage ()
SOAPHeader sh = sm.getSOAPHeader () ;
SOAPBody sb = sm.getSOAPBody () ;
sh.detachNode () ;

// 2. Add necessary elements to header and body.

Name bodyName = sf.createName ("say","m","http://hello.ws.bemach.com/”) ;
SOAPBodyElement be = sb.addBodyElement (bodyName) ;

Name name = sf.createName ("name");

SOAPElement arg0 = be.addChildElement (name) ;

arg0.addTextNode ("Johnny") ;

// 3. Create a SOAP connection

URL ep = new URL(String. format ("http://localhost:%s/java-ws/
hello?WSDL",args[0]));

SOAPConnectionFactory scf = SOAPConnectionFactory.newInstance();

SOAPConnection sc = scf.createConnection();

// 4. Send a SOAP message using the connection.
SOAPMessage response = sc.call(sm, ep);
sc.close();

// 5. Process the response message

SOAPBody respBody = response.getSOAPBody () ;
Iterator it = respBody.getChildElements () ;
SOAPBodyElement el = (SOAPBodyElement)it.next();
LOG.info ("resp="+el.getNodeName ()) ;

it = el.getChildElements();

SOAPElement ret = (SOAPElement) it.next();
LOG.info (String. format ("%s=%s", ret.getNodeName (), ret.getTextContent ()));

} catch (UnsupportedOperationException e) {
LOG.severe (e.getMessage ()) ;

} catch (SOAPException e) {
LOG.severe (e.getMessage ()) ;

} catch (MalformedURLException e) {
LOG.severe (e.getMessage ()) ;

}

}
}
47

Download free eBooks at bookboon.com

SAAJ has many more capabilities that you can use to work with SOAP messages. For more information

on this topic, see the references at the end of this chapter.

SOAP messages can be structured in two ways: document and RPC styles. At first, only RPC style was
supported. For the RPC model, the SOAP body defines a specific method with associated parameters that
the client can invoke. Thus, the message exchange between client and server can be restricted. Method

calls are tied directly with the in and out parameters.

Unlike the RPC style, however, the document style enables the client and server to exchange messages
in whatever formats they choose. The SOAP body contains messages that do not follow any SOAP

formatting rules. The body can be validated against a schema.

24 Summary

SOAP is the foundation of Web Services. SOAP remains a dominant message exchange protocol used
for B2B integration. Note that no security concern is deliberately mentioned in SOAP. SOAP is mainly
about exchanging messages between two systems. It promotes loose-coupling computation. Security and

other capabilities are left out to avoid complexity in the protocol.

In the next chapter, we will discuss how Web Services use SOAP as a transport protocol to promote the

service-oriented paradigm.

2.5 References

Additional information can be found in the following documents, which are available online:
Albrecht, C.C. (2004). “How clean is the future of SOAP?” Commun. ACM 47(2): 66-68.

SOAP Version 1.2 Part 0: Primer (Second Edition), Retrieved August 27, 2007 from:
http:// www.w3.org/TR/2007/REC-soapl2-part0-20070427/

Bong, G. (2002). Apache SOAP type mapping, Part 1: Exploring Apache’s serialization APIs, Retrieved
August 27, 2007 from:

http://www-106.ibm.com/developerworks/webservices/ library/ws-soapmap1/

Bong, G. (2002). Apache SOAP type mapping, Part 2: A serialization cookbook, Retrieved August 27,

2007 from: http://www-106.ibm.com/developerworks/webservices/library/ws-soapmap2/

Cohen, E (2001). Myths and misunderstandings surrounding SOAP, Retrieved August 27, 2007 from:
http://www-106.ibm.com/developerworks/library/ws-spmyths.html

Download free eBooks at bookboon.com

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www-106.ibm.com/developerworks/webservices/library/ws-soapmap1/
http://www-106.ibm.com/developerworks/webservices/library/ws-soapmap2/
http://www-106.ibm.com/developerworks/library/ws-spmyths.html

Introduction to Web Services with Java SOAP

Marchal, B. (2001). Soapbox: Why I'm using SOAP, Retrieved August 27, 2007 from:
http://www-106.ibm.com/developerworks/xml/library/x-soapbx1.html

McLaughlin, B. (2001). Soapbox: Magic bullet or dud?, Retrieved August 27, 2007 from:
http://www-106.ibm.com/developerworks/library/x-soapbx2/index.html

McLaughlin, B. (2001). Soapbox: Industrial strength or suds?, Retrieved August 27, 2007 from:
http://www-106.ibm.com/developerworks/library/x-soapbx3/index.html

W3C SOAP Tutorial, Retrieved November 5, 2010 from:

http://www.w3schools.com/soap/default.asp

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your “

topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

49 Click on the ad to read more

Download free eBooks at bookboon.com

http://www-106.ibm.com/developerworks/xml/library/x-soapbx1.html
http://www-106.ibm.com/developerworks/library/x-soapbx2/index.html
http://www-106.ibm.com/developerworks/library/x-soapbx3/index.html
http://www.w3schools.com/soap/default.asp
http://www.helpmyassignment.co.uk

3 Web Service Description
Language (WSDL)

Objectives

After reading this chapter, you should:

1. Possess a basic understanding of a WSDL
2. Be able to decipher a WSDL

WSDL assists service clients that need to know how to bind a service automatically. A service contract
must be established between the service consumer and provider. A published WSDL describes in detail

the contract, which may include messages, operations, bindings and locations of the service.

When a Web Service is ready for use, its location and access are made known to external systems.
WSDL is based on the Interface Description Language (IDL), which describes the interface of a software
component for other components to use. In RPC, a developer defines an interface of a component to be

exposed to external applications that do not share the same language.

Once an interface is described, in most cases, a tool is used to generate client and server stubs for the
client side and the server side, respectively, to use. The server application uses the server stub for its

implementation of the service, while the client application uses the client stub for its service invocation.

3.1 WSDL structure

WSDL consists of two parts: abstract interface and concrete implementation. While the abstract interface
describes the operations and messages of a service, the concrete implementation part binds the abstract

interface with a concrete network address. Thus, the two together comprise a service.

A WSDL is an XML document with a root element named definitions. The definition includes two parts:
abstract and concrete. The abstract descriptions consist of types, message, and portType. The concrete
part consists of binding, and service. Abstract parts describe the operations that are independent of way
in which the service will be implemented, while the concrete part specifies the protocol and location of

the service where it can be invoked.

Download free eBooks at bookboon.com

Introduction to Web Services with Java Web Service Description Language (WSDL)

Definitions

Abstract section
types

mMessage

portType

Concrete section

Figure 3-1. WSDL structure

In the following section, we will examine the structure of a WSDL more closely to understand the

relationships between the abstract interface and the concrete implementation.

[]
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.
Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic

Therefore we'need the best employees who can
eet this challenge!

Trﬁf Power of Knowledge Engineering

=

o
Plug into The Power of Knowle‘ngineering.

Visit us at www.skf.com/knowleds

51 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.skf.com/knowledge

Introduction to Web Services with Java Web Service Description Language (WSDL)

Listing 3-1 Sample WSDL

<definitions xmlns:soap="http://schemas.xmlsoap.orqg/wsdl/soap/"
xmlns:tns="http://hello.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://hello.ws.bemach.com/"
name="HelloWorldService'">
<types>
<xsd:schema
<xsd:import names
schemalocation="http:
</xsd:schema>

://hello.ws.bemach.com/"
:9999/java-ws/hello?xsd=1"

</types>
<message name="say'™>
<part name='"parameters=—temant="fns:say" />
</message> !
<message name="sayResponse'’> message
<part name="parameters" element="tns:sayResponse" />
</message>

<portType name="HelloWorld">

<operation name="53y
<input message="tns:say" />
<output message="tns:sayResponse' />

</operation>

</portType>

<binding name="HelloWorldPortBinding" type="tns:HelloWorld'">
<soap:bindin ort="http://schemas.xmlsoap.org/soap/http"

style="document" />
<operation name="say">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="HelloWorldService">
<port name="HelloWorldPort" binding="tns:HelloWorldPortBinding">
<soap:address location="http://localhost:9999/java-ws/hello" />
</port>
</service>
</definitions>

binding

service

52

Download free eBooks at bookboon.com

Introduction to Web Services with Java Web Service Description Language (WSDL)

Listing 3-2. Another Sample WSDL

<definitions
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility—
1.0.xsd"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy"
xmlns:wspl 2="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsam="http://www.w3.0rg/2007/05/addressing/metadata"”
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://employees.doc.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://employees.doc.ws.bemach.com/"
name="EmployeeDocDataService'>
<types>
<xsd:schema>
<xsd:import namespace="http://employees.doc.ws.bemach.com/"
schemalocation="http://localhost:9999/doc/employees?xsd=1" />
</xsd:schema>
<xsd:schema>
<xsd:import namespace="http://bemach.com"
schemalocation="http://localhost:9999/doc/employees?xsd=2" />
</xsd:schema>
</types>
<message name='"createEmployee'>
<part name="parameters" element="tns:creatermaloyee" />
</message>
<message name='"createEmployeeResponse'>
<part name="parameters" element="tns:createEmploysegRespons& />
</message>

<message name="SOAPException">
<part name="fault" element="tns:SOAPException" />
</message>
<portType name="EmployeeDocData'>
<operation name="createEmployee">
<input 2

wsam:Action="http://employees.doc.ws.bemach.com/Emp?OyeceDOD JrexteEmployeeRequest”
message="tns:createEmployee" />
<output 3

wsam:Action="http://employees.doc.ws.bemach.com/EmployceffocData/freatefmployeeResponse”
message="tns:createEmployeeResponse" />

</operation> 4
</portType>
<binding name="EmployeeDocDataPortBinding" pe="tns:EmplofyeeDocData'>

<soap:binding transport="http://schemas.xmlsoap.org?Sear/http"
style="document" />
<operation name="createEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" /> 5
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="EmployeeDocDataService'>
<port name="EmployeeDocDataPort" binding="tns:EmployeeDocDataPortBinding'">
<soap:address location="http://localhost:9999/doc/employees" />
</port>
</service>
</definitions>

53

Download free eBooks at bookboon.com

3.2 WSDL Interface

The service interface is defined using the portType element. This element contains a list of operation
elements that make up a Web Service. Each operation consists of one in and one out message, and
optionally one fault message. All operations exchange messages between a client and a server. A message

is an abstract data type that contains the data.

Refer to listings 3-1 and 3-2 above, which highlight the elements of a basic WSDL document. The five

major components of the WSDL and their relationships are visible.

3.21 <types> element

All data types are defined inside this element types. Usually, the element types points to an external URL
that contains an XML schema which may contain other schemas. WSDL specification does not prohibit

the use of other type definition systems; however, it prefers the XML schema.

322 <message> element

A message element is an abstract data type describing the input and output of an operation. It consists
of parts that are linked to types. Each operation (@ WebMethod) may contain three message types: input,
output, and fault. Each of these message types is unique throughout the entire WSDL document. Each
has a unique name. Inside each message, the parts define the actual types that are properly defined inside

the <types> element specifically (RPC style) or via a schema (Document style).

3.23 <portType> element

The <portType> element consists of an abstract set of operations. These operations may be supported
by one or more endpoints. Operations are used to exchange messages between a service consumer and

the provider. Message exchange protocol can take one of the following patterns:

« One-way - the service endpoint receives a message
» Request-response - the service endpoint receives a message and sends a correlated message
« Solicit-response - the service endpoint sends a message and receives a correlated message

 Notification - the service endpoint sends a message

In the example above (Listing 3-2), the WS consists of one operation (i.e., createEmployee) that has two
messages — one input and one output message. The input message is named ‘tns:createEmployee’ and the
output message ‘tns:createEmployeeResponse. These two messages can be traced back to the message

elements. Think of portType as being like a Java class where methods and attributes are defined.

Download free eBooks at bookboon.com

3.2.3.1 <operation> element

A service may have one or more operations (or methods). Each operation is independently defined with
one input message, one output message, and an optional fault message. These messages are defined using

the message element. Similar to a Java class definition, each operation defines a behavior of a service.

33 WSDL Implementation

The <binding> element of the WSDL connects the WSDL abstract interface to concrete implementation.
In this section, we will pay specific attention to the <binding> element where the connection takes place.
Thus, in some way, <binding> is the central element of the entire WSDL specification. This is where the

two worlds meet.

3.3.1 <binding> element

Binding maps <portType> to a implementation specified in the <service> element. From listing
3-1, <portType> HelloWorld is bound to <port> HelloWorldPort inside the <service> element. The
implementation of HelloWorld is SOAP over HTTP (<soap:binding>). SOAP specifies data formats and

HTTP is a specific protocol to be used for the service offering.

Binding does not specify any particular language in its implementation. The way in which the service

is implemented is beyond the scope of the WSDL.

3.3.2 <service> element

A service is a collection of network-specific addresses (<port>) where the service may be rendered. <port>
and <portType> are linked via a <binding> element. The connection is critical for runtime dynamic

binding between the service consumers and providers.

The <port> element describes the network address that enables a service consumer to interact with the
service being offered. A service with multiple ports is possible; thus, the choice is left to the consumer.

In the sample WSDL, only one port is provided and its location is specified as http://localhost:9999/java-

ws/hello. Note that the host name and port number can be modified at runtime to point to whichever

server is hosting the service.

The following describes the linkages between the major elements of a WSDL.

SEETVCE> —l chamding> — cporiTypes —- IS ad — Ry

Figure 3-2 Linkages inside WSDL

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello
http://localhost:9999/java-ws/hello

Introduction to Web Services with Java Web Service Description Language (WSDL)

34 References

Flaherty, B. (2004). “WSDL: Defining Web Services.” Intercom 51(8): 26-28.

Lessen, T., J. Nitzsche, et al. (2009). “Conversational Web Services: Leveraging BPEL (light) for
expressing WSDL 2.0 message exchange patterns” Enterprise Information Systems 3(3):
347-367.

Web Services Description Language (WSDL) 1.1, Retrieved August 27, 2007 from:
http://www.w3.org/TR/wsdl

WSDL Tutorial, Retrieved November 7, 2007 from: http://www.w3schools.com/wsdl/default.asp

TURN TO THE EXPERTS FOR
SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation
and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do
business reviews of existing subscription businesses and we develope acquisition and

retention strategies.

Learn more at linkedin.com/company/subscrybe or contact
Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRYBE - fofle fifur

56 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.w3.org/TR/wsdl
http://www.w3schools.com/wsdl/default.asp
http://s.bookboon.com/Subscrybe

4 A Sample Web Service
Application

Objectives

After completing this chapter, you should be able to:

Write a Web Service that provides access to employee records stored in a relational database
Write a Web Service using JDK 6 or above

Publish a Web Service using basic Java Endpoint class

Test a Web Service with SOAPUI testing tool

Use wsimport to generate a Web Service stub for the client

SN e

Write a simple Web Service consumer to invoke a Web Service

4.1 A Sample application

Welcome to the world of Web Services! You may find this chapter technically challenging at first; however,
as you work your way through the examples, you will find that the same patterns are used repeatedly
throughout. If you think of writing Web Services as similar to writing any other Java class, that may help
to ease any anxiety about the difficulty of this task.

In this application, we deploy a simple SOAP server using basic Java JDK delivery. In order to make
this application work, you will need the following software packages that can be downloaded from the

Internet (more instructions are included in Appendix A).

e Java JDK 6
o MySQL Community Server 5.6

o MySQL Employees sample database
« MySQL JDBC driver

by

Ll
Charrd] app gt Ic T iman pnroisine L i
CROAF (el Formal W CHTRTALE

Figure 4-1. A n-tier application

Download free eBooks at bookboon.com

A ‘WS application is created using a Java framework to enable a WS consumer to manipulate employee
records stored in a relational database. Accessing the database from a Web server is accomplished using
JDBC technology. MySQL is the relational database used for this example. The transport protocol for
the WS is HTTP.

To avoid adding complexity to an already complicated concept, security concerns are not considered
in this example. Accessing the database from a remote machine (i.e., WS client) without proper
authentication is not a good practice; however, in this application, accessing the database with fixed
user ID and password is a matter of simplicity, not security. Furthermore, the use of the data source is
much more efficient using direct JDBC calls, however, the sample code does not follow that standard

convention.

The basic Java Endpoint class does not scale well in a business computing environment, but it is used
here to allow the simplest Java environment capable of supporting a simple WS application. In later
chapters, you can apply similar programming principles and techniques for WS programming to deploy
WS applications on an Apache Tomcat or an Oracle WebLogic server. These two servers are covered in

Chapters 5 and 6, respectively.

Remember, the central idea of this chapter in terms of WS programming is how to get data from the

database through the use of WS technology, and SOAP in particular.

4.1.1 Use Case Diagram

Consider the following use case diagram for this sample application. From the perspectives of WS clients,
it invokes four operations of an employee data service. Basic data exchange includes two major data

types: employee number and employee record.

A resource can be created, read (or obtained), updated (or changed), and deleted. The concept of CRUD
has been fundamental to computer programming since the beginning of the field computer science. We
have a set of employee records stored in a database, and we want to manipulate them from a remote

machine using SOAP via WS technology.

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

EmployeesDataService

Create Employee

. Update Employee
L
\\.

Service Get Employee
Consumer

Delete Employee

Figure 4-2. Use Cases

Use Case 1: Create Employee
Primary Actor: Service Consumer

Main Success Scenario:

1. An end-user enters required employee information.

2. The service consumer then verifies the information.

3. The service consumer then calls the employees data service to create a new employee.
4

. The service consumer presents a new employee number to the end-user.

Use Case 2: Update Employee
Primary Actor: Service Consumer

Main Success Scenario:

. An end-user updates the required employee information.
. The service consumer then verifies the information.

. The service consumer then calls the employees data service for the update.

= W N

. The service consumer informs the end-user about the status of the update.

Use Case 3: Get (Read) Employee
Primary Actor: Service Consumer

Main Success Scenario:

. An end-user enters an employee number.
. The service consumer then validates the number.

. The service consumer then calls the employees data service to retrieve the employee record.

[S N NS T)

. The service consumer presents the employee record to the end-user.

59

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

Use Case 4: Delete Employee
Primary Actor: Service Consumer

Main Success Scenario:

. An end-user enters an employee number.
. The service consumer then validates the number.

. The service consumer then calls the employees data service to remove the employee record.

[NI NS T

. The service consumer informs the end-user about the status of the deletion.

A SOAP exception is thrown in when an error condition occurs.

4.1.2 Sequence Diagram

In a typical WS call, many layers of software are involved; however, at a high level, the sequence of actions

may be represented as in the following sequence diagram.

Service SORE SOAE Employees Employee
Engine Engine : Databa
Consumer (Client) G Service DAO
| |
|

sendMessage()

getEmployee(

JDBC caII4DAl

Figure 4-3. Sequence diagram of a getEmployee operation

Since all four operations are the basic request-response type of message exchange, a single sequence

diagram of getEmployee operation is shown.

60

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

A consumer, when ready, invokes a SOAP engine on the client side to begin a SOAP call across the
network. In this scenario, the consumer understands the SOAP message fully and constructs a SOAP
message using SOAP with Attachment API for Java (SAAJ). Once a SOAP message is formed, the SOAP
engine sends the message to the remote server via HTTP. After successfully receiving the message, the
server processes the request by invoking the appropriate business or data services in the backend. In this
case, the getEmployee method of the employees service is invoked. Before the data access layer is called,
additional business logic processing can be done in this class to manipulate the data. EmployeeDAO is
a component that interacts directly with the database using JDBC for data processing. The data source

may not always be a relational database.

Once the processing is completed, the employees service, with the help of the WS package, forms a SOAP
message and returns to the SOAP engine on the server side. As a part of the request-response message
exchange pattern, the response is then returned to the SOAP engine on the client side. Once the client

SOAP engine successfully receives the message, it returns to the Service Consumer for final processing.

The process of forming a SOAP message is often called ‘marshalling’. Conversely, the process of decoding

a SOAP message into a native form for further processing is called ‘unmarshalling’

This sequence diagram shows an example of a synchronous message exchange. In other words, activities
in this diagram occur in sequence. In some cases, the processing may take a long time, and the server may
return immediately before the processing completes. This is a form of asynchronous message exchange.
When the server has completed processing the request, it may initiate a call to the client to return the
response with the actual data or simply a notification. The client can also periodically poll the server for
data. The second option suffers two problems. If the timing window between two polls is too large, the

delay can be significant. If it is small, it wastes valuable processing power on both sides.

4.1.3 Deployment Diagram

The simple deployment of this WS application is depicted as follows:

WS Endpoint
<<Client>> <<Server>> P e

i EmployeesData MySQ
<<Library>> <<Library>>
java-ws-client.jar java-ws.jar

1
SRS <<schema>>
-

<<Library>> <<Library>> SIS employees

Jjava-ws-generated.jar data-svc.jar

Figure 4-4. A Simple Deployment Diagram

61

Download free eBooks at bookboon.com

In a real-world application, an IT organization may deploy a complex mesh of servers and databases to
manage their WS activities. There can be many client applications. In this sample WS application, we
create an environment that includes a client machine, a server machine, and a database machine. These

machines can be virtual, which means that all three can be hosted by a single physical machine.

On the server side, we develop two sets of Java libraries — java-ws.jar and data-svc.jar. The first contains
the WS code that interacts with the client over the network protocol HTTP. The second deals with the
database access via JDBC calls with the help of MySQL driver code written by MySQL database developers.

Together, they comprise a complete application.
On the client side, we develop a Java library that contains the WS client code, java-ws-client.jar. We use
wsimport to generate the second library, java-ws-generated.jar. This second library contains all of the

necessary code to interact with the server WS engine.

4.14 JDBC URL

To access a relational database from a Java application, a database connection must be established using
a JDBC URL with the following format:

jdbc:<subprotocol>:<subname>
where
+ <subprotocol> is the name of the driver that was registered with Oracle. In this application,
‘mysql’ is used.
o <subname> is the identification of the resource. It has the following format:
//host:port/subsubname
subsubname consists of the database schema name, user identification and password.
In this example, a full JDBC URL can be written as:
jdbc:mysql://localhost:3306/employees?user=empl_1&password=password
In order to access the database via JDBC connection, a database account was created and assigned to
the employees database. It has all privileges to the employees database. The MySQL default access port

is 3306. Before you run the SOAP server program, make sure to download a JDBC driver and include

the driver in your Javas classpath.

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

4.1.4.1 DbConfig.java

In this sample code, the default values to connect to the MySQL database are (see DbConnection.java):

Hostname | Saintmonica

Port number | 3306

Account | empl 1

Password | Password

Database name | Employees

JDBC driver name | com.mysgl.jdbc.Driver

Subprotocol | Mysgl

Table 1. Database Configuration Parameters

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT

Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

63 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/volvo

Introduction to Web Services with Java A Sample Web Service Application

Listing 41. DbConfig.java class

package com.bemach.data;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

/**

* Make sure to download MySQL JDBC Driver from the website
* Extract it, and include this file (name may be changed between

* release): mysgl-connector-java-5.1.24-bin.jar into your classpath
*
*/
public class DbConfig {
private String subprot = "mysqgl";
private String host = "saintmonica";
private String port = "3306";
private String db = "employees";
private String uid = "empl 1";
private String psw = "password";
private String driverName = "com.mysqgl.jdbc.Driver";

public String getSubprot () {
return subprot;

public void setSubprot (String subprot) {
this.subprot = subprot;

public String getDriverName () {
return driverName;

public void setDriverName (String driverName) {
this.driverName = driverName;

public String getHost () {
return host;

public void setHost (String host) {
this.host = host;

64

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

public String getPort () {
return port;

public void setPort (String port) {
this.port = port;

public String getDb () {
return db;

public void setDb(String db) {
this.db = db;

public String getUid() {
return uid;

public void setUid(String uid) {
this.uid = uid;

public String getPsw() {
return psw;

public void setPsw(String psw) {
this.psw = psw;

For the application, the DbConfigure class is a placeholder for all necessary configuration parameters

for connecting to to the MySQL database.

4.1.5 Web Service Endpoint

A WS must be published via a unique service endpoint in order to be accessed by a WS client. A URL
is a pointer to an available resource. This unique service endpoint can be stated using a URL with the

following format:
<scheme>:<hier-part>?query
where

o <scheme> is http protocol

o <hier-part> is //host:port/path

65

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

In this example, the service endpoint is defined as:

http://localhost:9999/doc/employees

and

http://localhost:9999/rpc/employees

4.1.5.1 SvrConfig.java

For HTTP connectivity to be used for SOAP, the sample code must use the following default values:

Hostname | locahost
Port number | 9999
Protocol | http

Table 2. Server Configuration Parameters

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

66 Click on the ad to read more

Download free eBooks at bookboon.com

http://localhost:9999/doc/employees
http://localhost:9999/rpc/employees
http://s.bookboon.com/Gaiteye

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-2. SvrConfig.java class

package com.bemach.ws.server;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*

~

import com.bemach.data.DbConfig;

/**
* Make sure to download MySQL JDBC Driver from the website
* Extract it, and include this file (name may be changed between

* release): mysgl-connector-java-5.1.24-bin.jar into your classpath
*

*/
public class SvrConfig ({
private String listenHostname = "localhost";
private String listenPort = "9999";
private String listenInterface = "HelloWorld";
private String listenProtocol = "http";

private DbConfig dbCfg = new DbConfig () ;
public DbConfig getDbCfg() {

return dbCfg;

public void setDbCfg (DbConfig dbCfg) {
this.dbCfg = dbCfg;

public String getListenHostname () {
return listenHostname;

public void setListenHostname (String listenHostname) {
this.listenHostname = listenHostname;

public String getListenPort () {
return listenPort;

public void setlListenPort (String listenPort) {
this.listenPort = listenPort;

public String getListenInterface() {
return listenInterface;

67

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

public void setlListenInterface(String listenInterface) {
this.listenInterface = listenInterface;
}

public String getListenProtocol () {
return listenProtocol;
}

public void setListenProtocol (String listenProtocol) {
this.listenProtocol = listenProtocol;

}

The SvrConfig class consists of information that is used to form a service endpoint for both styles —

document and RPC. Furthermore, the class contains the configuration parameters that the data access
code uses in order to access the database.

4.1.6 About the employees’ sample database from MySQL

The employees database is a sample database from MySQL. The database schema was developed by
professor Chua Hock Chuan at Nanyan Technological University in Singapore. The site cat be visited at

http://www.ntu.edu.sg/home/ehchua/programming/sql/SampleDatabases.html.

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

\7\‘ PDF components for PHP developers

www.setasign.com

68 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.ntu.edu.sg/home/ehchua/programming/sql/SampleDatabases.html
http://s.bookboon.com/Setasign

Introduction to Web Services with Java A Sample Web Service Application

| ¥ dept_rm CHAR() |
T s oo b
emp_na BNT{10) |
| »palary INT(1D) | | & bo_diste DATE
‘ from _lake DATE _ .
|t _dswDATE | e i ET =
. r;ﬂu_r.-u. INT {10 1
s barth date DATE j-I ; e T'
: -+ frst_name ¥ aRCHART 14
j i : sk _-u'.lml: ‘JJ'H{}'U"R:!E-]I} A TN
emg_ng ENT{10) P s + dept_name ¥ ARCHARL40) |
fitle VARCHAR(S) S) >
*hire_dabe DATE
| from _daie DATE >
to_cale DATE P—
S) degt_emp ¥
2 emp g ENTLID)
| dept_ro CHAR ()
| = from _daie DATE
| 4y _dale DATE
[

Figure 4-5. Database Schema (Chua Hock Chuan)

In this sample application, we use only the employees table. This table can be created using the following
DDL:

Listing 4-3. Employees Table Definition

CREATE TABLE employees (
emp_no INT NOT NULL,

birth_date DATE NOT NULL,
first_name VARCHAR(14) NOT NULL,
last_name VARCHAR(16) NOT NULL,
gender ENUM ('M',"'F') NOT NULL,
hire_date DATE NOT NULL,

PRIMARY KEY (emp_no)

69

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

All fields of the employees table are required with the primary key being the employee number. The

employees data record can be represented by Employee class in Java. This class is defined as follows:

4.1.6.1 Employee.java

We create an Employee data object that contains an employee record. Employee is a Java class that uses
Java Architecture for XML Binding (JAXB) annotations to assist the marshalling process. JAXB allows
Java developer to use Java API to read and write objects to and from an XML document. It eases the
process of reading and writing XML documents in Java. In particular, the annotation provides a simpler

mechanism for the SOAP engine to transform Java objects into XML and vice versa.

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

Prof. Dr. Nick H.M. van Dam

21st Century Corporate
Learning & Development

70 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Download_Free

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-4. Employee.java Class

package com.bemach.data;
/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.io.Serializable;
import java.util.Calendar;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@XmlRootElement (name="EmployeeService", namespace="http://bemach.com")
@XmlAccessorType (XmlAccessType. FIELD)
@XmlType (name="employee")

public class Employee implements Serializable({
private static final long serialVersionUID = 1L;
@XmlElement (required=true)
private long emplNo;
@XmlElement (required=true)
private String firstName;
@XmlElement (required=true)
private String lastName;
@XmlElement (required=true)
private Calendar birthDate;
@XmlElement (required=true)
private String gender;
@XmlElement (required=true)
private Calendar hireDate;

public long getEmplNo () {
return emplNo;

}

public void setEmplNo (long emplNo) {
this.emplNo = emplNo;

}

public String getFirstName () {
return firstName;

}

public void setFirstName (String firstName) {
this.firstName = firstName;

71

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

public String getLastName () {
return lastName;

}

public void setLastName (String lastName) {
this.lastName = lastName;

}

public Calendar getBirthDate () {
return birthDate;

}

public void setBirthDate (Calendar birthDate) {
this.birthDate = birthDate;

}

public String getGender () {
return gender;

}

public void setGender (String gender) {
this.gender = gender;

}

public Calendar getHireDate () {
return hireDate;

}

public void setHireDate (Calendar hireDate) {
this.hireDate = hireDate;

All required fields are reflected in XML elements within the sequence. Optional elements often include
numOccurs="0". The Java data types are mapped neatly into XML intrinsic data types, as shown in

the schema.

Listing 4-5. Data type of ‘employee’ within XSD

<xs:schema xmlns:tns="http://employees.rpc.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"™ version="1.0"
targetNamespace="http://employees.rpc.ws.bemach.com/">
<xs:element name="SOAPException" type="tns:SOAPException" />
<xs:complexType name="employee">
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="birthDate" type="xs:dateTime" />
<xs:element name="gender" type="xs:string" />
<xs:element name="hireDate" type="xs:dateTime" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="SOAPException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schema>

72

Download free eBooks at bookboon.com

4.2 Develop a Web Service

A bottom-up approach for developing a Web Service involves the following activities:

o Write a data access object.

o Write a business logic object.
o Write a service object.

« Deploy a service to a server.

o Publish the server for use.

In this application, no business services are included, thus the activities are simplified as follows:

Write Data Write Data Create a Run

Access Class Service Class Server Server

Start

Listing 4-6. Activities for writing Web Services with Java

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/osram

We create two Java projects under Eclipse — data-svc and java-ws. The data-svc project holds Java code
that interacts with the database via JDBC. This project creates a library called ‘data-svc.jar. This library

contains four Java classes:

« DbConfig.java
« DbConnection.java
« Employee.java

« EmployeeDao.java

The java-ws project, which resulted in a java-ws.jar library, consists of the following Java classes:

SvrConfig.java

o Serverjava

« EmployeeDocData.java
« EmployeeRpcData.java

421 Class Diagram

A static view of the server application is depicted in the following class diagram.

Listing 4-7. A class diagram

(- . !
' java-ws jar <<;V:rr":zrr>> !

1
| |
1 I
1 I
1 |
| / l \— |
1 1
: <<JavaBean>> <<Web Service>> <<Web Service>> :
| SvrConfig EmployeeDocData EmployeeRpcData| !

|
: |
1 1
I I

I

[

| data-svc, |
: <<utility>> :
: EmployeeDao 1
| I
I I
I I
I I
I I
| 1
| 1
I I
|) !
: <<JavaBean>> <<JavaBean>> <<utility>> :
: DbConfig Employee DbConnection .
| I
: I

Download free eBooks at bookboon.com

In a class diagram, the hollow-diamond adornment indicates a part-whole relationship between the
classes. This is called an ‘aggregation. On the other hand, the solid-diamond adornment represents
a composite relationship between the classes. A composition is stronger than an aggregation in that
the former involves a complete management of the lifetime of the object. For example, at runtime,
an EmployeeDao object is responsible for allocation and deallocation of the DbConnection object.
The Employee object is allocated by the EmployeeDao but deallocated by the EmployeeDocData or
EmployeeRpcData object.

The dotted-line boxes indcate the boundaries of the two libraries to be created for this application.

422 Write Data Access Class

The Data Access Object (DAO) design pattern is used to provide abstract and encapsulated access of

data from the data sources. It manages the connection with the data source to store and retrieve data.

First, we create a Java project called ‘data-svc’ (see section 7.2.1). After we complete our coding of the

Java classes, this project should appear as follows:

x fwm = Frlipee = 0O u

G B Belwir Seuee Neasate Sege Pregect B 'Ainderm Help

L i - L - L F R L O C L L -
: . i - = Flavs [E &' i o Ve
Pz i [spton i At

- AL -l

L ETT.

L o e
e RN e]
i
oy e vz
§] B ormehacidva
ST A e
i e jans
B R Gyt ey F
¥ S g e
LR St & A pvt
s == A] LA Bl L Bl
L3 =
L R Tt ae
- W] # 0w -
ErmASESS - i a e Al
! g bronne st gavs-R 1 M- b =)
mnal AL aT |
LR

Figure 4-6. Java Project: data-svc

4.2.2.1 Import JDBC driver to the project

Following the instructions in section 7.2 to install MySQL and download an appropriate JDBC driver for
MySQL database, the JDBC driver that is used for this application is mysql-connector-java-5.1.24-bin. jar.

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

Create a folder named ‘lib’ under the data-svc project by first selecting the project. Then, choose File —
New — Folder. This folder will contain the JDBC driver library. Expand the project by clicking on the

triangle to the left of the project name.

Now, import the JDBC driver that you have downloaded by clicking on the lib folder. Then, choose

File — Import... The Select screen pops up as follows:

] g - o iEl
Trpimd
2
ot e e e e deciyer S il e eedeg o

L

T R

o e al -
w Briea i
o [P el ARCT Do
L gt
ETE T
i Bl
LA
o ikl
o g
o v

Firor "y

Figure 4-7. Select import type

360°
thinking.

Deloitte.

DiSCOVCI‘ thC truth at WWW.dClOitte,Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

76

Click on the ad to read more

Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

Introduction to Web Services with Java A Sample Web Service Application

Choose General — Archive File, and then click on the ‘Next’ button at the bottom of screen. An Archive

file screen pops up as follows:

] et - o IEN

e, Thnp DT oF 2 e T of 2 o e Toeem Do O Ol PR paaies L |

S o o [

o’

“lhe | i A o= B

e foddpr | lams - gt iz Ircme

L e py g e g

[4 B o L

Figure 4-8. Import Archive file screen

If you know the location of the JDBC driver for MySQL database, enter the file name and location.
Otherwise, use the ‘Browse’” button on the right and choose the file. Then, click the ‘Finish’ button on

the bottom of the screen.

4.2.2.2 Reference to the library

Next, make sure the project has a reference to the MySQL JDBC driver library. First, choose the data-
svc project. Then, select Project (menu) — Properties. The Properties for the data-svc screen will pop

up as follows:

—
=
¥ 1 Progemies ke dliils wn = :_
dirva e e
-
ki [P e] S Qe e i
* o | f
[FEgEEATYS - e i e et
. =
= - k.
d o B e
o |
PR TP TTRENS
T L Rt e, b e
Fan ™ty s
i b x e e Lt
Ta Tup
[REreP
Wy

Figure 4-9. Java Build Path

77

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

On the left panel of the screen, choose Java Build Path. Select the Libraries tab from the top of the right
panel. Click on the Add JARs... button. A JAR Selection screen will pop up as follows:

O Ui e 10 e ackdey! o the Bl path

Yo iRe Ical
i el
e]
= i cala-i
o BTt
(=
4 iS5
| msct.comeciongava. 8 1 24-ban jar
[k
o
1 Sliaakth
1 praEt
i Baldsmi
T aaawy
¢ paesw-olied
f placeicer

Figure 4-10. JAR Selection screen

Expand data-svc/lib folder. Select the JDBC driver. Then, click OK. Your Java Build Path screen should
look like this:

i T i W] FEE
iR bl LR LTRSS N D el e

[r—T— T R e e b Ll]

= o b = PR e 4T B LTS i s,
el R foniare fadmpey b B

e e A D
IEEROT L. R el
ot Pisna

e —— i ey
ey e FuT T rp—
L e]

T Lrpraiir dotr | meas D e
e leg

e

CERs 5

@
- L

Figure 4-11. Java Build Path

Now, the coding can begin. In the following section, we create two classes — DbConnection.java and

EmployeeDao.java.

78

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

4.2.2.3 DbConnection.java

In earlier sections, we created the DbConfig.java class to hold the configuration parameters for accessing
the database. The next logical step is to create a class to manage all the JDBC connections for this
application. Getting a database connection can also be accomplished using DataSource class; however,

in this book, we use a basic method for obtaining a JDBC database connection.

Listing 4-8. DbConnection.java class

package com.bemach.data;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

import java.sqgl.Connection;
import java.sqgl.DriverManager;
import java.sqgl.SQLException;
import java.util.logging.Level;

import java.util.logging.Logger;

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

79 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.employerforlife.com

Introduction to Web Services with Java A Sample Web Service Application

public final class DbConnection {
private static final Logger LOG = Logger.getLogger (DbConnection.class.getName ());
private static final String ERROR MSG = "ERROR: ";
private Connection conn = null;

public Connection getConn () {
return conn;

private DbConnection (String driverName, String subprot, String host,
String port, String db, String uid, String psw) {
LOG.info ("Getting DB connection ...");

try {
Class.forName (driverName) ;
String url = String.format("jdbc:%s://%s:%s/%$s?user=%s&password=%s",
subprot, host, port, db, uid, psw);
conn = DriverManager.getConnection(url) ;
} catch (SQLException e) {
LOG.log (Level.SEVERE, ERROR MSG+e) ;
} catch (ClassNotFoundException e) {
LOG.log (Level.SEVERE, ERROR MSG+e) ;

public static DbConnection getInstance(String driverName, String subprot,
String host,
String port, String db, String uid, String psw) {
return new DbConnection (driverName, subprot, host, port, db, uid, psw);

public void close () {
try {
if (conn != null) {

conn.close () ;
conn = null;
}
} catch (SQLException e) {
LOG.log (Level.SEVERE, ERROR MSG+e) ;

The DriverManager class helps create a JDBC connection in three ways.

getConnection (String url)
getConnection (String url, Properties info)

getConnection (String url, String user, String password)

80

Download free eBooks at bookboon.com

In this example, the first method is used and the URL can be seen as follows:

jdbc:mysgl://localhost:3306/employees?user=empl l&password=pas

sword

The getConn() method requires all necessary database configuration parameters to connect to the
database. When a JDBC connection is no longer needed, it must be explicitly closed by calling the
closeConn() method. Accumulated open connections will strain the resources. In most JDBC drivers,
closing a connection results in closing the Statement and Result sets that are associated with the

connection.

4.2.2.4 EmployeeDao.java

This class provides basic access to the employees? table in the database. PreparedStatement is used to

avoid potential SQL injection attack.

Our task is to develop a WS called EmployeeDataService that allows a client to create, read, update and
delete a row from the employees table. For now, we are not concerned with security — we simply want

to show how this can be done thorugh a bottom-up approach to create a Web Service.

First, we create a class that allows access to this table. This class is called EmployeeDao and allows
four basic operations on a row of the employees table. An Employee class represents each employee
from the Java coding. EmployeeDao uses basic Java Database Connectivity (JDBC) to create a database

connection, issues an SQL statement, and processes the return. It is a basic JDBC application.

Listing 4-9. EmployeeDao.java class

package com.bemach.data;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*

import java.sqgl.PreparedStatement;
import java.sgl.ResultSet;

import java.sqgl.SQLException;
import java.sqgl.Timestamp;

import java.util.Calendar;

import java.util.logging.Logger;

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

*

This class allows its application to perform the four (4) basic operations
of an Employee resource:

Create

Read

Update

Delete

1SN

L S S S
N

*

CRUD is classic in a sense that it is most like what an application does to
an authorized resource.

Additional methods are:
getEmployeeByLastName
getEmplByFirstLastName

L e

*

*/
public class EmployeeDao {
public static final Logger LOG = Logger.getLogger (EmployeeDao.class.getName ()) ;
private DbConfig cfg = null;

public EmployeeDao () {

/**
* Constructor
* @param cfg
*/
public EmployeeDao (DbConfig cfg) {
this.cfg = cfg;
LOG.info ("Constructing EmployeeDao ...");

/**
* From a ResultSet returns an Employee record.
*
* @param rs
* @return
*/
protected Employee getEmpl (ResultSet rs) throws SQLException ({
Employee empl = new Employee();
Calendar cal = Calendar.getInstance();
empl.setEmplNo (rs.getInt ("emp no"));
cal.setTimeInMillis (rs.getTimestamp ("birth date") .getTime());
empl.setBirthDate (cal) ;
empl.setFirstName (rs.getString ("first name"));

empl.setLastName (rs.getString("last name"));

empl.setGender (rs.getString ("gender")) ;

cal = Calendar.getInstance();

cal.setTimeInMillis (rs.getTimestamp ("hire date") .getTime());

empl.setHireDate (cal) ;
return empl;

82

Download free eBooks at bookboon.com

Introduction to Web Services with Java

A Sample Web Service Application

/**

* Create a new employee.
*

* @param empl

* @return

*/

public int createEmpl (Employee empl) throws SQLException {

LOG.info ("Create an employee");

DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),

cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb(),
cfg.getUid(), cfg.getPsw());

String sgl = "SELECT MAX (EMP_NO) FROM EMPLOYEES";
PreparedStatement stmt = null;
ResultSet rs = null;
try {
stmt = dbConn.getConn () .prepareStatement (sql) ;
stmt.execute () ;
rs = stmt.getResultSet();
rs.next ();
int nextEmplNo = rs.getInt (1l);
stmt.close () ;
rs.close();

sql = "INSERT INTO EMPLOYEES (EMP_NO, BIRTH DATE,

NAME, GENDER, HIRE DATE) " +

"VALUES (?,7?,2,2,2,2)";
stmt = dbConn.getConn () .prepareStatement (sql) ;
int idx = 1;
stmt.setInt (idx++, ++nextEmplNo) ;

FIRST NAME, LAST

Timestamp ts = new Timestamp (empl.getBirthDate () .getTimeInMillis());

stmt.setTimestamp (idx++, ts);
stmt.setString (idx++, empl.getFirstName());
stmt.setString (idx++, empl.getLastName());
stmt.setString (idx++, empl.getGender()):;

ts = new Timestamp (empl.getHireDate () .getTimeInMillis());

stmt.setTimestamp (idx++, ts);

stmt.execute () ;

return nextEmplNo;

} finally {

if (stmt != null) {
stmt.close();

}

if (rs !'= null) {
rs.close();

}

dbConn.close () ;

83

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

/**
* Update an employee record.
*
* @param empl
* @return
*/
public boolean updateEmpl (Employee empl) throws SQLException {

LOG.info ("Update an employee");

DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),
cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb(),
cfg.getUid (), cfg.getPsw());

String sql = "UPDATE EMPLOYEES SET BIRTH DATE=?, FIRST NAME=?, LAST NAME=?,
GENDER=?, HIRE DATE=? " +
"WHERE EMP_NO=?";
PreparedStatement stmt = null;

try {
stmt = dbConn.getConn () .prepareStatement (sql) ;
int idx = 1;
Timestamp ts = new Timestamp (empl.getBirthDate () .getTimeInMillis());
stmt.setTimestamp (idx++, ts);
stmt.setString (idx++, empl.getFirstName ()) ;
stmt.setString (idx++, empl.getLastName ()) ;
stmt.setString (idx++, empl.getGender());
ts = new Timestamp (empl.getHireDate () .getTimeInMillis());
stmt.setTimestamp (idx++, ts);
stmt.setInt (idx++, (int)empl.getEmplNo());

stmt.execute () ;
return true;
} finally {
if (stmt != null) {
stmt.close();
}

dbConn.close() ;

/**
* Delete an employee by Employee Number
* @param emplNo
* @return
*/
public boolean deleteEmpl (int emplNo) throws SQLException {

LOG.info ("Delete an employee");

DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),
cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb(),
cfg.getUid (), cfg.getPsw());

String sql = "DELETE FROM EMPLOYEES WHERE EMP NO=2";
PreparedStatement stmt = null;

try {
stmt = dbConn.getConn () .prepareStatement (sql) ;
stmt.setInt (1, emplNo);
stmt.execute () ;
return true;
} finally {

if (stmt != null) {
stmt.close();

}

dbConn.close() ;

84

Download free eBooks at bookboon.com

/‘k‘k
* Get an employee of a given unique employee number ..
*

* emplNo
*
*/
public Employee getEmpl (int emplNo) throws SQLException {
LOG.info ("Getting employee by Employee number: "+emplNo) ;
DbConnection dbConn = DbConnection.getInstance(cfg.getDriverName (),
cfg.getSubprot (), cfg.getHost(),
cfg.getPort (), cfg.getDb(),
cfg.getUid (), cfg.getPsw());

String sql = "SELECT * FROM EMPLOYEES WHERE EMP_ NO=2";
PreparedStatement stmt = null;
ResultSet rs = null;

try {
stmt = dbConn.getConn () .prepareStatement (sql) ;
stmt.setInt (1, emplNo);
if (stmt.execute()) {
rs = stmt.getResultSet();
if (rs !'= null && rs.next()) {
return getEmpl (rs);
}
}
} finally {

if (stmt != null) {
stmt.close();

}

if (rs != null) {
rs.close();

}

dbConn.close() ;

}

return null;

This class has four important methods that can create, read, update and delete an employee record from
the employees table in the database. These methods will be reflected later through the four operations
of the two Web Services called ‘EmployeeDocData” and ‘EmployeeRpcData’

4.2.2.4.1 createEmpl(Employee empl)

This method receives a new employee record called ‘empl” and inserts it into the employees table using
a JDBC PreparedStatement class. This method assumes that the callers of this method have already
validated the content of the employee record. Another approach is to include a validation method in
this class and call from each of the four operations. Notice that all operations dealing with the database

are done through a PreparedStatement in order to limit SQL inject attacks from the outside.

First, we get the largest employee number in order to create a new employee record with a unique primary
key. This way of getting an employee number may encounter a concurrency problem when another
application or process inserts another record at the same time; however, we ignore this condition here

for the sake of simplicity.

Download free eBooks at bookboon.com

Once a new employee number has been received, the method inserts the record into the database and
a new employee number is returned to the caller; however, the final clause will first make sure that the
database connection has been closed. This is one of the many techniques to ensure that resources are

properly deallocated after the method completes its task.

4.2.2.4.2 getEmpl(emplNo)

This method retrieves an employee record from the employees table of the database. A unique employee
number is a required input. If the record is found, it is returned to the caller. Otherwise, an exception

is thrown. Regardless, at this point, the database connection is closed.

4.2.2.4.3 updateEmpl(empl)

This method updates a record with all values from the input record except the employee number. A
Boolean value of true or false is returned after the processing is completed. If the record exists and the

update completes successfully, a Boolean value of truth is returned. Otherwise, the method returns false.

4.2.2.4.4 deleteEmpl(emplNo)

Similarly to other methods of this class, this method opens a database connection then issues an SQL
statement to complete the task. After a successful completion, an employee record will be removed from

the table and a Boolean value of truth is returned. Otherwise, the method returns a value of false.

Overall, this class is relatively simple. It performs the most frequent operations on a resource stored in
the database. This class is kept simple because our focus is on the creation of Web Services not database
operations. When more complex business rules and multi-datasource data access activities are involved,
the fundamental concept of Web Services remains the same. The main focus of Web Service is the

interface - it must be robust and capable of evolving over time.

In the next section, we briefly discuss how to test the data access object so that we can ensure some basic

quality assurance of the development team.

4.2.2.5 JUnit Test for Data Access Object

We provided a basic JUnit test for the EmployeeDao.java class. This class is called ‘EmployeeDataTest.java’

Download free eBooks at bookboon.com

Introduction to Web Services with Java

A Sample Web Service Application

Listing 4-10. EmployeeDaoTest.java Class

*

/

* ok X %

}

/**

*/

}

2013

(C)

static org.junit.Assert.*;

class EmployeeDaoTest {
public static final Logger logger = Logger.getLogger (EmployeeDaoTest.class.

package com.bemach.data.junit;

BEM,

Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

either express or implied.

.sql.SQLException;
.sql.Timestamp;

.bemach.data.DbConfig;
bemach.data.Employee;
.bemach.data.EmployeeDao;

* @throws java.lang.Exception

* "AS IS" BASIS,
* KIND,
*
*/
import
import java
import java
import java.util
import java.util
import org.junit
import org.junit
import org.junit.
import org.junit.
import org.junit.
import com
import com.
import com
public
getName ()) ;
/**
*/
@BeforeClass

public static void setUpBeforeClass () throws Exception {

* @throws java.lang.Exception

@AfterClass
public static void tearDownAfterClass () throws Exception {

private EmployeeDao dao;

Inc., Fairfax, Virginia

WITHOUT WARRANTIES OR CONDITIONS OF ANY

.Calendar;
.logging.Logger;

.After;
.AfterClass;
Before;
BeforeClass;
Test;

87

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

/**
* @throws java.lang.Exception
*/
@Before
public void setUp () throws Exception ({
logger.info ("Testing employee dao class ...");
DbConfig cfg = new DbConfig () ;
cfg.setDriverName ("com.mysqgl.jdbc.Driver") ;
cfg.setHost ("saintmonica") ;
cfg.setPort ("3306");
cfg.setDb ("employees") ;
cfg.setUid("empl 1");
cfg.setPsw("password") ;
dao = new EmployeeDao (cfqg);
}
/‘k*
* @throws java.lang.Exception
*/
@After

public void tearDown () throws Exception {

}

/**
* Test method for {@link com.bemach.data.EmployeeDao#getEmpl (int) }.
* @throws SQLException
*/
@Test
public void testGetEmplByEmplNo () throws SQLException {
Employee empl = dao.getEmpl (10327);
assertTrue ("*** ERROR NULL ***" empl != null);
logger.info ("found "+empl.getFirstName ()+"/"+empl.getLastName ()) ;

@Test

public void testCRUDEmpl () throws SQLException {
logger.info (">>> get empl");
Employee empl = dao.getEmpl (10001);
empl.setFirstName ("Test First");
empl.setLastName ("Test Last");
Timestamp ts = Timestamp.valueOf("1970-01-01 0:0:0.0");
Calendar cal = Calendar.getInstance();
cal.setTimeInMillis (ts.getTime());
empl.setBirthDate (cal);
ts = Timestamp.valueOf("1970-01-01 0:0:0.0");
cal.setTimeInMillis (ts.getTime());
empl.setHireDate (cal) ;
empl.setGender ("F") ;

logger.info (">>> create empl");

int newEmplNo = dao.createEmpl (empl) ;
logger.info (">>> get new empl");

Employee newEmpl = dao.getEmpl (newEmplNo) ;

88

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

newEmpl.setGender ("M") ;

logger.info (">>> update new empl");
dao.updateEmpl (newEmpl) ;

logger.info (">>> get new empl again");
newEmpl = dao.getEmpl (newEmplNo) ;
printOutput (newEmpl) ;

logger.info (">>> delete new empl");
dao.deleteEmpl (newEmplNo) ;

private void printOutput (Employee empl) {
StringBuffer sb = new StringBuffer():;
sb.append (", emplno=") .append (empl.getEmplNo ())

sb.append (", fname=") .append(empl.getFirstName());
sb.append (", lname=") .append(empl.getLastName())
sb.append (", hire=") .append(empl.getHireDate ())

(

sb.append (", birth=").append(empl.getBirthDate()):;
sb.append (", gender=").append(empl.getGender()):;
logger.info(sb.toString());

After each operation, an employee record is formatted and displayed on the screen.

If all the tests are run successfully, the result should be displayed in green on the JUnit panel on the
left-hand side of the Eclipse IDE:

Listing 4-11. JUnit test result
] e e - N

o i brlpim e Lapra S Be fmies e
& B R R e e . T =

e e R =
el . -

ia u mlgigey B
e ——]
i sk v e Ll P L 3

LI B g ..

[S - S

89

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

423 Package a Java Library

In order to run a build from a command line, JAVA_ HOME and ANT_HOME variables need to
be defined. Make sure to include $JAVA_HOME/bin or %JAVA_HOME%\bin in the PATH variable.
JAVA_HOME should be pointed to the installed JDK. We've developed and tested with JDK 1.6. The

Ant build script was of version 1.7.1.

This build.xml build script by default runs from the root of the project data-svc directory. The classes
are stored in the bin directory, while the Java library data-svc.jar will be stored in the dist directory. A

clean build command will remove both directories. Thus, two build commands should be used:

Ant dist (or simply ant)

Ant clean

o™

e-learning
for kids

#The number 1 MOOC for Primary Education
e Free Digital Learning for Children 5-12
®15 Million Children Reached

About e-Learning for Kids Established in 2004, e-Learning for Kids is a global nonprofit foundation dedicated to fun and free learning on the
Internet for children ages 5 - 12 with courses in math, science, language arts, computers, health and environmental skills. Since 2005, more
than 15 million children in over 190 countries have benefitted from eLessons provided by EFK! An all-volunteer staff consists of education and
e-learning experts and business professionals from around the world committed to making difference. eLearning for Kids is actively seeking
funding, volunteers, sponsors and courseware developers; get involved! For more information, please visit www.e-learningforkids.org.

20

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/elearningforkids

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-12. build.xml for data-svc Java Project

<project name="data-svc" default="dist" basedir=".">
<description>
Data Services
</description>

<!- set global properties for this build ->
<property environment="env" />
<path id="classpath.base">

<fileset dir="./1ib" includes="**/*_ jar" />
</path>

<path id="classpath.compile">
<path refid="classpath.base" />
</path>

<target name="init">
<mkdir dir="./bin" />
<mkdir dir="./dist" />
</target>

<target name="compile" depends="init" description="compile the source ,>

<javac srcdir="./src" destdir="./bin" debug="true">
<classpath refid="classpath.compile" />
</javac>
</target>

<target name="dist" depends="compile" description="generate the distribution">
<!- Create the distribution directory —->
<jar jarfile="./dist/data-svc.jar" basedir="./bin" />

</target>

<target name="clean" description="clean up">
<!- Delete the ${build} directory trees ->
<delete dir="./dist" />
<delete dir="./bin" />

</target>

</project>

The output, a data-svc.jar file, is stored in the dist directory. The content of this JAR file should be as

follows:

META-INF/
META-INF/MANIFEST .MF
com/

com/bemach/

com/bemach/data/

21

Download free eBooks at bookboon.com

com/bemach/data/DbConfig.class
com/bemach/data/DbConnection.class
com/bemach/data/Employee.class

com/bemach/data/EmployeeDaoc.class

From the standpoint of business, EmployeeDao should be tested to ensure that it works at the level of

the basic unit. All operations of the classes were thoroughly tested to ensure that the classes work.

424 Develop Java Classes for Web Services

To create a Java project under Eclipse IDE, please refer to Chapter 7. Import two libraries (i.e., data-svc.
jar and MySQL JDBC driver) into the lib folder under java-ws project. Also, make sure to have these
libraries in the Java Build Path. Refer to the previous section for instructions on how to make reference

to the libraries for a Java project in Eclipse.

We develop a Web Service for employee with two different styles: document and RPC. First, we create a
Java project called ‘java-ws. After we finish coding the required Java classes, the java-ws project should

appear as follows:

i I+ Liligms x "ﬂ

fIF

Lo

e DR red

¥ WL Lale
I

5]

H
b Seprw 17 el Apmse inbom] L5

Figure 4-12. java-ws Java Project

The following sections describe the steps required to create Web Services in two main Java classes —

EmployeeDocData.java and EmployeeRpcData.java

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

4.2.4.1 EmployeeDocData.java

Writing Web Service in Java can be done by incorporating Java annotation into Java classes. These classes

provide WS using SOAP. Java WS annotations that are used include the following:

* @WebService: indicates this class to implement a Web Service
* @SOAPBinding: specifies Web Service to bind to a SOAP protocol
* @WebMethod: exposes an operation as a Web method.

* @WebParam: mapps individual parameters to a WS message.

A document-style SOAP binding is used for this application.

Find out more and apply

redefining / standards

23 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/AXA

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-13. EmployeeDocData.java Class

package com.bemach.ws.doc.employees;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;
import javax.xml.soap.SOAPException;

SOAP Stvle

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao;

@WebService
@SOAPBinding (style=SOAPBinding.Style.DOCUMENT)
public class EmployeeDocData {
private static final Logger LOG =
Logger.getLogger (EmployeeDocData.class.getName ()) ;
private EmployeeDao dao = null;

public EmployeeDocData (DbConfig cfg) {
dao new EmployeeDao (cfg);

}

@WebMethod
public Employee getEmployee (€WebParam (name="emplNo")long emplNo) throws
SOAPException, Exception {
LOG.info ("Doc.readEmployee") ;
Employee employee = dao.getEmpl ((int)emplNo) ;
if (employee == null) {
throw new SOAPException ("No such employee!");
}
return employee;

}

@WebMethod
public long createEmployee (@WebParam (name="employee")Employee employee) throws
Exception {
LOG.info ("Doc.createEmployee") ;
return dao.createEmpl (employee) ;

}

@WebMethod
public boolean updateEmployee (@WebParam (name="employee")Employee employee)
throws Exception {
LOG.info ("Doc.updateEmployee.") ;
return dao.updateEmpl (employee) ;
}

@WebMethod
public boolean deleteEmployee (@WebParam (name="emplNo")long emplNo) throws
Exception {
LOG.info ("Doc.deleteEmployee.") ;
return dao.deleteEmpl ((int)emplNo) ;

24

Download free eBooks at bookboon.com

This class has four major operations (i.e., CRUD) on an employee record. Note that for each operation,
the service creates an EmployeeDao object to call the matching operation. The call is then returned as
the return of the operation of the service. Note that the marshalling of the return object is accomplished

with the assistance of the JAXB component in Java.

These four operations are simple. Each method calls the corresponding method provided by EmployeeDao

instance.

4.2.4.1.1 @WebService Annotation

@WebService annotation indicates that this class (or an interface) impelements a Web Service. This

annotation has six (6) optional elements that can be used for a more detailed definition of a Web Service:

1.endpointInterface: the complete name of the service endpoint interface

2. name: the name of the <portType> element within the WSDL

3. portName: the name of the <port> element within the WSDL

4. serviceName: the name of the <service> element within the WSDL

5. targetNamespace: the targetNamespace attribute of the <definition> element of

the WSDL

6. wsdlLocation: the content of the location attribute of the <soap:address> element

In this application, we did not include these optional elements. We will define the location of the WSDL

when we create an Endpoint within the server code (Server.java).

4.2.4.1.2 @SOAPBinding Annotation

This annotation specifies how to map a Web Service onto the SOAP message protocol. These involve

three optional elements:
1. parameterStyle: This can be either BARE or WRAPPED.
2. style: This can be either DOCUMENT or RPC

3. use: This can be either LITERAL or ENCODED.

In this sample application, we use DOCUMENT and RPC styles for two separate Web Services.

Download free eBooks at bookboon.com

4.2.4.1.3 @WebMethod Annotation

This annotation customizes a method that is exposed as a WS operation. There are three (3) optional

elements that can be used with this annotation:

1. action: name of an operation defined within the WSDL
2. exclude: excludes the method from being exposed as an operation of a Web Service

3. operationName: name of the operation.

4.2.4.1.4 @WebParam Annotation

Individual parameters of an operation can be named in the same way as the method. Use this annotation

to change to different names within the WSDL. Optional parameters are:

1. header: if true, the parameter is extracted from the message header instead of from the
message body.

2. mode: there are three basic modes — IN, OUT, and INOUT.

3. name: the parameter is mapped to name in XML element that represents the parameter. If
DOCUMENT style is used, name is required.

4. partName: if RPC style is used, this is the name in the wsdl:part element.

5. targetNamespace: if DOCUMENT style is used, the parameter maps to a header.

4.2.4.2 EmployeeRpcData.java

This class implements the SOAP RPC style of Web Service. It is nearly identical to that of the document
style with the exception of SOAPBinding annotation. This class is used to show the difference between

the two styles in use today.

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-14. EmployeeRpcData.java Class

package com.bemach.ws.rpc.employees;
/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.util.logging.Logger;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;
import javax.xml.soap.SOAPException;

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao; SOAP Style

@WebService
@SOAPBinding (style=SOAPBinding.Style.RPC)
public class EmployeeRpcData {
private static final Logger LOG = Logger.getLogger (EmployeeRpcData.class.
getName ()) ;
private EmployeeDao dao = null;

public EmployeeRpcData (DbConfig cfg) {
dao = new EmployeeDao (cfqg);

@WebMethod
public Employee getEmployee (€WebParam(name="emplNo")long emplNo) throws
SOAPException, Exception ({
LOG.info ("Rpc.readEmployee") ;
Employee employee = getDao () .getEmpl ((int)emplNo) ;
if (employee == null) {
throw new SOAPException ("No such employee!");
}

return employee;

@WebMethod
public long createEmployee (€WebParam (name="employee")Employee employee)
throws Exception {
LOG.info ("Rpc.createEmployee") ;
return getDao () .createEmpl (employee) ;

97

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

@WebMethod
public boolean updateEmployee (@WebParam (name="employee")Employee employee)
throws Exception ({
LOG.info ("Rpc.updateEmployee.") ;
return getDao () .updateEmpl (employee) ;
}

@WebMethod
public boolean deleteEmployee (@WebParam(name="emplNo")long emplNo) throws
Exception {
LOG.info ("Rpc.deleteEmployee.") ;
return getDao () .deleteEmpl ((int)emplNo) ;
}

public EmployeeDao getDao () {
return dao;

}

public void setDao (EmployeeDao dao) {
this.dao = dao;
}

4.2.5 Hosting Web Services

Web Services need to be hosted by a server that provides some basic HT'TP service endpoints. Note that
this type of server is rather simplistic in its implementation for the purpose of WS demonstration. A more
industrial-strength application server, such as WebLogic, JBOSS, or WebSphere, is more appropriate for

medium-sized to large business settings.

4.2.5.1 Server.java

This class implements a HTTP server to host multiple Web Services (e.g., HelloWorld,
EmployeeDocDataService and EmployeeRpcDataService). Each WS is uniquely identified with a

service endpoint.

« HelloWorld Web Service: http://localhost:9999/java-ws/hello?WSDL
« Employee Document Web Service: http://localhost:9999/doc/employees?wsdl
« Employee RPC Web Service: http://localhost:9999/rpc/employees?wsdl

28

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?WSDL
http://localhost:9999/doc/employees?wsdl
http://localhost:9999/rpc/employees?wsdl

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-15. Server.java Class

package com.bemach.ws.server;

* 2013 (C) BEM, Inc., Fairfax, Virginia

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* “WAS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

import java.util.logging.Logger;

import javax.xml.ws.Endpoint;
import javax.xml.ws.EndpointReference;

import com.bemach.data.DbConfig;

import com.bemach.ws.doc.employees.EmployeeDocData;
import com.bemach.ws.hello.HelloWorld;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

/**
*
*/
public final class Server ({
private static final Logger LOG = Logger.getLogger (Server.class.getName());
private static final String MYSQL DRIVER="com.mysql.jdbc.Driver";

private static final String DB HOST = "saintmonica";
private static final String DB PORT = "3306";
private static final String DB SID = "employees";
private static final String DB USER = "empl 1";
private static final String DB PSW = "password";
private Server () {

protected static DbConfig getDbConfig() {
DbConfig dbCfg = new DbConfig () ;
dbCfg.setDriverName (MYSQL DRIVER) ;
dbCfg.setHost (DB _HOST) ;
dbCfg.setPort (DB PORT) ;
dbCfg.setDb (DB _SID) ;
dbCfg.setUid (DB _USER) ;
dbCfg.setPsw (DB _PSW) ;
return dbCfg;

29

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

private static final String HOST NAME = "localhost";

private static final String PORT NO = "9999";

private static final String HELLO SVC NAME = "java-ws/hello";
private static final String RPC EMPL SVC NAME = "rpc/employees";
private static final String DOC EMPL SVC NAME = "doc/employees";
private static final String PROTOCOL = "http";

protected static SvrConfig getSvrConfig() {
SvrConfig svrCfg = new SvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenPort (PORT NO);
svrCfg.setListenInterface (HELLO SVC NAME) ;
svrCfg.setListenProtocol (PROTOCOL) ;
return svrCfg;

protected static Endpoint publish (SvrConfig cfg, Object svc) {
String url = String.format("%s://%s:%s/%s",
cfg.getlListenProtocol (),
cfg.getlListenHostname (),
cfg.getlListenPort (),
cfg.getlistenInterface());
Endpoint ep = Endpoint.publish(url, svc);
EndpointReference epr = ep.getEndpointReference();
LOG.info ("\nEndpoint Ref:\n"+epr.toString());
return ep;

protected static void startHelloWorld() {
SvrConfig cfg = getSvrConfig() ;
cfg.setListenHostname (HOST NAME) ;
cfg.setListenInterface (HELLO SVC NAME) ;
cfg.setListenPort (PORT NO);
cfg.setlListenProtocol (PROTOCOL) ;

HelloWorld hello = new HelloWorld()
publish(cfg, hello);
LOG.info ("HelloWorld service started successfully ...");

protected static void startRpcEmployees () {
SvrConfig svrCfg = getSvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenInterface (RPC _EMPL SVC NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenProtocol (PROTOCOL) ;
DbConfig dbCfg = getDbConfig() ;
svrCfg.setDbCfg (dbCfqg) ;

EmployeeRpcData rpcEmpl = new EmployeeRpcData (dbCfgqg) ;
publish(svrCfg, rpcEmpl);
LOG.info ("Employees (RPC) service started successfully

100

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

protected static void startDocEmployees () {
SvrConfig svrCfg = getSvrConfig() ;
svrCfg.setListenHostname (HOST NAME) ;
svrCfg.setListenInterface (DOC EMPL SVC NAME) ;
svrCfg.setListenPort (PORT NO) ;
svrCfg.setListenProtocol (PROTOCOL) ;
DbConfig dbCfg = getDbConfig() ;
svrCfg.setDbCfg (dbCfqg) ;

EmployeeDocData docEmpl = new EmployeeDocData (dbCfgqg) ;
publish(svrCfg, docEmpl);

LOG.info ("Employees (Document) service started successfully ...");

/**

* Start WS Server with multiple service endpoints...

*

* @param args

*/

public static void main(String[] args) ({

startHelloWorld() ;
startRpcEmployees () ;
startDocEmployees() ;

4.2.5.2 Package the Web Services

This Ant build script builds the java-ws.jar library and stores it in the dist directory. This build requires

two Java libraries: data-svc.jar and mysql-connector-java-5.1.24-bin. jar.

101

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-16. build.xml for java-ws Java Project

<project name="java-ws" default="dist" basedir=".">
<description>
Web Service usign Java.
</description>

<!- set global properties for this build ->
<property environment="env" />
<path id="classpath.base">

<fileset dir="./1ib" includes="**/*_ jar" />
</path>

<path id="classpath.compile">
<path refid="classpath.base" />
</path>

<target name="init">
<mkdir dir="./bin" />
<mkdir dir="./dist" />
</target>

<target name="compile" depends="init" description="compile the source ,>

<javac srcdir="./src" destdir="./bin" debug="true">
<classpath refid="classpath.compile" />
</javac>
</target>

<target name="dist" depends="compile" description="generate the distribution">
<!- Create the distribution directory —->
<Jar jarfile="./dist/java-ws.jar" basedir="./bin" />

</target>

<target name="clean" description="clean up">
<!- Delete the ${build} directory trees ->
<delete dir="./dist" />
<delete dir="./bin" />

</target>

</project>

The output of this build is a JAR file stored in the dist directory. The contents of this library consist of

the following elements:

META-INF/
META-INF/MANIFEST .MF
com/

com/bemach/

com/bemach/ws/

102

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

com/bemach/ws/doc/

com/bemach/ws/doc/employees/

com/bemach/ws/hello/

com/bemach/ws/rpc/

com/bemach/ws/rpc/employees/
com/bemach/ws/server/
com/bemach/ws/doc/employees/EmployeeDocData.class
com/bemach/ws/hello/HelloWorld.class
com/bemach/ws/rpc/employees/EmployeeRpcData.class
com/bemach/ws/server/Server.class

com/bemach/ws/server/SvrConfig.class

43 Deploy Web Services

The server instance runs indefinitely. Use control-C to terminate the process. An alternative way to get
the configuration parameters is to load them from a Java properties file. Note that, for Windows, the

CLASSPATH separator is semi-colon (;) as opposed to colon (:) on UNIX.

Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

103 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/mitas

java -cp ./dist/java-ws.jar;../data-svc/dist/data-svc.jar;./lib/mysqgl-

connector-java-5.1.24-bin.jar com.bemach.ws.server.Server
mysgl-connector-java-5.1.24-bin.jar isaJDBC driver for MySQL database.

Next, we use SOAP to test the Web Services.

4.4 Check WSDL and XSD

We produce three services with three distinct service endpoints. After the server is running, we verify
that these service endpoints are active and ready for service invocations. From a browser, we go to the

URLSs. The service endpoint for the HelloWorld example, http://localhost:9999/java-ws/hello?WSDL, was

examined in earlier chapters. We visit the two employees service endpoints:

4.4.5.1 Document style

WSDL and XSD of the employees Web Service are shown in the following listings. A client application

developer uses these WSDL documents to generate a Web Service stub for use inside their application.

Download free eBooks at bookboon.com

http://localhost:9999/java-ws/hello?WSDL

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-17. WSDL of a DOCUMENT Style

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://employees.doc.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://employees.doc.ws.bemach.com/"
name="EmployeeDocDataService">
<types>
<xsd:schema>
<xsd:import namespace="http://employees.doc.ws.bemach.com/"
schemaLocation="http://localhost:9999/doc/employees?xsd=1" />
</xsd:schema>
<xsd:schema>
<xsd:import namespace="http://bemach.com"
schemaLocation="http://localhost:9999/doc/employees?xsd=2" />
</xsd:schema>
</types>

P el e o e e e e e e e S e e e e e e e e e e e e e e e e

| <message name='"getEmployee'"> !
1 <part name='"parameters" element="tns:getEmployee" />
l</message>

| <message name='"getEmployeeResponse'>

1 <part name='"parameters'" element='"tns:getEmployeeResponse" />
</message>

1
e e e e e e e o e = - e o e e e o e e - - -

<part name="fault" element="tns:SOAPException" />
</message>
<message name="createEmployee">
<part name="parameters" element="tns:createEmployee" />
</message>
<message name="createEmployeeResponse">
<part name="parameters" element="tns:createEmployeeResponse" />
</message>
<message name="updateEmployee">
<part name="parameters" element="tns:updateEmployee" />
</message>
<message name="updateEmployeeResponse">
<part name="parameters" element="tns:updateEmployeeResponse" />
</message>
<message name="deleteEmployee">
<part name="parameters" element="tns:deleteEmployee" />
</message>
<message name="deleteEmployeeResponse">
<part name="parameters" element="tns:deleteEmployeeResponse" />
</message>
<portType name="EmployeeDocData">
<operation name="getEmployee">
<input message="tns:getEmployee" />
<output message="tns:getEmployeeResponse" />
<fault message="tns:SOAPException" name="SOAPException" />
</operation>
<operation name="createEmployee">
<input message="tns:createEmployee" />
<output message="tns:createEmployeeResponse" />

</operation>

105

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

<operation name="updateEmployee">
<input message="tns:updateEmployee" />
<output message="tns:updateEmployeeResponse" />
</operation>
<operation name="deleteEmployee">
<input message="tns:deleteEmployee" />
<output message="tns:deleteEmployeeResponse" />
</operation>
</portType>
<binding name="EmployeeDocDataPortBinding" type="tns:EmployeeDocData">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

| <operation name='"getEmployee =

: <soap:operation soapAction="" />

1 <input>

1 <soap:body use="literal"” />

: </input> |

I <output> !

1 <soap:body use="literal" />

: </output> |

I <fault name="SOAPException'>

1 <soap:fault name="SOAPException" use="literal" /> :

: </fault> |
1

<operation name="createEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="updateEmployee'">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="deleteEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>

106

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

<service name="EmployeeDocDataService">
<port name="EmployeeDocDataPort" binding="tns:EmployeeDocDataPortBinding">
<soap:address location="http://localhost:9999/doc/employees" />
</port>
</service>
</definitions>

Consider the operation getEmployee (highlighted). This operation has one input and one output
element. These elements are defined in the message area above. These messages are getEmployee and
getEmployeeResponse, which are of tns:getEmployee and tns:getEmployeeResponse types, respectively.
The types are defined in the schema located at http://localhost:9999/doc/employees?xsd=1. See

highlighted area.

URL for associated schema:

&’ DUSiness

W school 9 3%

OF MIM STUDENTS ARE
WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRAD

T

MASTER IN MANAGEMENT

- STUDY IN THE CENTER OF MADRID'AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
THAT THE CAPHAEOESPAIN'OFEERS

+ PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
PROFESSIONAEGOAES

- STUDY A SEMESTER'ABROAD AND BECOME"A GLOBAL CITIZEN'WITH THE'BEYOND BORDERS
EXPERIENCE

Length: 10 MONTHS

Av. Experience: 1 YEAR
Language: ENGLISH['SPANISH:
Format: FULL-TIME

Intakes: SEPT | FEB

PERSONALIZE YOUR PROGRAM AN M ENT IN CLASS

FINANCIAL TIMES

5 SPECIALIZATIONS #10 WORLDWIDE I 55 NATIONALITIES

www.ie.edu/master-management | mim.admissions@ieedu | @ © Follow us on IE MIM Experience

107 Click on the ad to read more

Download free eBooks at bookboon.com

http://localhost:9999/doc/employees?xsd=1
http://s.bookboon.com/MIMEnglish

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-18. Schema (XSD) of a Web Service

<xs:schema xmlns:tns="http://employees.doc.ws.bemach.com/"
xmlns:nsl="http://bemach.com" xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
version="1.0" targetNamespace="http://employees.doc.ws.bemach.com/">
<xs:import namespace="http://bemach.com"
schemalLocation="http://localhost:9999/doc/employees?xsd=2" />
<xs:element name="SOAPException" type="tns:SOAPException" />
<xs:element name="createEmployee" type="tns:createEmployee" />
<xs:element name="createEmployeeResponse" type="tns:createEmployeeResponse" />
<xs:element name="deleteEmployee" type="tns:deleteEmployee" />
<xs:element name="deleteEmployeeResponse" type="tns:deleteEmployeeResponse" />
<xs:element name="getEmployee" type="tns:getEmployee" />
<xs:element name="getEmployeeResponse" type="tns:getEmployeeResponse" />
<xs:element name="updateEmployee" type="tns:updateEmployee" />
<xs:element name="updateEmployeeResponse" type="tns:updateEmployeeResponse" />
<xs:complexType name="deleteEmployee">
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="deleteEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="createEmployee">
<xs:sequence>
<xs:element name="employee" type="tns:employee" minOccurs="0" />
</xs:sequence>
</xs:complexType>
1 <xs:sequence> :
: <xs:element name="emplNo" type="xs:long" /> !
| <xs:element name="firstName" type="xs:string" /> :
1 <xs:element name="lastName" type='"xs:string" /> 1
| <xs:element name="birthDate" type='"xs:dateTime" /> 1
: <xs:element name='"gender" type="xs:string" /> :
" <xs:element name="hireDate" type='"xs:dateTime" /> 1
1 </xs:sequence> 1
| </xs:complexType> !

<xs:complexType name="createEmployeeResponse">

<xs:sequence>
<xs:element name="return" type="xs:long" />

</xs:sequence>

</xs:complexType>

: <xs:sequence>

1 <xs:element name="emplNo" type='"xs:long" />

1 </xs:sequence>

l</xs:complexType>

| <xs:complexType name='"getEmployeeResponse'>

1 <xs:sequence>

| <xs:element name="return" type='"tns:employee” minOccurs="0" />

: </xs:sequence>

1

108

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

<xs:complexType name="SOAPException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateEmployee">
<xs:sequence>
<xs:element name="employee" type="tns:employee" minOccurs="0" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
</xs:schema>

4.4.5.2 RPC Style

The difference between the WSDLs of RPC and Document styles can be difficult to detect; however,
XSDs are visibly different. All data types for the document style are defined using XML schema, while

all the simple data types (e.g., integer, long, string) are defined within the WSDL.

“I studied
English for 16 P
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

109 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/EOT

Introduction to Web Services with Java A Sample Web Service Application

Listing 4-19. WSDL of a RPC Style

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://employees.rpc.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://employees.rpc.ws.bemach.com/"
name="EmployeeRpcDataService">
<types>
<xsd:schema>
<xsd:import namespace="http://employees.rpc.ws.bemach.com/"
schemalocation="http://localhost:9999/rpc/employees?xsd=1" />
</xsd:schema>
<xsd:schema>
<xsd:import namespace="http://bemach.com"
schemalocation="http://localhost:9999/rpc/employees?xsd=2" />
</xsd:schema>
</types>
<message name="getEmployee">
<part name="emplNo" type="xsd:long" />
</message>
<message name='"getEmployeeResponse'">
<part name="return" type="tns:employee" />
</message>
<message name="SOAPException">
<part name="fault" element="tns:SOAPException" />
</message>
<message name="createEmployee">
<part name="employee" type="tns:employee" />
</message>
<message name="createEmployeeResponse">
<part name="return" type="xsd:long" />
</message>
<message name="updateEmployee">
<part name="employee" type="tns:employee" />
</message>
<message name="updateEmployeeResponse">
<part name="return" type="xsd:boolean" />
</message>
<message name="deleteEmployee">
<part name="empINo" type="xsd:long" />
</message>
<message name="deleteEmployeeResponse">
<part name="return" type="xsd:boolean" />
</message>
<portType name="EmployeeRpcData">
<operation name="getEmployee">
<input message="tns:getEmployee" />
<output message="tns:getEmployeeResponse" />
<fault message="tns:SOAPException" name="SOAPException" />
</operation>
<operation name="createEmployee">
<input message="tns:createEmployee" />
<output message="tns:createEmployeeResponse" />
</operation>

110

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

<operation name="updateEmployee">
<input message="tns:updateEmployee" />
<output message="tns:updateEmployeeResponse" />
</operation>
<operation name="deleteEmployee">
<input message="tns:deleteEmployee" />
<output message="tns:deleteEmployeeResponse" />
</operation>
</portType>
<binding name="EmployeeRpcDataPortBinding" type="tns:EmployeeRpcData">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc" />
<operation name="getEmployee"> I

<soap:operation soapAction="" /> Style
<input>

<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>

<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>

<fault name="SOAPException">
<soap:fault name="SOAPException" use="literal" />
</fault>
</operation>
<operation name="createEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>
</operation>
<operation name="updateEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>
</operation>
<operation name="deleteEmployee">
<soap:operation soapAction="" />
<input>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</input>
<output>
<soap:body use="literal" namespace="http://employees.rpc.ws.bemach.com/" />
</output>
</operation>
</binding>

111

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

<service name="EmployeeRpcDataService">
<port name="EmployeeRpcDataPort" binding="tns:EmployeeRpcDataPortBinding">
<soap:address location="http://localhost:9999/rpc/employees" />
</port>
</service>
</definitions>

Unlike the document style, the XSD documents for the RPC style are kept simple. Most of the basic data
types are defined inside the WSDL instead of in the XSD.

Listing 4-20. XSD of a Web Service (RPC)

<xs:schema xmlns:tns="http://employees.rpc.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" version="1.0"
targetNamespace="http://employees.rpc.ws.bemach.com/">
<xs:element name="SOAPException" type="tns:SOAPException" />
<xs:complexType name="employee'>
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="birthDate" type="xs:dateTime" />
<xs:element name='"gender" type="xs:string" />
<xs:element name="hireDate" type='"xs:dateTime" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="SOAPException">
<xs:sequence>
<xs:element name="message" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:schema>

Listing 4-21. An Additional XSD of a Web Service

<xs:schema xmlns:nsl="http://employees.rpc.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"™ version="1.0"
targetNamespace="http://bemach.com">
<xs:import namespace="http://employees.rpc.ws.bemach.com/"
schemalocation="http://localhost:9999/rpc/employees?xsd=1" />
<xs:element name="EmployeeService" type="nsl:employee" />
</xs:schema>

45 Test Web Services with SOAPUI

First, create a SOAPUI project for each of the WS endpoints. Then, run the operation of each Web Service.

112

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

4.5.1 SOAPUI projects

Web Service can be tested using SOAPUI, which is an open source cross-platform functional testing
tool that can be used to test Web Services. Like Eclipse, SOAPUI is organized into projects. Each project
usually manages one service endpoint. Each service endpoint contains one or more operations that can
be called from a client machine. In order to test a Web Service, all you really need is a service endpoint

URL provided by your service provider.

The following figure shows how to create a SOAPUI test project for the employees data service with

document style at this service endpoint: http://localhost:9999/doc/employees?WSDL.

& Muw soagplll Project E3
rw il Project '-HI
Craanes B ERd waE | e N CR SEiDE | e
P BAE Erhdre Dolrwal
o [T, R R I 2 S, R e e e | [R
Crreie Bepars B S R e T T e
o [elade: Lrpili @ Pl Bo Tl e ied WL & WD
Creaie Mool Gerdoe: Lopaiea m el Terers Tevadsiny of e mpased T

il i
Faiifrn P Tt Al e pE o pend rel@lvey B el e L oegaeed deve
CreetE Yesl Tonk e Oopaem m TeyiTms it & ek Beons ey wradm B fiomation g’ ool [edimg

L] | o | Coassd

Figure 4-13. Create a SOAPUI Project

Excellent Economics and Business programmes at:

7o —

Wy ' SO
university of E AACSB
groningen - ACCREDITED

| .
| |
“The perfect start
of a successful,

'- ., international career.
»
y s HERE
sy o A CLICK

| to discover why both socially
and academically the University

of Groningen is one of the best
places for a student to be

="

www.rug.nl/feb/education

113 Click on the ad to read more

Download free eBooks at bookboon.com

http://localhost:9999/doc/employees?WSDL
http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

Introduction to Web Services with Java A Sample Web Service Application

Once the project has been created, a set of operations will appear, as shown in the following figures.
Note that you can now start testing these WS operations. In our example, four operations are visible:

createEmployee, deleteEmployee, getEmployee, and updateEmployee.

o NS ey I =
LT Ralry L b i

Il*'.""""'".
B e S ey

-J:\ 7

O W p——— Operatio

LS R R AW A S e

Figure 4-14. List of Oerations of a Web Service

Double-clicking on Requestl of the createEmployee operation will cause a multi-pane window to be

displayed. You can fill in the parameters and run the test by clicking on the green triangle to the left panel.

L &_N__N = — —
LE EICE AR L

Return here

e —— | — | o——

= il 5 A - e e w - | S ——

e = i Tk
_! Y T

Figure 4-15. Execute a SOAP Operations

Other operations of the service can be tested in the same way.

114

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

Web Service with an RPC style can be tested in a similar way. The only difference is that when you create
a SOAPUI project, you provide a different service endpoint (URL). A SOAPUI project can be created
for EmployeeData service with RPC style as follows:

- MNew soaplil Project
R soaplil Project i,
Craifal b fom dsandl] Mypdd® kS weiripkia =
FTOEE T Bl BAC
Trwbal RN WA W oo e rpe evprpra s S0 [riretr.
Crante Ripaes: «F Crast® eempde o e sl epsesnanad
[TR L Crgali B Tastbyile tof P oo T WS, o WAL
Craste kleckfavicn Crbales & Web Service Brmalalion of B impartivd W
B BEST Sendok:
Filiptwa Mothac Sioren ol file paiin preject redatrely be proea B | requires s

Crpala Wb TestCass: | | Oraali i TemCais with & Tl Rioordng s Tor fusctodal vl Eiing
v (5] [coe

Figure 4-16. Create a new SOAPUI Project

4.6 Develope a Web Service Consumer

Developing a WS consumer (or client) involves three major activities: creating a client stub, creating a
client code that uses the client stub to call service operations, and running the client. These activities

are described as follows.

American online

is currently enrolling in the
Interactive Online
programs:

enroll by September 30th, 2014 and
save up to 16% on the tuition!

pay in 10 installments / 2 years
Interactive Online education

visit to

vvyvVvyyVvyy

find out morel

Note: LIGS University is not accredited by an
nationallg' recognized accrediting agency listed
by the US Secretary of Education.

ore info here.

—

115 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/LIGS

Introduction to Web Services with Java A Sample Web Service Application

Create Client Create Client
Stub Code
Start En

Figure 4-17. Activities for Creating a Web Service Client

4.6.1 Creating Client Stub with wsimport

Writing a SOAP client with SAAJ can be complex and time-consuming. See section 2.4 for details.

Instead, we will use the wsimport tool to generate WS artifacts (stubs).
First, create a Java Project under Eclipse IDE and call it ‘java-ws-client.

1. At the command prompt, go to the Java Project for Eclipse called ‘java-ws-client’
2. Create a folder called ‘generated.

3. To generate WS stubs, run the following commands:

wsimport -d . http://localhost:9999/doc/employees?WSDL
wsimport -d . http://localhost:9999/rpc/employees?WSDL
wsimport -d . http://localhost:9999/java-ws/hello?WSDL

4. To create a Java library, run the following command:
jJar —cvf ../lib/java-ws—-generated.jar *
5. To verify the content of the created jar, run this command:
jar -tf ../lib/java-ws-generated.jar *
The content of the library should appears as follows:

META-INF/

META-INF/MANIFEST.MF

com/

com/bemach/
com/bemach/ObjectFactory.class
com/bemach/ws/
com/bemach/ws/doc/
com/bemach/ws/doc/employees/

com/bemach/ws/doc/employees/CreateEmployee.class

116

Download free eBooks at bookboon.com

com/bemach/ws/doc/employees/CreateEmployeeResponse.class
com/bemach/ws/doc/employees/DeleteEmployee.class
com/bemach/ws/doc/employees/DeleteEmployeeResponse.class
com/bemach/ws/doc/employees/Employee.class
com/bemach/ws/doc/employees/EmployeeDocData.class
com/bemach/ws/doc/employees/EmployeeDocDataService.class
com/bemach/ws/doc/employees/GetEmployee.class
com/bemach/ws/doc/employees/GetEmployeeResponse.class
com/bemach/ws/doc/employees/ObjectFactory.class
com/bemach/ws/doc/employees/package-info.class
com/bemach/ws/doc/employees/SOAPException.class
com/bemach/ws/doc/employees/SOAPException Exception.class
com/bemach/ws/doc/employees/UpdateEmployee.class
com/bemach/ws/doc/employees/UpdateEmployeeResponse.class
com/bemach/ws/hello/
com/bemach/ws/hello/HelloWorld.class
com/bemach/ws/hello/HelloWorldService.class
com/bemach/ws/hello/ObjectFactory.class
com/bemach/ws/hello/package-info.class
com/bemach/ws/hello/Say.class
com/bemach/ws/hello/SayResponse.class

com/bemach/ws/rpc/

com/bemach/ws/rpc/employees/
com/bemach/ws/rpc/employees/Employee.class
com/bemach/ws/rpc/employees/EmployeeRpcData.class
com/bemach/ws/rpc/employees/EmployeeRpcDataService.class
com/bemach/ws/rpc/employees/ObjectFactory.class
com/bemach/ws/rpc/employees/package-info.class
com/bemach/ws/rpc/employees/SOAPException.class

com/bemach/ws/rpc/employees/SOAPException Exception.class

These commands generate java binary code that can become part of a client program that calls Web

Services. Next, we create a Java library that contains the generated code: java-ws-generated.jar. This library
should be included as part of a library set for the Eclipse IDE. It is also a part of the Java CLASSPATH

during execution.

46.2 Create Client Code

We present two types of client code - document style and RPC style. Both are commonly used in WS

programming today; however, document style is preferred.

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

After the coding has been completed, the java-ws-client project should look like this:

R e e e i ® ="
i poenresma ot e el chev ¥

Al B WA SR PR A e an
L e e W N el i [T iE

e B Sy iy Lot 02 ok
| R AR L SR wralatie
o gl Y g 0 B
".'_‘ s Cl R s G RN
ST S A il = St (K] Db A i] C4/004
o] s v - T

¢ RS 5
[]

Figure 4-18. Screenshot of java-ws-client Java Project

118

Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/GTca

Introduction to Web Services with Java A Sample Web Service Application

4.6.2.1 EmployeesDocClient.java

This client code uses the generated client stub for making WS calls to the remote server. One important
class is the QName, where we create a qualified name that contains the targetNamespace and the name
attributes of the definitions element of the WSDL. The next important class is the URL where we create
a service endpoint as the location attribute of the soap:address element of the WSDL. From these two
classes, we can then create a service which we map onto the set of operations that the service provides.
Mapping the port onto the EmployeeDocData is specified as a type attribute of the binding element
within the WSDL. Once we get the port, we can call the operations as we did with the local method

invocation in Java.

Listing 4-22. EmployeesDocClient.java Class

package com.bemach.ws.employees.client;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Logger;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import com.bemach.ws.doc.employees.Employee;

import com.bemach.ws.doc.employees.EmployeeDocData;

import com.bemach.ws.doc.employees.SOAPException Exception;
import com.bemach.ws.rpc.employees.EmployeeRpcDataService;

* This code relies on ws client generated code using wsimport program:
* wsimport -d . http://localhost:9999/doc/employees?WSDL

* wsimport -d . http://localhost:9999/rpc/employees?WSDL

* wsimport -d . http://localhost:9999/ch-1/HelloWorld?WSDL

* jar cvf ../ws-ch-l-generated.jar *

119

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

public class EmployeesDocClient {
private static final Logger LOG = Logger.getLogger (EmployeesDocClient.
class.getName ());
private EmployeeDocData emplDs

null;

public EmployeesDocClient (String urlStr, String targetNs, String name)
throws MalformedURLException {
LOG.info ("Constructor ...");
QName gName = new QName (targetNs, name) ;
URL url = new URL (urlStr);
Service service = EmployeeRpcDataService.create(url, gName) ;
emplDs = service.getPort (EmployeeDocData.class);

public Employee get (long id) throws SOAPException Exception {
return emplDs.getEmployee (id) ;

public long create (Employee empl) {
return emplDs.createEmployee (empl) ;

public boolean delete(long id) {
return emplDs.deleteEmployee (id) ;

public boolean update (Employee empl) {
return emplDs.updateEmployee (empl) ;

/**
* @param args
* @throws MalformedURLException
* @throws SOAPException Exception
*/
public static void main(String[] args)
throws MalformedURLException, SOAPException Exception {
LOG.info ("Calling Employee (Document) data service ... ");
String targetNameSpace = "http://employees.doc.ws.bemach.com/";
String name = "EmployeeDocDataService";
String urlStr = String.format("http://localhost:%s/doc/
employees",args[0]);

EmployeesDocClient cli = new EmployeesDocClient (urlStr, targetNam-
eSpace, name);

long oldEmplNo = Integer.valueOf(args(l]);
Employee empl = cli.get (oldEmplNo)
LOG.info ("last="+empl.getLastName (
LOG.info ("hire="+empl.getHireDate (
LOG.info ("last="+empl.getLastName (
LOG.info ("first="+empl.getFirstName

’

())
()) i
())
()

()

120

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

empl.setFirstName ("Silvester");
empl.setLastName ("Johnny") ;

long newEmplNo = cli.create(empl);
LOG.info ("emplNo="+newEmplNo) ;

Employee newEmpl = cli.get (newEmplNo) ;

newEmpl.setLastName ("New—-name") ;
newEmpl.setEmplNo (newEmplNo) ;

boolean status = cli.update (newEmpl) ;
LOG.info ("update:"+status);

LOG.info ("last="+newEmpl.getLastName ()) ;
LOG.info ("first="+newEmpl.getFirstName ()) ;

status = cli.delete (newEmplNo) ;
LOG.info ("deleteEmployee:"+status) ;
LOG.info ("Exit!"™);

4.6.2.2 EmployeesRpcClient.java

This class is nearly identical to that of the document-style client code. Thus, any difference between the
two styles of client code is nearly impossible to notice at this level. The significant difference is in the

coding within the SOAP engine on the client side.

Listing 4-23. EmployeesRpcClient.java Class

package com.bemach.ws.employees.client;
/**
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Logger;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import com.bemach.ws.rpc.employees.Employee;

import com.bemach.ws.rpc.employees.EmployeeRpcData;

import com.bemach.ws.rpc.employees.EmployeeRpcDataService;
import com.bemach.ws.rpc.employees.SOAPException Exception;

121

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

/**

* This code relies on ws client generated code using wsimport program:

* wsimport -d . http://localhost:9999/rpc/Employees?WSDL

* jar cvf ../ws-ch-l-generated.jar *

*

*/
public class EmployeesRpcClient {

private static final Logger LOG = Logger.getLogger (EmployeesRpcClient.

class.getName ());

private EmployeeRpcData emplDs null;
public EmployeesRpcClient (String urlStr, String targetNs, String name)
throws MalformedURLException {
LOG.info ("Constructor ...");
OName gName = new QName (targetNs, name);
URL url = new URL (urlStr);
Service service = EmployeeRpcDataService.create(url, gName) ;
emplDs = service.getPort (EmployeeRpcData.class);

public Employee get (long id) throws SOAPException Exception {
return emplDs.getEmployee (id) ;

public long create (Employee empl) {
return emplDs.createEmployee (empl) ;

public boolean delete(long id) {
return emplDs.deleteEmployee (id) ;

public boolean update (Employee empl) {
return emplDs.updateEmployee (empl) ;

/**
* @param args
* @throws MalformedURLException
* @throws SOAPException Exception
*/
public static void main(String[] args)
throws MalformedURLException, SOAPException Exception {
LOG.info ("Calling Employee (RPC) data service ... ");

String targetNameSpace = "http://employees.rpc.ws.bemach.com/";
String name = "EmployeeRpcDataService";

String urlStr = String.format("http://localhost:%s/rpc/employees",args[0]);

EmployeesRpcClient cli = new EmployeesRpcClient (urlStr, targetNameSpace, name);

122

Download free eBooks at bookboon.com

Introduction to Web Services with Java A Sample Web Service Application

long oldEmplNo = Integer.valueOf(args[l]);
Employee empl = cli.get (oldEmplNo) ;

LOG.info ("last="+empl.getLastName ()) ;
LOG.info ("hire="+empl.getHireDate());
LOG.info ("last="+empl.getLastName ()) ;
LOG.info ("first="+empl.getFirstName ()) ;

empl.setFirstName ("Silvester");
empl.setLastName ("Johnny") ;

long newEmplNo = cli.create(empl);
LOG.info ("emplNo="+newEmplNo) ;

Employee newEmpl = cli.get (newEmplNo) ;

newEmpl.setLastName ("New—-name") ;
newEmpl.setEmplNo (newEmplNo) ;

boolean status = cli.update (newEmpl) ;
LOG.info ("update:"+status) ;

LOG.info ("last="+newEmpl.getLastName ()) ;
LOG.info ("first="+newEmpl.getFirstName ()) ;

status = cli.delete (newEmplNo) ;
LOG.info ("deleteEmployee:"+status) ;
LOG.info ("Exit!");

sssssssssssssvssssssssssssssssssssssssssssesssssnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"', L S
-

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

123 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/AlcatelLucent

46.3 Run the Client Application

With each of the client codes, we implemented one of the main methods for unit-testing purposes. Each
in this class can run as a standalone Java application. To run these applications, the following command

is used:

java -cp Jjava-ws-client.jar;./lib/java-ws-generated.jar com.bemach.

ws.employees.client.EmployeesDocClient
or

Java -cp Jjava-ws-client.jar;./lib/ws-ch-l-generated.jar com.bemach.

ws.employees.client.EmployeesRpcClient

Download free eBooks at bookboon.com

5 Apache CXF and Tomcat Server

Objectives

After completing this chapter, you should be able to:

1. Develop a Java Web Application
2. Package a Web Application
3. Deploy a Web Application to Apache Tomcat 7 server

Deploying a Web Service using JDK alone is not adequate for large and complex systems. In this chapter,
we will learn to develop and deploy Web Services using Apache CXF Web Services and Apache Tomcat
server 7. Tomcat is an open source software program that implements Java Servlet and Java Server Page

(JSP) technologies.

Apache CXF can be downloaded from Apache’s website http://cxf.apache.org. Follow the download and

installation instructions for your machine. The CXF WS project includes many of its Java libraries. The

list of required libraries is shown in this section.

5.1 Configuration Parameters

The default port used for the Tomcat server is 8080. We keep this default for the Tomcat server that hosts
the sample application we developed in the previous chapter. In fact, we use all of the default values that

come with the Tomcat server.

5.2 Apache Tomcat Server

To run a Tomcat 7 server, go to the apache-tomcat-7.0.12/bin directory and run startup.cmd or startup.sh.

53 Develop CXF Web Service

Developing a Web Service using the Apache CXF software package is similar to that of the reference

implementation that comes with the JDK.

531 Class Diagram

Consider the following updated class diagram. In this diagram, we added two classes — EmployeeDatalf.

java and EmployeeData.java. The latter implements the interface of the former.

Download free eBooks at bookboon.com

http://cxf.apache.org

Introduction to Web Services with Java Apache CXF and Tomcat Server

<<worker>> PR
SeIven CXFServiet
/ N {

<<JavaBean>> <<Web Service>> <<Web Service>> <<Web Service>>

SvrConfig EmployeeDocData EmployeeRpcData EmployeeData

<<utility>> <<interface>>
EmployeeDao EmployeeDatalf

<<JavaBean>> <<JavaBean>> <<utility>>
DbConfig Employee DbConnection

Figure 5-1. Class Diagram for a CXF Web Service

53.2 Deployment Diagram

We will deploy the Java Web Application onto the Tomcat 7 server.

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
M + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd « 2" place: MSc Management of Learning
. - 2" place: MSc Economics
ECOHOm |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

126 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.mastersopenday.nl

Introduction to Web Services with Java

<<Java>>
EmployessClient
1

<<Library>>
cxf-ws-client.jar

1

<<Application Server>>
Tomcat

1

JDBC

Apache CXF and Tomcat Server

<<Database>>

MySQL

1

<<Web Application>>
oxf-ws.war

<<schema>>
employees

<<Library>>
cxf-ws-generated.jar

Figure 5-2. Deployment Diagram for a CXF Web Service
Developing and deploying Web Services involves the following major activities:
Create a dynamic Web application.
Create Web Services in Java.

Package the WAR file.
Deploy the WAR file to the Tomcat 7 server.

Create Web Package a Deploy the
Services WAR services

Figure 5-3. Activities for Creating a Web Service Application

L .

Createa

Dynamic Web
Application

533 Create a Dynamic Web Application

From Eclipse, create a new dynamic Web Project. The steps are as follows:

o Choose File - New — Other ... - Web — Dynamic Web Project

o Choose all default values and name the project ‘cxf-ws’

o Choose cxf-ws project from the left panel, choose File - New — Folder. Name new folder
lib.

« Now, we need the following Java libraries:

- mysgl-connector-java-5.1.24-bin.jar: This contains the JDBC
driver for MySQL database.

- java-ws.jar: This contains the main logic for accessing
the database.

- data-svc.jar: This contains the data access classes.

127

Download free eBooks at bookboon.com

o Import these files (from previous projects and from the Apache CXF distribution) into the

lib folder we created earlier:
mysgl-connector-java-5.1.24-bin.jar
ws-ch-1.Jjar
aopalliance-1.0.jar
asm-3.3.jar
axis.jar
commons—-dbcp-1.4.jar
commons-discovery-0.2.Jjar
commons-logging-1.1.1.jar
commons-logging.jar
cxf-2.4.0.jar
geronimo-activation 1.1 spec-1.1.jar
geronimo-annotation 1.0 spec-1.1.1.jar
geronimo-javamail 1.4 spec-1.7.1l.jar
geronimo-servlet 3.0 spec-1.0.jar
geronimo-ws-metadata 2.0 spec-1.1.3.jar
jaxb-api-2.2.1.jar
jaxb-impl-2.2.1.1.jar
jaxrpc.jar
neethi-3.0.0.jar
saaj-api-1.3.jar
saaj-impl-1.3.2.jar
spring-aop-3.0.5.RELEASE. jar
spring-asm-3.0.5.RELEASE. jar
spring-beans-3.0.5.RELEASE. jar
spring-context-3.0.5.RELEASE. jar
spring-core-3.0.5.RELEASE. jar
spring-expression-3.0.5.RELEASE. jar
spring-web-3.0.5.RELEASE. jar
stax2-api-3.1.1.jar
woodstox-core-asl-4.1.1.jar
wsdl4j-1.6.2.jar
wsdl4j.jar
xml-resolver-1.2.jar

xmlschema-core-2.0.jar

Download free eBooks at bookboon.com

Introduction to Web Services with Java

Apache CXF and Tomcat Server

After we have finished coding Java classes for cxf-ws, the project should look like this:

,H Ao = i
: Par [ah Bplsis foooe Mavigair Sogecs
fierm B T e A g ey
5 w8 - = T
T wpcuaga | prore 11 g il u

- LB i
= B v Bk ek n
= Lrosdren s o biskeg
% Proioree Do e
e Sy | e
. By e |2 e

i BT SyErm ey
2 Empgl
S
3]
& s WSk
e T M9
w3 R
im
[
oD
AT
5 el D e
il - Ao e
Tl 0% -

i ¥

|
|| atem
|
I

Figure 5-4. Screenshot of a Dynamic Web Project

iR e e

:'1-'5u' Windom |hcie
S L

i e I e o Wk

i
Gk i)

L o 2= 1

FY-ERel

171 |l A st 008

=
L2
1 i

| I J, o 1 -
1
) stfatedic Marketili
| Management,

>rnationalgie

-inancial BI Business

conomjcs
Organlsatlo

/
Psyelglog

Shipping ‘
g ageetl . N

—

Leadership 55

W
W

| " B

|

|

Iy

NORWEGIAN L erwo
BUSINESS SCHOOL ~ ~ £9Uss

ACEREDITED

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisaticnal Psychology

www.bi.edu/master

129

Download free eBooks at bookboon.com

Click on the ad to read more

http://s.bookboon.com/BI

Introduction to Web Services with Java Apache CXF and Tomcat Server

5.3.4 Create Web Service

From the cxf-ws/Java Resources/src directory, create a Java package called ' com.bemach.

ws.cxf'. From this package, create one Java interface and one Java class.

5.3.4.1 EmployeeDatalf.java

We introduced another approach to create a Web Service using Java interface. This gives us a cleaner
way to specify the service interface prior to implementing the Web Service. All WS annotations that

were normally used for a Java class are used in a similar way.

Listing 5-1. EmployeeDatalf.java Class with Web Service Annotations

package com.bemach.ws.cxf;
/*k*
* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.sqgl.SQLException;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;
import javax.xml.soap.SOAPException;

import com.bemach.data.Employee;

@WebService
@SOAPBinding (style=SOAPBinding.Style.DOCUMENT)
public interface EmployeeDataIf ({
@WebMethod
Employee getEmployee (@WebParam (name="emplNo")long emplNo) throws
SOAPException, SQLException;

@WebMethod
long createEmployee (€WebParam (name="employee")Employee employee) throws
SOAPException, SQLException;

@WebMethod
boolean updateEmployee (@WebParam (name="employee")Employee employee) throws
SOAPException, SQLException;

@WebMethod

boolean deleteEmployee (@WebParam (name="emplNo")long emplNo) throws
SOAPException, SQLException;
}

130

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

The service will contain four basic operations:

1. The getEmployee method, which returns an employee of a given employee number. If not
found, an exception is thrown;

2. The createEmployee method, which returns an employee number if created successfully. If
failed, the method returns -1;

3. The updateEmployee method, which returns a Boolean value of true if successful, otherwise
false; and

4. The deleteEmployee method, which returns a Boolean value of true if successful, otherwise

false.

5.3.4.2 EmployeeData.java

This class is a wrapper class of the EmployeeDao.java class that we have seen earlier. It implements the

WS interface EmployeeDatalf.

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your “

topic area. Find out what you can do to improve
the quality of your dissertation! ' PRU
¥ o -
OO P"@
Get Help Now 0“00% 3
r.P\lk"‘“ﬁ& -
Go to www.helpmyassignment.co.uk for more info E:/Helpmyassignment

131 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.helpmyassignment.co.uk

Introduction to Web Services with Java Apache CXF and Tomcat Server

Listing 5-2. EmployeeData.java: An implementation of a Web Service Interface

package com.bemach.ws.cxf;

/**

* 2013 (C) BEM, Inc., Fairfax, Virginia

*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*

import java.sqgl.SQLException;
import java.util.logging.Logger;

import javax.jws.WebService;
import javax.xml.soap.SOAPException;

import com.bemach.data.DbConfig;
import com.bemach.data.Employee;
import com.bemach.data.EmployeeDao;

@WebService (endpointInterface="com.bemach.ws.cxf.EmployeeDatalIf")
public class EmployeeData implements EmployeeDataIf {

private static final Logger LOG = Logger.getLogger (EmployeeData.class.getName());
private static DbConfig cfg = new DbConfig() ;

public static DbConfig getCfg() {
return cfg;

public static void setCfg (DbConfig cfg) {
EmployeeData.cfg = cfg;

public EmployeeData (DbConfig cfg) {
EmployeeData.cfg = cfg;

public EmployeeData () {
}

@Override
public Employee getEmployee (long emplNo) throws SOAPException, SQLException

LOG.info ("read employee");

EmployeeDao dao = new EmployeeDao (cfqg) ;
Employee employee;

employee = dao.getEmpl ((int) emplNo);

if (employee == null) {
throw new SOAPException ("GetEmployee: No such employee!");

132

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

return employee;

@Override

public long createEmployee (Employee employee) throws SOAPException, SQLException {
LOG.info ("create employee");
EmployeeDao dao = new EmployeeDao (cfqg);
return dao.createEmpl (employee) ;

@Override
public boolean updateEmployee (Employee employee) throws SOAPException,
SQLException {
LOG.info ("update employee.");
EmployeeDao dao = new EmployeeDao (cf9q) ;
return dao.updateEmpl (employee) ;

@Override

public boolean deleteEmployee (long emplNo) throws SOAPException, SQLException ({
LOG.info ("delete employee.");
EmployeeDao dao = new EmployeeDao (cfqg) ;
return dao.deleteEmpl ((int)emplNo) ;

A default configuration is used. The EmployeeData constructor can be used to modify the configuration

cfg object if necessary.

535 Package a WAR

The two important files — beans.xml and web.xml - are stored in the WEB-INF directory of the WAR
file. These files assist the Tomcat Server and CXF to implement the Web Services that perform the actual
work. Remember, we implement the sample Web Service using a Web application to be deployed on a

Web application server (Tomcat or others).

133

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

5.3.5.1 Create web.xml

Listing 5-3. Content of web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/beans.xml</param-value>
</context-param>

<listener>
<listener-class>
org.springframework.web.context.ContextLoaderListener
</listener-class>
</listener>

<servlet>
<servlet-name>CXFServlet</servlet-name>
<display-name>CXF Servlet</display-name>
<servlet-class>
org.apache.cxf.transport.servlet.CXFServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>CXFServlet</servlet-name>
<url-pattern>/*</url-pattern>
</servlet-mapping>
</web-app>

5.3.5.2 Create beans.xml

Listing 5-4. Content of beans.xml

<beans xmlns="http://www.springframework.orqg/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.orqg/jaxws"
xsi:schemalocation="http://www.springframework.orqg/schema/beans
http://www.springframework.orqg/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<import resource="classpath:META-INF/cxf/cxf-serviet.xml" />

<jaxws:endpoint id="com.bemach.ws.cxf.EmployeeDatalf"
implementor="com.bemach.ws.cxf.EmployeeData" address="/employees" />
</beans>

134

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

5.3.5.3 Build Web Application (WAR)

This build script creates a Java Web application (WAR file) packed into a file called ‘cxf-ws.war’. The

application is stored in the dist directory.

Listing 5-5. Content of build.xml for cxf-ws Dynamic Web Project

<?xml version="1.0" encoding="IS0-8859-1"7?>
<project name="cxf-ws" basedir="." default="dist">

<property environment="env" />
<path id="classpath.base">

<fileset dir="./I1ib" includes="**/* jar" />
</path>

<path id="classpath.compile">
<path refid="classpath.base" />
</path>

<target name="init">
<mkdir dir="./bin" />
<mkdir dir="./dist" />
</target>

<target name="compile" depends="init" description="compile the source ">
<javac srcdir="./src" destdir="./bin" debug="true">
<classpath refid="classpath.compile" />
</javac>
</target>

<target name="copylibs" depends="compile">
<echo message="copying libraries ..."/>
<copy todir="WebContent/WEB-INF/1ib">
<fileset dir="./Iib">
<include name="*,jar"/>
</fileset>
</copy>
</target>

<target name="dist" depends="buildwar">
<echo message="Building ..."/>
</target>

<target name="buildwar" depends="copylibs">

<echo message="building war"/>

<tstamp/>

<manifest file="MANIFEST.MF">

<attribute name="Built-By" value="Kiet T. Tran"/>

<attribute name="Build-Version" value="1"/>
<attribute name="Build-Subversion" value="0"/>
<attribute name="Built-Date" value="April 28, 2013"/>

</manifest>

135

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

<war destfile="./dist/cxf-ws.war" webxml="WebContent/WEB-INF/web.xml"
update="true"
manifest="MANIFEST.MF">
<classes dir="./bin" />
<fileset dir="WebContent">
<exclude name="WEB-INF/web.xml" />
</fileset>
</war>
<delete file="MANIFEST.MF"/>
</target>

<target name="clean">
<echo message="cleaning"/>
<delete dir="./dist"/>
<delete dir="./bin"/>
</target>
</project>

5.4 Deploy the Service

When you install Tomcat 7, the Tomcat server home directory has the following directories:

o bin

o conf

o lib

o logs

e temp

o webapps
o work

We are most interested in the bin and the webapps directories for deploying and publishing our Web
Services. To run Tomcat, go to the bin directory and run startup.cmd (WINDOWS) or startup.sh (UNIX).

To deploy the Web application that contains the sample Web Services, copy the cxf-web.war to the

webapps directory. You need not restart the Tomcat server each time you deploy the Web application.

55 Testing services with SOAPUI

The testing of the new Web Service that is running on the Apache Tomcat server is similar to that of the

Java WS Endpoint deployment described earlier. The Web Service endpoint is:

http://localhost:8080/cxf-ws/employees? WSDL

136

Download free eBooks at bookboon.com

http://localhost:8080/cxf-ws/employees?WSDL

Introduction to Web Services with Java Apache CXF and Tomcat Server

5.5.1 Check WSDL

Listing 5-6. A WSDL of a CXF Web Service Application

<wsdl:definitions xmlns:nsl="http://schemas.xmlsoap.org/soap/http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://cxf.ws.bemach.com/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
name="EmployeeDataService" targetNamespace="http://cxf.ws.bemach.com/">
<wsdl:types>
<xs:schema xmlns:nsl="http://bemach.com" xmlns:tns="http://cxf.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://cxf.ws.bemach.com/">
<xs:import namespace="http://bemach.com" />
<xs:element name="createEmployee" type="tns:createEmployee" />
<xs:element name="createEmployeeResponse" type="tns:createEmployeeResponse"

/>
<xs:element name="deleteEmployee" type="tns:deleteEmployee" />
<xs:element name="deleteEmployeeResponse" type="tns:deleteEmployeeResponse"
/>
<xs:element name="getEmployee" type="tns:getEmployee" />
<xs:element name="getEmployeeResponse" type="tns:getEmployeeResponse" />
<xs:element name="updateEmployee" type="tns:updateEmployee" />
<xs:element name="updateEmployeeResponse" type="tns:updateEmployeeResponse"
/>

<xs:complexType name="createEmployee">
<xs:sequence>
<xs:element minOccurs="0" name="employee" type="tns:employee" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="employee">
<xs:sequence>
<xs:element name="emplINo" type="xs:long" />
<xs:element minOccurs="0" name="firstName" type="xs:string" />
<xs:element minOccurs="0" name="lastName" type="xs:string" />
<xs:element minOccurs="0" name="birthDate" type="xs:dateTime" />
<xs:element minOccurs="0" name="gender" type="xs:string" />
<xs:element minOccurs="0" name="hireDate" type="xs:dateTime" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="createEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:Ilong" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="deleteEmployee">
<xs:sequence>
<xs:element name="emplNo" type="xs:long" />
</xs:sequence>
</xs:complexType>

137

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

<xs:complexType name="deleteEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="getEmployee">
<xs:sequence>
<xs:element name="emplNo" type="xs:Ilong" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="getEmployeeResponse">
<xs:sequence>
<xs:element minOccurs="0" name="return" type="tns:employee" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateEmployee">
<xs:sequence>
<xs:element minOccurs="0" name="employee" type="tns:employee" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="updateEmployeeResponse">
<xs:sequence>
<xs:element name="return" type="xs:boolean" />
</xs:sequence>

[]
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.
Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic

Therefore we'need the best employees who can
eet this challenge!

Tr)_af Power of Knowledge Engineering

o

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/know‘led'ge‘*.

138 Click on the ad to read more

Download free eBooks at bookboon.com

http://www.skf.com/knowledge

Introduction to Web Services with Java Apache CXF and Tomcat Server

</xs:complexType>
<xs:complexType name="SOAPException">
<xs:sequence />
</xs:complexType>
<xs:element name="SOAPException" type="tns:SOAPException" />
</xs:schema>
<xs:schema xmlns:nsl="http://cxf.ws.bemach.com/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://bemach.com" version="1.0">
<xs:import namespace="http://cxf.ws.bemach.com/" />
<xs:element name="EmployeeService" type="nsl:employee" />
</xs:schema>
</wsdl:types>
<wsdl:message name="createEmployeeResponse">
<wsdl:part element="tns:createEmployeeResponse" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:message name="updateEmployee">
<wsdl:part element="tns:updateEmployee" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:message name="getEmployeeResponse">
<wsdl:part element="tns:getEmployeeResponse" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:message name="SOAPException">
<wsdl:part element="tns:SOAPException" name="SOAPException"></wsdl:part>
</wsdl:message>
<wsdl:message name="updateEmployeeResponse">
<wsdl:part element="tns:updateEmployeeResponse" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:message name="deleteEmployeeResponse">
<wsdl:part element="tns:deleteEmployeeResponse" name="parameters"></
wsdl:part>
</wsdl:message>
<wsdl:message name="getEmployee">
<wsdl:part element="tns:getEmployee" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:message name="createEmployee">
<wsdl:part element="tns:createEmployee" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:message name="deleteEmployee">
<wsdl:part element="tns:deleteEmployee" name="parameters"></wsdl:part>
</wsdl:message>
<wsdl:portType name="EmployeeDataIf">
<wsdl:operation name="createEmployee">
<wsdl:input message="tns:createEmployee"
name="createEmployee"></wsdl:input>
<wsdl:output message="tns:createEmployeeResponse"
name="createEmployeeResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="deleteEmployee">
<wsdl:input message="tns:deleteEmployee"
name="deleteEmployee"></wsdl:input>
<wsdl:output message="tns:deleteEmployeeResponse"

139

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

name="deleteEmployeeResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEmployee">
<wsdl:input message="tns:getEmployee"
name="getEmployee"></wsdl:input>
<wsdl:output message="tns:getEmployeeResponse"
name="getEmployeeResponse"></wsdl:output>
<wsdl:fault message="tns:SOAPException" name="SOAPException"></wsdl:fault>
</wsdl:operation>
<wsdl:operation name="updateEmployee">
<wsdl:input message="tns:updateEmployee"
name="updateEmployee"></wsdl:input>
<wsdl:output message="tns:updateEmployeeResponse"
name="updateEmployeeResponse"></wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="EmployeeDataServiceSoapBinding" type="tns:EmployeeDataIlf">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="createEmployee">
<soap:operation soapAction="" style="document" />
<wsdl:input name="createEmployee">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="createEmployeeResponse">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="deleteEmployee">
<soap:operation soapAction="" style="document" />
<wsdl:input name="deleteEmployee">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="deleteEmployeeResponse">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEmployee">
<soap:operation soapAction="" style="document" />
<wsdl:input name="getEmployee">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="getEmployeeResponse'">
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="SOAPException">
<soap:fault name="SOAPException" use="literal" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="updateEmployee">
<soap:operation soapAction="" style="document" />
<wsdl:input name="updateEmployee">
<soap:body use="literal" />

140

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

</wsdl:input>
<wsdl:output name="updateEmployeeResponse">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="EmployeeDataService">
<wsdl:port binding="tns:EmployeeDataServiceSoapBinding"
name="EmployeeDataPort">
<soap:address location="http://localhost:8080/cxf-ws/employees" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

552 SOAPUI project

e wougpli] Frawxct ﬁ
Cruirtioh B Foiray EaSU BToBist B TR adagiace

Frogect finrss: Erspbiryi Dousvmng wih o

Craite Ricpedli: o CPaale dmegd radmiedi b 8l Snenad

Creats et :f'll:rnllnmhrmmmnm

Craals Mugharaag: d-|'ii'llﬂ'll'l'fﬁ!'I'I-'i;l'ﬁ*'l'i'ﬁI*F'hi'ﬂiﬂ.

el BE ST Tarvics: [Oy (e - i ik

Faizhwn Fafa- | orpa ull fin poths in projact reacv iy proect Bl {rogares e
Cragla Wk TastCece:] Crosiae o Tedacs sabh 3 \iuh Spcordng aeecon far lntons! wall wpieg

L)

Figure 5-5. Create a New SOAPUI Project

oo TraCg s 8 Vgl Aot

The figure below shows a result of a call to the getEmployee operation.

LT L - e T
P....."- Em__ . idE
Y pe———— r"!';?hqﬂ;l = = r— = T
.:J—_-.. f.l'--_.l_lul-‘l. LEE— ag -I:.-.-.a 1 . S BGESE G LR
-r;--l-:- a: -':'-' — I-II'\- -u:_.-_—.-.u... 5 —

| N —— I —
I e 1 Bl W el Rl R
& T R e A W W E =
N T
=T - ——
A i e

o | .
T RELREET [—
D BT | e —— ——
i 2 ii
- B
| - = i T

Figure 5-6. Executing a Web Service Operation

141

Download free eBooks at bookboon.com

5.6 Develop a Web Service Consumer

5.6.1 Create Client Stub with wsimport

First, create a Java Project under Eclipse IDE and call it ‘cxf-ws-client.
1. At the command prompt, go to the Java Project for Eclipse called ‘cxf-ws-client.
2. Create a folder called ‘generated.

3. To generate Web Service stubs, run the following command:

wsimport -d . http://localhost:8080/cxf-ws/employees?WSDL

4. To create a Java library, run the following command:

jar —-cvf ../lib/cxf-ws—-generated.jar *

5. Now, verify the content of the created jar:

jar —-tf ../lib/cxf-ws-generated.jar *

The content of the library should look like this:

META-INF/

META-INF/MANIFEST.MF

com/

com/bemach/
com/bemach/ObjectFactory.class
com/bemach/ws/

com/bemach/ws/cxf/
com/bemach/ws/cxf/Employee.class
com/bemach/ws/cxf/EmployeeDatalf.class
com/bemach/ws/cxf/EmployeeDataService.class
com/bemach/ws/cxf/ObjectFactory.class
com/bemach/ws/cxf/package-info.class
com/bemach/ws/cxf/SOAPException.class

com/bemach/ws/cxf/SOAPException Exception.class

Download free eBooks at bookboon.com

http://localhost:8080/cxf-ws/employees?WSDL

Introduction to Web Services with Java Apache CXF and Tomcat Server

5.6.2 Create Client Code

Edw 1A Belarhy Gowroe Newegaly Segeh Popet fun feaiow ep
CIL N SR RN Qe M A

iyl g S = e | tas bor e Ei-.'HEI:'F; et
B Poagge Eapoi o [i el = S a TEE - |
=him T T - |
= ol i -
oy L S
= il rowismuchm ordclent or = =
& B [t ol bt ppad =
i e by |Liea TR il
k1 s
LSt T R o ral
o= g kol
EF] ¥ = ey = wm
all e S i = ™ g.:_.”:ﬂt{ @
s 5 3 dh:mﬂldrl_:l'prmihn Ilein Appimatae (50

Figure 5-7. Screenshot of cxf-ws-client Java Project

5.6.2.1 EmployeeDataClient.java

This Java class contains code that can invoke the four operations provided by the EmployeeDataService

hosted by the Tomcat 7 server.

TURN TO THE EXPERTS FOR
SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation
and business development within subscription businesses.

We innovate new subscription business models or improve existing ones. We do
business reviews of existing subscription businesses and we develope acquisition and

retention strategies.

Learn more at linkedin.com/company/subscrybe or contact
Managing Director Morten Suhr Hansen at mha@subscrybe.dk

SUBSCRYBE - o fle fiufur

143 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Subscrybe

Introduction to Web Services with Java Apache CXF and Tomcat Server

Listing 5-7. EmployeeDataClient.java class

package com.bemach.ws.cxf.client;

/**
* 2013 (C) BEM, Inc., Fairfax, Virginia
*

* Unless required by applicable law or agreed to in writing,
* software distributed is distributed on an

* "AS IS"™ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

* KIND, either express or implied.

*

*/

import java.net.MalformedURLException;
import java.net.URL;
import java.util.logging.Logger;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import com.bemach.ws.cxf.Employee;

import com.bemach.ws.cxf.EmployeeDatalf;

import com.bemach.ws.cxf.EmployeeDataService;
import com.bemach.ws.cxf.SOAPException Exception;

/**
* This class is a wrapper class for accessing a remote web service.
*
* @author ktran
* @version 1.0
*/
public class EmployeeDataClient {
private static final Logger LOG = Logger.getLogger (EmployeeDataClient.class.
getName ()) ;
private EmployeeDatalf emplDs = null;

*

This method constructs the EmployeeDataClient object.

@param urlStr - The URL of the Web Service

@param targetNs - Namespace of the target web service

@param name - the name of the web service.

@throws MalformedURLException — if an error occurs, exception is thrown.

b . R S S

~

public EmployeeDataClient (String urlStr, String targetNs, String name)
throws MalformedURLException {
LOG.info ("Constructor ...");
QName gName = new QName (targetNs, name) ;
URL url = new URL (urlStr);
Service service = EmployeeDataService.create(url, gName) ;
emplDs = service.getPort (EmployeeDatalf.class);

144

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

/o
* This method gets an employee record based on a unique id.
*
* @param id - unique employee id.
* @return - an employee record.
* @throws SOAPException Exception - an exception is thrown.
*/

public Employee get (long id) throws SOAPException Exception {

return emplDs.getEmployee (id) ;

/**
* This method creates an employee record.
*
* @param empl
* @return
*/
public long create (Employee empl) {
return emplDs.createEmployee (empl) ;

/‘k*
* This method deletes an employee record based on a unique id.
*
* @param id
* @return
*/
public boolean delete(long id) {
return emplDs.deleteEmployee (id) ;

/**
* This method updates an employee record with a new one.
*
* @param empl
* @return
*/
public boolean update (Employee empl) {
return emplDs.updateEmployee (empl) ;

/**

* This is the main entrance of the code.
*

* @param args

* @throws MalformedURLException

* @throws SOAPException Exception

*/

145

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

public static void main(String[] args)

throws MalformedURLException, SOAPException Exception {
LOG.info("Calling Employee (CXF) data service ... ");
String targetNameSpace = "http://cxf.ws.bemach.com/";
String name = "EmployeeDataService";
String portNo = args[0];
String urlStr = String.format ("http://localhost:%s/cxf-ws/

employees?WSDL", portNo) ;

EmployeeDataClient cli = new EmployeeDataClient (urlStr, targetNameSpace,
name) ;
LOG.info ("URL="+urlStr) ;

long oldEmplNo = Integer.valueOf(args([l]);
Employee empl = cli.get (oldEmplNo)

LOG.info ("last="+empl.getLastName ()) ;
LOG.info ("hire="+empl.getHireDate())
LOG.info ("last="+empl.getLastName ()) ;
LOG.info ("first="+empl.getFirstName ()) ;

empl.setFirstName ("Silvester");
empl.setLastName ("Johnny") ;

long newEmplNo = cli.create(empl);
LOG.info ("emplNo="+newEmplNo) ;

Employee newEmpl = cli.get (newEmplNo) ;

newEmpl.setLastName ("New-name") ;
newEmpl.setEmplNo (newEmplNo) ;

boolean status = cli.update (newEmpl) ;
LOG.info ("update:"+status) ;

LOG.info ("last="+newEmpl.getLastName ()) ;
LOG.info ("first="+newEmpl.getFirstName ()) ;

status = cli.delete (newEmplNo) ;
LOG.info ("deleteEmployee:"+status);
LOG.info ("Exit!");

In this class, we provide the port number as the first program argument. The Tomcat port number is 8080.

5.6.3 Build a Java library

This build script creates a Java library called ‘cxf-ws-client.jar’ It requires the cxf-ws-generated.jar library

that is stored in the dist directory.

146

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

Listing 5-8. Content of build.xml for cxf-ws-client Java Project

<pr

</p

oject name="cxf-ws-client" default="dist" basedir=".">
<description>
Client for employees data service.
Assumed that cxf-ws-generated.jar is generated and built elsehwere
</description>

<!- set global properties for this build ->
<property environment="env"/>
<path id="classpath.base">

<fileset dir="./1ib" includes="**/*_ jar" />
</path>

<path id="classpath.compile">
<path refid="classpath.base"/>
</path>

<target name="init">
<mkdir dir="./bin"/>
<mkdir dir="./dist"/>
</target>

<target name="compile" depends="init" description="compile the source " >

<javac srcdir="./src" destdir="./bin" debug="true">
<classpath refid="classpath.compile" />
</javac>
</target>

<target name="dist" depends="compile" description="generate the distribution" >

<!- Create the distribution directory —->
<jar Jjarfile="./dist/cxf-ws-client.jar" basedir="./bin"/>
</target>

<target name="clean" description="clean up" >
<!- Delete the ${build} directory trees ->
<delete dir="./dist"/>
<delete dir="./bin"/>

</target>

roject>

564

Run the Client Application

To run the client application, go to the cxf-ws-client project directory. At the command prompt, run

the following command:

Java —cp ./lib/cxf-ws-generated.jar;./dist/cxf-ws—-client.jar com.bemach.

ws.cxf.client.EmployeeDataClient 8080

147

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Tomcat Server

The output is as follows:

Calling Employee (CXF) data service
URL=http://localhost:8080/cxf-ws/employees?WSDL
last=Fecello
hire=1986-06-26T00:00:00-04:00
last=Fecello

first=Silvester

emplNo=500001

update:true

last=New-name

first=Silvester

deleteEmployee:true

Exit!

185 countries all
er graduates great

Vouwro Touexs | Resanr Toocks | Macs Toveks | Vowo Buses | Vowo Cowsteucnion Esumsest | Wowo Pesm | Vowo Aeno | Wowo IT
Vowo Fimswcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasrs | Vowo Techwowoer | Wowo Loasncs | Busisess Anes Asie

148 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/volvo

6 Apache CXF and Oracle
WebLogic Server

Objectives

After completing this chapter, you should be able to:

Understand the fundamentals of Oracle WebLogic 12
Create a basic WebLogic domain
Start an Administration Server

Use WebLogic to deploy a CXF WS application on the server

AN

Test Web Service using a WebLogic Console

In this chapter, we take the same Web application — cxf-ws.war - and deploy it on a WebLogic Server

version 12.

6.1 Oracle WebLogic Server 12

Oracle WebLogic Server (WLS) is also known as the ‘Oracle Fusion Middleware’. The latest release of
WLS is 12.1.1. Oracle WLS is an industrial-strength enterprise-ready Java platform, Enterprise Edition
(Java EE) application server. It is the foundation for building Service-oriented Architectures (SOA)

applications using Oracle software products.

Oracle WLS implements complete JEE 6 specification and provide a set of APIs for creating a variety of
services: databases, messaging, and connections to external systems. Oracle WLS provides an environment

capable of deploying mission-critical applications that are robust, secure, highly available and scalable.
Major advantages of using Oracle WLS are briefly described in the following sections:

6.1.1 Programming Modles

Oracle WLS comes with a set of tools that enable the following capabilities:

o Web Applications (JSP and Servlet)

o Web Services (JAX-WS, JAX-RPC, JAX-RS)
« XML Programming (JAXB)

« Java Messaging Service (JMS)

« Java Database Connectivity (JDBC)

o Resource Adapters (Enterprise Information Systems)

Download free eBooks at bookboon.com

o Enterprise JavaBeans (EJB)

« Remote Method Invocation (RMI)

o Security APIs (Security Service Providers APIs)
o WebLogic Tuxedo Connectivity (WTC)

6.1.2 Highly Availability

Mission-critical applications can be supported with the following capabilities:

o WebLogic Server Clusters

« Work Managers

« Overload Protection

o Network Channels

» Weblogic Server Peristent Store

o Store-and-forward Services
 Enterprise-ready Development Tools

o Production Redeployment

6.2 Deployment Diagram

<<Java>> <<App|icati9n Server>> <<Database>>
EmployessClient Weblogic Server MySQL
1
<<Library>> HTTP IDBC
oxf-ws-client.jar <<Web Application>> <<schemas>
cxf-ws.war employees
1
<<Library>>
cxf-ws-generated.jar

Figure 6-1. Deployment Diagram for CXF Web Service Application and Oracle WebLogic Server

6.3 Creating a WebLogic Domain

A WebLogic Server administration domain is a logical group of WLS resources. A domain is managed
by a special type of server called an ‘Administration Server. This server instance is used for managing
resources and configurations of these resources. Applications and services should not be deployed in an
Administration Server; they should be deployed on Managed Server instances instead. A WLS domain

may have one or more Managed Server instances.

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

Two or more Managed Servers can be grouped into a cluster. A domain can administer one or more
clusters. For the sake of simplicity, we will deploy the CXF Web Service Application on an Administration

Server. First, we create a WLS domain by following these steps:

1. Assuming that you installed Oracle WebLogic Server on Windows, go to C:\Oracle\
Middleware\wlserver_12.1\common\bin.

Run config.cmd (or config.sh).

Follow the on-screen instructions to complete the creation of the domain.

Choose all default parameters.

DA R

Once complete, the domain is created and stored here: C:\Oracle\Middleware\user_projects\

domains\base_domain

EXPERIENCE THE POV

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...

151 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Gaiteye

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

Figure 6-3. Adding Extensions (JAX-WS and JAX-RPC)

152

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

Figure 6-4. Enter the Domain Name

Figure 6-5. Enter User ID and Password

153

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

il e By’ Sl Masde aiml T

Figure 6-6. Select a default JDK

L Achrminacty sticen Gerees

ity delz
171 7% il Do Lo

lakaet 5 Bt o St s Py
Mgt Gorpes, Chavters sl Mt

A ey
e

O neplssyrmnts asl fereoe

1745 i e

Wiy T

Lta [o] [ewn [a1

Figure 6-7. Additional Configuration

154

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

ORalLE
me ok s s e D ey o - S i b gt £ ativbuion n bha
e T el pares b, Yoo v bt Bt itk iy kg Pravin e vl bl

"-'[_ﬁ-l-_-_-i] -pﬂfmhﬁtﬂﬁlﬁ.
- v e o, o
:| :M[{ e
- T T I
P ,"""'""': v Bosin Wiy e o P
i Cmerqlinn Croate g ik orlLong e e e i nad el g meyin vk
O b R Ly
[Lacaon iR e < IEL . b i
I} St Jraderim
R ELE P e S Ao lal i B e
ER=T T - T 0 i M ek o] ikl pm Pl s e
By s i Apber]
L — Maifes BT vl
L et e e s g s B B T
[T I R Mw
ided 2 e Tl
CecHon DM I &,
4]] [#] [#] | 4]
(e 1o | [rmos | [|

Figure 6-8. Configuration Summary of the Domain

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4

Y \7\‘ PDF components for PHP developers

www.setasign.com

155 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/Setasign

il riep Demnans

Fusicn Middieware Configuration Wizard = = ﬂ

Fsvs

vty Creraer: Corbandy

Crmarep Dmann Taowt s Idormehor,
Laviesg e Do i mwaioe
Herirap Domars o meiar

e e g D s

P e e e Tema

e e e e e [
Dcarsaan o rasarasd Soveped i i

Do L owsirey 1 s T

Al lLE

31

ety e UL s Plagueires R

Figure 6-9. Status of the Domain Creation

6.3.1 Starting an Administration Server

To start an Administration Server:

1. Go to the domain directory:

relphene .

e

[

C:\Oracle\Middleware\user projects\domains\base domain

2. Run the following command:

startweblogic.cmd

Figure 6-10. Output of a WLS Administration Server

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

Once the server has started successfully, it displays the following message in the command window:
<The server started in RUNNING mode.>

6.4 Deploy the Web Service

Make sure to include the weblogic.xml file in the WEB-INF directory of the cxf-ws project prior to
building the Java Web Application.

6.4.1 weblogic.xml

This file contains WebLogic-specific configuration parameters. It is needed for deploying the CXF WS

application on a WebLogic server.

Listing 6-1. Content of weblogic.xml to be included for cxf-ws.war Web Application

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmins.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1l.0/weblogic-web-app.xsd">

<context-root>cxf-ws</context-root>

<jsp-descriptor>

<precompile>true</precompile>
</jsp-descriptor>

<session-descriptor>
<timeout-secs>900</timeout-secs>
<invalidation-interval-secs>10</invalidation-interval-secs>
<max-in-memory-sessions>500</max-in-memory-sessions>
</session-descriptor>

</weblogic-web-app>

157

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

To deploy the CXF Web Application on a WebLogic Server, take the following steps:

1. Open a browser and go to http://localhost:7001/console. Login as weblogic/weblogicl using

the username/password that you defined during the domain creation step.

-~ KN

CFRSAE st el el L

Figure 6-11. OracleWLS Console Login Screen

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

Prof. Dr. Nick H.M. van Dam

21st Century Corporate
Learning & Development

158 Click on the ad to read more

Download free eBooks at bookboon.com

http://localhost:7001/console
http://s.bookboon.com/Download_Free

Introduction to Web Services with Java

Apache CXF and Oracle WebLogic Server

2. On the left panel, choose the Deployments option.

¥ = [EF 2=

CTNATL A m——— e o

By ot e [et
S a—

e P

_— |

=
o —
-

g

Figure 6-12. Oracle WLS Deployment Screen

3. On the right panel, click the Install button.

4. Choose the cxf-ws.war file located in the dist directory of the cxf-ws project.

P

iy ey P

ol s) R AR

& [-] B ' i ™ e
ENInILE pamsen barae cpram s e

¢ — [— T | 5
L il s Crurm

| [T —
.
oo N]
T T pe—
[—

II
|
|
|

. s

R A . B G S T P . L o . N

— S
EELEd EES W IEE WIS N T

i
|
EE
P . L Y R S R T S
1
|

= | ey L ST A St
[
[PSS SRS PR S PR p———
e
| e R |
J— |

L LT Y

e — |

Figure 6-13. Oracle WLS Install Application Screen

159

Download free eBooks at bookboon.com

Introduction to Web Services with Java

5. Click ‘Next.

Apache CXF and Oracle WebLogic Server

R T B T L T G0 PR R S W R e

|

| .

|

i L i Fur

R g e T &

:.-........ L

| B TreeeT R d

| s b s gy 8 st 4 o i e b e

|

[o=t oo wemm e i Aoy P

| L o e

|

| e v s e .

e

| - v ikl

| -= i el
o

T e prmarea

i e

|

| s=ine

|

Figure 6-14. Type of Deployment

6. Click ‘Next.

S W

e TP
L {a)] v

T

1 i s L e e e s S v v ——— R e

|

| .

| -

I - e

| i S e Sp——

T L
i

s
TR ' s
— -

|

== T P T

|

| | i | v ek W

| e

| e

| [re——

B

Er it e i e L T

R S L T, L R

L T T

R L e

R W B S - Tl WS- B

Figure 6-15. Additional Settings for the Deployment Application Process

160

Download free eBooks at bookboon.com

7. Click ‘Finish’

Figure 6-16. Deployment Verification
The state must show as ‘Active. Any other state can be a problem.

We are now ready to test the CXF Web Service that is hosted by an Oracle WebLogic Server.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

0

Download free eBooks at bookboon.com

http://s.bookboon.com/osram

Introduction to Web Services with Java

6.5

Apache CXF and Oracle WebLogic Server

Test CXF Web Service with WebLogic Test Tools

e O N TTIT L s S e L W i Ay Ry 8 ity e
R T F e gy R Tl s -
v reen | o e = S e i e e T
STl e |
g ey e St e
™ | | ——
g I I e M S i LR ekl
T_::"-I L. ——= —a—-‘--——_u-ln e b T
e Birrw 1 e e e mare e e e fnmaEn
e]
J—— B r— i
m——m
o e e | i g) . -
e |'l-}-'-||.ll'- [eS————
= Y| g— B W | — |
i .I e i |
- rmmem
3 id i gEs 1 - T 1
w e e n ma R e—— w0
P N —— - W |] B
P |
o
7 e b o T
by
PRre—
2 rem g ama
A ————
r— e =F
e
i L
1 oma =
e
i ey |
[ma e A P4 " s i) =

= -

CHATLE Pk W ot = D b

L Ll o LT

e

s e T A
e | i i | el ey

g e UL AR T AT L By

Tl

e

o e g
Nk S P i BN A B I A P S L e A i Lo i

e e
gty
g e

. O NL 1T T T
[P [N
[S —— i il ——————
(R

) S

Wity | B Lol] Sy |

|

rEmirinEe e

S ——

Pt

e T s s ;s
-

b b A
R
P ——

L and el L]

Figure 6-18. Display of the Web Application

162

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

Click on Test Client URL.

- i it

il D -

Figure 6-19. WebLogic Test Client

o B e
R P T TRRTELE LT R R S R D |

.. “:'_F ||| e -.-:mn-l'.

il
:

e

it

Figure 6-20. Prepare to Run getEmployee Operation

163

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

- i O el W WA -]
E o, I.II . WebLoge Teul Dy

L Sl = et oy Lt

el T R Rl o L P
e -

LS ———

-y

ISPy S

3 11 B b) P it
B e
S T
—
1 Tl s e T s
e —— e

Figure 6-21. Result of a call to getEmployee Operation

360°
thinking.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiiated entities.

164

Click on the ad to read more

Download free eBooks at bookboon.com

http://www.deloitte.ca/careers

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

6.5.1 Check WSDL

The WSDL is located at the following URL:

http://localhost:7001/cxf-ws/employees?wsdl

Listing 6-2. WSDL for CXF Web Application on Oracle WebLogic Server

<wsdl:definitions xmlns:nsl="http://schemas.xmlsoap.org/soap/http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://cxf.ws.bemach.com/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
name="EmployeeDataService" targetNamespace="http://cxf.ws.bemach.com/">
<wsdl:types>
<xsd:schema xmlns="http://cxf.ws.bemach.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="http://cxf.ws.bemach.com/">
<xsd:complexType name="employee">
<xsd:sequence>
<xsd:element name="emplNo" type="xsd:long" />
<xsd:element minOccurs="0" name="firstName" type="xsd:string" />
<xsd:element minOccurs="0" name="lastName" type="xsd:string" />
<xsd:element minOccurs="0" name="birthDate" type="xsd:dateTime" />
<xsd:element minOccurs="0" name="gender" type="xsd:string" />
<xsd:element minOccurs="0" name="hireDate" type="xsd:dateTime" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="SOAPException">
<xsd:sequence />
</xsd:complexType>
<xsd:element name="SOAPException" type="SOAPException" />
</xsd:schema>
<xsd:schema xmlns:ns0="http://bemach.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="http://bemach.com">
<xsd:import namespace="http://cxf.ws.bemach.com/" />
<xsd:element name="EmployeeService" type="employee" />
</xsd:schema>
</wsdl:types>
<wsdl:message name="createEmployeeResponse">
<wsdl:part name="return" type="xsd:long"></wsdl:part>
</wsdl:message>
<wsdl:message name="getEmployeeResponse">
<wsdl:part name="return" type="tns:employee"></wsdl:part>
</wsdl:message>
<wsdl:message name="updateEmployee">
<wsdl:part name="employee" type="tns:employee"></wsdl:part>
</wsdl:message>
<wsdl:message name="SOAPException">
<wsdl:part element="tns:SOAPException" name="SOAPException"></wsdl:part>
</wsdl:message>

165

Download free eBooks at bookboon.com

http://localhost:7001/cxf-ws/employees?wsdl

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

<wsdl:message name="updateEmployeeResponse">
<wsdl:part name="return" type="xsd:boolean"></wsdl:part>
</wsdl:message>
<wsdl:message name="deleteEmployeeResponse">
<wsdl:part name="return" type="xsd:boolean"></wsdl:part>
</wsdl:message>
<wsdl:message name="getEmployee">
<wsdl:part name="empINo" type="xsd:long"></wsdl:part>
</wsdl:message>
<wsdl:message name="createEmployee">
<wsdl:part name="employee" type="tns:employee"></wsdl:part>
</wsdl:message>
<wsdl:message name="deleteEmployee">
<wsdl:part name="empINo" type="xsd:long"></wsdl:part>
</wsdl:message>
<wsdl:portType name="EmployeeDataIf">
<wsdl:operation name="createEmployee">
<wsdl:input message="tns:createEmployee"
name="createEmployee"></wsdl:input>
<wsdl:output message="tns:createEmployeeResponse"
name="createEmployeeResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="deleteEmployee">
<wsdl:input message="tns:deleteEmployee"
name="deleteEmployee"></wsdl:input>
<wsdl:output message="tns:deleteEmployeeResponse"
name="deleteEmployeeResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="updateEmployee">
<wsdl:input message="tns:updateEmployee"
name="updateEmployee"></wsdl:input>
<wsdl:output message="tns:updateEmployeeResponse"
name="updateEmployeeResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEmployee">
<wsdl:input message="tns:getEmployee"
name="getEmployee"></wsdl:input>
<wsdl:output message="tns:getEmployeeResponse"
name="getEmployeeResponse"></wsdl:output>
<wsdl:fault message="tns:SOAPException" name="SOAPException"></wsdl:fault>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="EmployeeDataServiceSoapBinding" type="tns:EmployeeDataIlf">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="createEmployee">
<soap:operation soapAction="" style="rpc" />
<wsdl:input name="createEmployee">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:input>

166

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

<wsdl:output name="createEmployeeResponse">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="deleteEmployee">
<soap:operation soapAction="" style="rpc" />
<wsdl:input name="deleteEmployee">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:input>
<wsdl:output name="deleteEmployeeResponse">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEmployee">
<soap:operation soapAction="" style="rpc" />
<wsdl:input name="getEmployee">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:input>
<wsdl:output name="getEmployeeResponse'">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:output>
<wsdl:fault name="SOAPException">
<soap:fault name="SOAPException" use="literal" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="updateEmployee">
<soap:operation soapAction="" style="rpc" />
<wsdl:input name="updateEmployee">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:input>
<wsdl:output name="updateEmployeeResponse">
<soap:body namespace="http://cxf.ws.bemach.com/" use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="EmployeeDataService">
<wsdl:port binding="tns:EmployeeDataServiceSoapBinding"
name="EmployeeDataPort">
<soap:address location="http://localhost:7001/cxf-ws/employees" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

6.6 Run the Client Application

java -cp ./lib/cxf-ws-generated.jar;./dist/cxf-ws-client.jar com.

bemach.ws.cxf.client.EmployeeDataClient 7001

167

Download free eBooks at bookboon.com

Introduction to Web Services with Java Apache CXF and Oracle WebLogic Server

The output of this test will be printed on-screen as follows:

EmployeeDataClient 7001

Calling Employee (CXF) data service
URL=http://localhost:7001/cxf-ws/employees?WSDL
last=Fecello
hire=1986-06-26T00:00:00.0-04:00
last=Fecello

first=Silvester

emplNo=500001

update:true

last=New-name

first=Silvester

deleteEmployee:true

Exit!

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Click on the ad to read more

168

Download free eBooks at bookboon.com

http://www.employerforlife.com

7 Appendix A — Development
Environment

Many development tools are available today for Java developers to utilize when developing Web Services.

Two in particular are recommended and used throughout this book.

7.1 Install Java Development Kit (JDK) 6

Visit Oracle’s website (http://www.oracle.com) and download Java Platform (JDK) 6. Follow the

installation instructions and use all defaults.

JDK 7 can be used to run all of the examples in this book; however, it would be difficult to work with
Oracle WebLogic at this time because this software package still runs with JDK 6. Oracle WebLogic 12

can be made to work with JDK 7, but it takes more time to set up.

7.2 Install Eclipse Interactive Development Environment (IDE)

Visit Eclipse’s website (http://www.eclipse.org) and download the latest version of Eclipse IDE for Java

EE developers.

After installing Eclipse on your system, run it by double-clicking on the Eclipse icon in the installed
folder. The two basic project types that are used in this book are Java Projects and Dynamic Web Projects.

Instructions for creating these projects are provided in the following sections.

7.2.1 Create a Java project in Eclipse

To create a Java project, take the following steps:

1. Select File (menu) - New — Java Project. A Project creation screen will pop up. Enter your

project name and click ‘Next’ at the bottom.

Download free eBooks at bookboon.com

http://www.oracle.com
http://www.eclipse.org

Introduction to Web Services with Java

Appendix A — Development Environment

Crenis & s=s Dot e

U

Coarn i bk Decpied] 07 D 0Dl 07 <1 9 0N N oL

[y b farrm pea l-"|—1

] R it

T LT | e e — ¥
=L
L e L 'r
g et e B i
e et B el WA T L
Pomr bmymr

e Y e i et I W el ek e

w0 o Enm iy LoFgae B

Wy sl

T et e Ay W ASERYS

Figure 7-1. Create a Java Project for the Eclipse IDE

2. On the Java Settings screen, choose all default values and click ‘Finish’ at the bottom.

v B bapy

e 1
St e T i B L TR ll.l—ll

A R g emer | e - % D g Evper
ol - X

e

& i

& [l

&' Ll few e WS g Ml O iy meiel b R e e et R b -
R

o L e i patrer = Dvall peeg e i Bk v Pl Vi yrady= Pl abmend e
ot el gt ok

o A DT R U B AT S0 T 080T 0 1 i Pk i e
Wi o g v et s, Lsirs. o P o i ey sl e

i] | o gy =
e ronk ok i pEE oy
e Gl e
e g
L - g e | e

Figure 7-2. Java Settings Screen

170

Download free eBooks at bookboon.com

Introduction to Web Services with Java Appendix A - Development Environment

7.2.2 Create a Dynamic Web project in Eclipse

1. Choose File (menu) — New — Other... A ‘Select a wizard’ window pops up as shown

below:

‘bl O warard e
il & DT WD prE a

il

o Cof Tl 1l

= Lot Adiedanu al
a = Web
L]
|2 Dy Ve Propoot |
3 s
o HITRL File
& P e

Figure 7-3. Create a Dynamic Web Project

o

e-learning
for kids

#The number 1 MOOC for Primary Education
e Free Digital Learning for Children 5-12
®15 Million Children Reached

About e-Learning for Kids Established in 2004, e-Learning for Kids is a global nonprofit foundation dedicated to fun and free learning on the
Internet for children ages 5 - 12 with courses in math, science, language arts, computers, health and environmental skills. Since 2005, more
than 15 million children in over 190 countries have benefitted from eLessons provided by EFK! An all-volunteer staff consists of education and
e-learning experts and business professionals from around the world committed to making difference. eLearning for Kids is actively seeking
funding, volunteers, sponsors and courseware developers; get involved! For more information, please visit www.e-learningforkids.org.

\«\

171 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/elearningforkids

Introduction to Web Services with Java Appendix A — Development Environment

2. Enter the project name and click ‘Next” at the bottom of the screen.

Dhyvues, Wl Progech

Kol p parchofomer Dyrwe-a Wl praert] oo i 4 b op e e ov oo Dademeens n
B]

T R el

Pl ey

o Lt el el

- [T E e e

" A

T = e
Dyam el #4 il go @

18

Lertparan

T s i = ol

P 284 T Y e % o o B g e i Vi 2 e D]
o e s ety el e

]
il ey w8

gl g e | b vy .

¥ = Lk el s | e S

Figure 7-4. Options for a Dynamic Web Project

3. Click ‘Next’ on the Java screen.

bt proe B bo-dag B E RS TE l:l—ll
RS ERST SR s
g elilt Fihibn
'
D fulped S
[L]
T T

Figure 7-5. Additional Java Options

172

Download free eBooks at bookboon.com

Introduction to Web Services with Java Appendix A - Development Environment

4. Make sure to check ‘Generate web.xml deployment descriptor’

et Mookl &b

""" L TR - A [-
YT O 5 S

Contemd diruciony: Wellomem

& e M AL ST Ty T e

Figure 7-6. Finishing the Creation of a Dynamic Web Project

7.3 Install MySQL Community Server Database

Visit MySQLs website (http://www.mysgl.com) and download the MySQL Community Server. This

version is freely available to developers.
Run the installer and choose the default options. Make sure to remember your root password.

Download and install Employees, a sample database, from MySQLs website: http://dev.mysqgl.com/ doc/

employee/en/index.html. Follow the installation instructions and use all default options.

Create a user called ‘empl 1" and assign the Employees database.

If youd prefer a simpler approach, create an Employees database with just a single table ‘Employees’ as

shown below.

173

Download free eBooks at bookboon.com

http://www.mysql.com
http://dev.mysql.com/doc/employee/en/index.html
http://dev.mysql.com/doc/employee/en/index.html

Introduction to Web Services with Java Appendix A - Development Environment

Listing 7-1. A DDL for creating employees table

CREATE TABLE employees (

emp_no INT NOT NULL,
birth_date DATE NOT NULL,
first_name VARCHAR (14) NOT NULL,
Tast_name VARCHAR (16) NOT NULL,
gender‘ ENUM (‘M’,’F’) NOT NULL,
hire_date DATE NOT NULL,

PRIMARY KEY (emp_no)
);

Download and extract the JDBC driver for accessing MySQL database:

http://dev.mysqgl.com/downloads/connector/j/

7.4 Install Oracle Fusion Middleware Software

Visit Oracle’s website (http://www.oracle.com) and download Oracle Fusion Middleware (formerly ‘WebLogic

Server’) version 12.1.1. Oracle may require the user to sign up for an account. This version is fully functional
for developers; however, it is limited to five (5) client connections. Make sure to download the Windows or
Linux Installer version. Warning: this is a large download (1.2 GB). The installer version includes a JDK and

a customized Eclipse IDE for Oracle’s middleware. Run the installer and choose all default options.

‘mtiia iA)gl Graduate

Find out more and apply

redefining / standards

\«\

174 Click on the ad to read more

Download free eBooks at bookboon.com

http://dev.mysql.com/downloads/connector/j/
http://www.oracle.com
http://s.bookboon.com/AXA

Introduction to Web Services with Java Appendix A - Development Environment

7.5 Install Apache Tomcat server

Visit Apache Tomcat’s website (http://tomcat.apache.org) and download the latest Tomcat version 7.

Tomcat is an open source JEE application server that is available for free download.

Verify the Tomcat server by visiting http://localhost:8080 on a browser. The following page should appear:

- oI

] T SN S S
Temaesti? 015

S R

L {4 emaengman P
T S e
e E

Famiaaan

Rlage T e
by

Figure 7-7. Working Tomcat Console Screen

7.6 Apache CXF

Visit the Apache CXF website to download the software package. Unpack the download into a directory.
All necessary Java libraries are stored in the unpacked directory. Make sure to include appropriate library

files (JAR) in the library of the cxf-ws Java project.

aopalliance-1.0.jar

asm-3.3.jar

axis.jar

commons-dbcp-1.4.jar
commons-discovery-0.2.Jjar
commons-logging-1.1.1.jar
commons-logging.jar

cxf-2.4.0.jar
geronimo-activation 1.1 spec-1.1.jar
geronimo-annotation 1.0 spec-1.1.1.jar

geronimo-javamail 1.4 spec-1.7.1l.jar

175

Download free eBooks at bookboon.com

http://tomcat.apache.org
http://localhost:8080

geronimo-servlet 3.0 spec-1.0.jar
geronimo-ws-metadata 2.0 spec-1.1.3.jar
jaxb-api-2.2.1.jar
Jaxb-impl-2.2.1.1.jar

jaxrpc.jar

neethi-3.0.0.jar

saaj-api-1.3.jar
saaj-impl-1.3.2.jar
spring-aop-3.0.5.RELEASE. jar
spring-asm-3.0.5.RELEASE. jar
spring-beans-3.0.5.RELEASE. jar
spring-context-3.0.5.RELEASE. jar
spring-core-3.0.5.RELEASE. jar
spring-expression-3.0.5.RELEASE. jar
spring-web-3.0.5.RELEASE. jar
stax2-api-3.1.1.jar
woodstox-core-asl-4.1.1.jar
wsdl4j-1.6.2.Jar

wsdl4dj.jar

xml-resolver-1.2.jar

xmlschema-core-2.0.jar

7.7 Install SOAPUI software

Visit SOAPUT’s website (http://www.soapui.org) and download a free version of SOAPUTI software.

7.8 Source Code

All Java code for this book can be found at Dr. Tran’s blog: http://drtran.bemach.com.

Download free eBooks at bookboon.com

http://www.soapui.org
http://drtran.bemach.com

Introduction to Web Services with Java Endnotes

8 Endnotes

L. Note that ‘employees’ is the actual name of the database.

2. Note that ‘employees’ is the name of a table of ‘employees’ database.
joined MITAS because S i
I wanted real responsibility www.discovermitas.com

U gr——
LI Y
T A
g0y @B mw WOE
LT e
- e - LLE

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

177 Click on the ad to read more

Download free eBooks at bookboon.com

http://s.bookboon.com/mitas

	Preface
	List of Figures
	Table of Listings
	Table of Tables
	1	Introduction
	1.1	Browsing the Internet
	1.2	Web Service architecture
	1.3	Benefits of Web Services
	1.4	Program a HelloWorld Web Service
	1.5	Host a Web Service
	1.6	Verify a Web Service
	1.7	Test a Web Service with SOAPUI
	1.8	Create a Web Service Client
	1.9	Run a Web Service Client
	1.10	References

	2	SOAP
	2.1	Examples of SOAP messages
	2.2	Mapping SOAP to HTTP
	2.3	SAAJ Client
	2.4	Summary
	2.5	References

	3	�Web Service Description Language (WSDL)
	3.1	WSDL structure
	3.2	WSDL Interface
	3.3	WSDL Implementation
	3.4	References

	4	�A Sample Web Service Application
	4.1	A Sample application
	4.2	Develop a Web Service
	4.3	Deploy Web Services
	4.4	Check WSDL and XSD
	4.5	Test Web Services with SOAPUI
	4.6	Develope a Web Service Consumer

	5	Apache CXF and Tomcat Server
	5.1	Configuration Parameters
	5.2	Apache Tomcat Server
	5.3	Develop CXF Web Service
	5.4	Deploy the Service
	5.5	Testing services with SOAPUI
	5.6	Develop a Web Service Consumer

	6	�Apache CXF and Oracle WebLogic Server
	6.1	Oracle WebLogic Server 12
	6.2	Deployment Diagram
	6.3	Creating a WebLogic Domain
	6.4	Deploy the Web Service
	6.5	Test CXF Web Service with WebLogic Test Tools
	6.6	Run the Client Application

	7	Appendix A – Development Environment
	7.1	Install Java Development Kit (JDK) 6
	7.2	Install Eclipse Interactive Development Environment (IDE)
	7.3	Install MySQL Community Server Database
	7.4	Install Oracle Fusion Middleware Software
	7.5	Install Apache Tomcat server
	7.6	Apache CXF
	7.7	Install SOAPUI software
	7.8	Source Code

	8	Endnotes

