

2

David Haskins

C Programming in Linux

Download free eBooks at bookboon.com

3

C Programming in Linux
2nd edition
© 2014 David Haskins & bookboon.com
ISBN 978-87-403-0543-2

Download free eBooks at bookboon.com

http://bookboon.com

C Programming in Linux

4

Contents

Contents

	 About the author, David Haskins	 7

	 Introduction	 9

	 Setting up your System	 12

1	 Hello World	 14
1.1	 Hello Program 1	 14
1.2	 Hello Program 2	 15
1.3	 Hello Program 3	 18
1.4	 Hello Program 4	 20
1.5	 Hello World conclusion	 23

2	 Data and Memory	 24
2.1	 Simple data types?	 24
2.2	 What is a string?	 28

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://s.bookboon.com/Download_Free

C Programming in Linux

5

Contents

2.3	 What can a string “mean”	 29
2.4	 Parsing a string	 32
2.5	 Data and Memory – conclusion	 34

3	� Functions, pointers and structures	 36
3.1	 Functions	 36
3.2	 Library Functions	 38
3.3	 A short library function reference	 39
3.4	 Data Structures	 41
3.5	 Functions, pointers and structures – conclusion	 44

4	 Logic, loops and flow control	 45
4.1	 Syntax of C Flow of control	 45
4.2	 Controlling what happens and in which order	 46
4.3	 Logic, loops and flow conclusion	 56

5	 Database handling with MySQL	 57
5.1	 On not reinventing the wheel	 57
5.2	 MySQL C API	 57

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

C Programming in Linux

6

Contents

6	 Graphics with GD library	 61
6.1	 Generating binary content	 61
6.2	 Using TrueType Fonts	 63
6.3	 GD function reference	 65

7	 Apache C modules	 69
7.1	 Safer C web applications	 69
7.2	 Adding some functionality	 72
7.3	 Apache Modules Conclusion	 73

8	 The Ghost project	 74
8.1	 A PHP web site generator project	 74

12	 Conclusion	 80

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

C Programming in Linux

7

About the author, David Haskins

About the author, David Haskins
I was born in 1950 in Chelsea, London, but grew up in New Zealand returning to England in 1966. I
have worked in the computer industry since 1975 after a couple of years as a professional drummer.

My first experience was five years as a mainframe hardware engineer for Sperry Univac (now Unisys)
followed by 14 years as an analyst programmer with British Telecom in London.

While engaged in a complex task of converting large quantities of geographical data (map coordinate
references) I discovered the joys of C – its speed and efficiency. That was in 1985 and I have been a fan
of C ever since.

Since 1994 I have been a senior lecturer at the Faculty of Computing, Information Systems and
Mathematics at Kingston University, London. This is a mostly technical university that evolved from a
former polytechnic college with a long tradition of aeronautical engineering.

I am engaged mainly in teaching many computer languages and internet systems design to a large and
multicultural student body.

Most of my academic research and commercial consultancy has been involved with spatial systems design
and the large data volumes and necessary processing efficiency concerns has led me to concentrate on
C and C++. My teaching web site is at www.ubiubi.org which shows some of this material.

A keen Open Systems enthusiast, I have exclusively centred all my teaching on the Linux platform since
2002 and Kingston University is well advanced in delivering dual boot facilities for all its student labs.

Download free eBooks at bookboon.com

www.ubiubi.org

C Programming in Linux

8

About the author, David Haskins

I am a keen swimmer and in 2009 completed the annual Lorne Pier-to-Pub race in Victoria, Australia
which is the largest open-sea swimming race in the world where 4,500 people of all ages swim each
January as the shark-spotting planes fly overhead.

When not teaching I am a keen vegetable gardener and amateur musician, playing in jazz groups and in
Scottish bagpipe bands. I play the drums, the great highland bagpipe, the clarinet, the guitar and the piano.

Download free eBooks at bookboon.com

C Programming in Linux

9

Introduction

Introduction
Why learn the C language?

Because the C language is like Latin – it is finite and has not changed for years. C is tight and spare,
and in the current economic climate we will need a host of young people who know C to keep existing
critical systems running.

C is built right into the core of Linux and Unix. The design idea behind Unix was to write an operating
system in C so all you needed to port it to a new architecture was a C compiler. Linux is essentially the
success story of a series of earlier attempts to make a PC version of Unix.

A knowledge of C is now and has been for years a pre-requisite for serious software professionals and
with the recent popularity and maturity of Open Systems this is even more true. The terseness and
perceived difficulty of C saw it being ousted from university teaching during the late 1990s in favour
of Java but there is a growing feeling amongst some teaching communities that Java really is not such a
good place to start beginners.

Students paradoxically arrive at colleges knowing less about computing than they did ten years ago as
programming is seen as too difficult for schools to teach. Meanwhile the body of knowledge expected
of a competent IT professional inexorably doubles every few years.

Java is commonly taught as a first language but can cause student confusion as it is in constant flux, is
very abstract and powerful, and has become too big with too many different ways to do the same thing.
It also is a bit “safe” and insulates students from scary experiences, like driving with air-bags and listening
to headphones so you take less care. The core activity of writing procedural code within methods seems
impenetrable to those who start from classes and objects.

So where do we start? A sensible place is “at the beginning” and C is as close as most of us will ever need
to go unless we are becoming hardware designers. Even for these students to start at C and go further
down into the machine is a good idea.

C is like having a very sharp knife which can be dangerous, but if you were learning to be a chef you
would need one and probably cut yourself discovering what it can do. Similarly C expects you to know
what you are doing, and if you don’t it will not warn before it crashes.

A knowledge of C will give you deep knowledge of what is going on beneath the surface of higher-level
languages like Java. The syntax of C pretty-well guarantees you will easily understand other languages
that came afterwards like C++, Java, Javascript, and C#.

Download free eBooks at bookboon.com

C Programming in Linux

10

Introduction

C gives you access to the heart of the machine and all its resources at a fine-grained bit-level.

C has been described as like “driving a Porsche with no brakes” – and because it is fast as well this can
be exhilarating. C is is often the only option when speed and efficiency is crucial.

C has been called “dangerous” in that it allows low-level access to the machine but this scariness
is exactly what you need to understand as it gives you respect for the higher-level languages you
will use.

Many embedded miniaturised systems are all still written in C and the machine-to-machine world of
the invisible internet for monitoring and process control often uses C.

Hopefully this list of reasons will start you thinking that it might be a good reason to have a go at
this course.

References

The C Programming Language – Second Edition – Kernighan and Richie
ISBN 0-13-11-362-8

The GNU C Library Free Software Foundation C Manual
http://www.gnu.org/software/libc/manual/

MySQL C library
http://dev.mysql.com/doc/refman/5.5/en/index.html

The GD C library for graphics
http://www.libgd.org/Documentation

APXS – the APache eXtenSion tool
http://httpd.apache.org/docs/2.2/programs/apxs.html

Apache
http://httpd.apache.org/docs/2.2/developer/

“The Apache Modules Book” Nick Kew, Prentice Hall
ISBN 0-13-240967-4

A Source Code Zip File Bundle is supplied with this course which contains all the material described
and a Makefile.

Download free eBooks at bookboon.com

http://www.gnu.org/software/libc/manual/
http://dev.mysql.com/doc/refman/5.5/en/index.html
http://www.libgd.org/Documentation
http://httpd.apache.org/docs/2.2/programs/apxs.html
http://httpd.apache.org/docs/2.2/developer/

C Programming in Linux

11

Introduction

The teaching approach

I began university teaching later in life after a career programming in the telecommunications industry.

My concern has been to convey the sheer fun and creativity involved in getting computers to do what
you want them to do and always try to give useful, practical, working examples of the kinds of things
students commonly tell me they want to do.

Learning a language can be a dry, boring affair unless results are immediate and visible so I tend to use
the internet as the input-output channel right from the start.

I prefer teaching an approach to programming which is deliberately “simple” using old-fashioned
command-line tools and editors and stable, relatively unchanging components that are already built-in
to Unix and Linux distributions such as Suse, Ubuntu and Red Hat.

This is in response to the growing complexity of modern Integrated Development Environments (IDEs)
such as Developer Studio, Netbeans and Eclipse which give students an illusion that they know what
they are doing but generate obfuscation.

My aim is to get students confident and up to speed quickly without all the nightmare associated with
configuring complex tool chains. It is also essentially a license-free approach and runs on anything.

With this fundamental understanding about what is really going on you can progress on to use and
actually understand whatever tools you need in your career.

In order to give a sense of doing something real and useful and up to date, the focus is on developing
visible and effectively professional-quality web-server and client projects to put on-line, using:

Apache Web server and development libraries.
C language CGI programs (C programming using the “make” utility).
C language Apache modules.
MySQL server with C client library interfaces.GD graphics library with C interfaces.
Incidental use of CSS, (X)HTML, XML, JavaScript, Ajax.

This course has been designed for and lab-tested by first and second year Computer Science Students
at Kingston University, London UK.

Download free eBooks at bookboon.com

C Programming in Linux

12

Setting up your System

Setting up your System
This book presumes you are using the Linux operating system with either a KDE or Gnome desktop. Specific
set-up instructions for common architectures are at http://www.ubiubi.org/CProgrammingInLinux/

If you are using the KDE desktop you will have Konqueror or Dolphin as the File Manager and kate or
kedit for an editor

In Gnome you would probably use Nautilus and gedit

You need to be familiar with the idea of doing some things as “super user” so that you have access
permission to copy or edit certain files. This is normally done by prefacing the Linux command with
“sudo” and providing the password, as in this example:

“sudo cp hello3 /srv/www/cgi-bin/hello3”

which copies the file “hello3” to the area where the Apache server locates common gateway interface
or cgi programs.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.ubiubi.org/CProgrammingInLinux/
http://www.employerforlife.com

C Programming in Linux

13

Setting up your System

In KDE “kdesu konqueror” would open a file manager as super user.

In Gnome “gnomesu nautilus” would open a file manager as super user.

You will need to have installed the following packages:

package Ubuntu Open Suse

C development libraries build-essential Base Development (pattern)

Apache web server apache2 Web and LAMP Server
(pattern)

Apache development
libraries

apache2-prefork-dev apache2-devel

MySQL server, client and
development libraries

mysql-server
libmysqlclient-dev

libmysqlclient-devel

GD and development
libraries

libgd2-xpm libgd2-xpm-dev gd
gd-devel

Throughout the text you will see references to the folder cgi-bin. The location of this will vary between
Linux distributions. By default this folder used for web programs is:

OpenSuse:	 /srv/www/cgi-bin
Ubuntu:	 /usr/lib/cgi-bin

To place programs there you need superuser rights, so it may be better to create a folder inside your
own home/*****/public_html/cgi-bin directory and change the ScriptAlias and associated Directory
references inside the Apache configuration files (OpenSuse) /etc/apache2/default-server.conf or
(Ubuntu) /etc/apache2/sites-available/default.

Download free eBooks at bookboon.com

C Programming in Linux

14

Hello World

1	 Hello World
1.1	 Hello Program 1

Using the File Manager (in KDE, Konqueror or in Gnome, Nautilus) create a new directory somewhere
in your home directory called something appropriate for all the examples in this book, perhaps
“Programming_In_Linux” without any spaces in the name.

Open an editor (in KDE, kate, or in Gnome, gedit) and type in (or copy from the supplied source code
zip bundle) the following:

Save the text as chapter1_1.c in the new folder you created in your home directory.

Open a terminal window and type: gcc -o hello chapter1_1.c
to compile the program into a form that can be executed.

Now type “ls -l” to list the details of all the files in this directory. You should see that chapter1_2.c is
there and a file called “hello” which is the compiled C program you have just written.

Now type: ./hello
to execute, or run the program and it should return the text:

“Hello you are learning C!!”.

If this worked, congratulations, you are now a programmer!

Download free eBooks at bookboon.com

C Programming in Linux

15

Hello World

1.2	 Hello Program 2

Taking this example a stage further, examine the start of the program at the declaration of the entry
point function: int main(int argc, char *argv[])

Download free eBooks at bookboon.com

C Programming in Linux

16

Hello World

In plain English this means:

The function called “main”, which returns an integer, takes two arguments, an integer called “argc”
which is a count of the number of command arguments then *argv[] which is a list or array of pointers
to strings which are the actual arguments typed in when you run the program from the command line.

Let’s rewrite the program to see what all this means before we start to panic.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids

C Programming in Linux

17

Hello World

Save the text as chapter1_2.c in the same folder.

Open a terminal window and type:
gcc -o hello2 chapter1_2.c to compile the program into a form that can be executed.

Now type ls -l to list the details of all the files in this directory. You should see that chapter1_2.c is there
and a file called hello2 which is the compiled C program you have just written.

Now type ./hello2 to execute, or run the program and it should return the text:

Hello, you are still learning C!!
Number of arguments to the main function:1
argument number 0 is ./hello2

We can see that the name of the program itself is counted as a command line argument and that the
counting of things in the list or array of arguments starts at zero not at one.

Now type ./hello2 my name is David to execute the program and it should return the text:

Hello, you are still learning C!!
Number of arguments to the main function:5
argument number 0 is ./hello2

Download free eBooks at bookboon.com

C Programming in Linux

18

Hello World

argument number 1 is my
argument number 2 is name
argument number 3 is is
argument number 4 is David

So, what is happening here? It seems we are reading back each of the character strings (words) that were
typed in to run the program.

1.3	 Hello Program 3

Lets get real and run this in a web page. Make the extra change adding the first output printf statement
“Content-type:text/plain\n\n” which tells our server what kind of MIME type is going to be transmitted.

Compile using gcc -o hello3 chapter1_3.c and copy the compiled file hello3 to your public_html/cgi-bin
directory (or on your own machine as superuser copy the program to /srv/www/cgi-bin (OpenSuse) or
/usr/lib/cgi-bin (Ubuntu)).

Download free eBooks at bookboon.com

C Programming in Linux

19

Hello World

Open a web browser and type in the URL http://localhost/cgi-bin/hello3?david+haskins and you should
see that web content can be generated by a C program.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

AXA Global
Graduate Program

Find out more and apply

http://localhost/cgi-bin/hello3?david+haskins
http://s.bookboon.com/AXA

C Programming in Linux

20

Hello World

1.4	 Hello Program 4

A seldom documented feature of the function signature for “main” is that it can take three arguments
and the last one we will now look at is char *env[] which is also a list of pointers to strings, but in this
case these are the system environment variables available to the program at the time it is run

Download free eBooks at bookboon.com

C Programming in Linux

21

Hello World

Compile with gcc -o hello4 chapter1_4.c and as superuser copy the program to /srv/www/cgi-bin
(OpenSuse) or /usr/lib/cgi-bin (Ubuntu). You can run this from the terminal where you compiled it
with ./hello4 and you will see a long list of environment variables. In the browser when you enter http://
localhost/cgi-bin/hello4 you will a different set altogether.

Download free eBooks at bookboon.com

http://localhost/cgi-bin/hello4
http://localhost/cgi-bin/hello4

C Programming in Linux

22

Hello World

We will soon find out that QUERY_STRING is an important environment variable for us in communicating
with our program and in this case we see it has a value of “david+haskins” or everything after the “?” in
the URL we typed. It is a valid way to send information to a common gateway interface (CGI) program
like hello4 but we should restrict this to just one string. In our case we have used a “+” to join up two
strings. If we typed: “david haskins” the browser would translate this so we would see:

QUERY_STRING=david%20haskins

We will learn later how complex sets of input values can be transmitted to our programs.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

C Programming in Linux

23

Hello World

1.5	 Hello World conclusion

We have seen that a simple program with a tiny bit of input and some output is in fact extremely powerful
in that it reveals and exposes the inner workings of a great deal of our computer.

Even though we have just begun we have encountered many of the key concepts we will use over and
over again:

•	 functions and arguments
•	 Numbers (integers) and character strings as data types
•	 Lists or arrays
•	 Loops using “for” and “while”

We have made a deliberate big leap from writing a program that runs simply in a “terminal screen” to
one which will be visible over the internet in a browser.

The reason for this is that the process of writing programs that interact with users in windowing systems
like Windows, Gnome or KDE is extremely complex and not something you will be asked very often to do .

The internet browser has become the de facto interface mode for almost everything we do these days
so we might as well understand using it from the start.

In all the successive chapters we will follow this model: starting off with some basic technique then
applying it to a web-based system.

In practice there is not much real-world C common gateway interface programming going on but there
is a great deal of C and C++ based code running as Apache modules and Microsoft IIS ISAPI Dlls.
Perhaps not many know that much of Ebay is written in C / C++.

Why? It is as fast as things get and their business with the bargain snipers in a global real-time market
needs this lightning fast core, so there is no other way to get that performance.

Download free eBooks at bookboon.com

C Programming in Linux

24

Data and Memory

2	 Data and Memory
2.1	 Simple data types?

When we write programs we have to make decisions or assertions about the nature of the world as we
declare and describe variables to represent the kinds of things we want to include in our information
processing.

This process is deeply philosophical; we make ontological assertions that this or that thing exists and
we make epistemological assertions when we select particular data types or collections of data types
to use to describe the attributes of these things. Heavy stuff with a great responsibility and not to be
lightly undertaken.

As a practical example we might declare something that looks like the beginnings of a database record
for geography.

Download free eBooks at bookboon.com

C Programming in Linux

25

Data and Memory

Here we are doing the following:

-- asserting that all the character strings we will ever encounter in this application will be 255
limited to characters so we define this with a preprocessor statement – these start with #.

-- assert that towns are associated with counties, and counties are associated with countries
some hierarchical manner.

-- assert that the population is counted in whole numbers – no half-people.
-- assert the location is to be recorded in a particular variant (WGS84) of the convention of

describing spots on the surface of the world in latitude and longitude that uses a decimal
fraction for degrees, minutes, and seconds.

Each of these statements allocates memory within the scope of the function in which it is declared. Each
data declaration will occupy an amount of memory in bytes and give that bit of memory a label which
is the variable name. Each data type has a specified size and the sizeof() library function will return
this as an integer. In this case 3 × 256 characters, one integer, and two floats. The exact size is machine
dependent but probably it is 780 bytes.

Outside the function in which the data has been declared this data is inaccessible – this is the scope
of declaration. If we had declared outside the main() function it would be global in scope and other
functions could access it. C lets you do this kind of dangerous stuff if you want to, so be careful.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

MASTER IN MANAGEMENT

mim.admissions@ie.edu Follow us on IE MIM Experiencewww.ie.edu/master-management

#10 WORLDWIDE
MASTER IN MANAGEMENT

FINANCIAL TIMES

55 Nationalities
in class

5 Specializations
Personalize your program

Length: 1O MONTHS
Av. Experience: 1 YEAR
Language: ENGLISH / SPANISH
Format: FULL-TIME
Intakes: SEPT / FEB

• STUDY IN THE CENTER OF MADRID AND TAKE ADVANTAGE OF THE UNIQUE OPPORTUNITIES
 THAT THE CAPITAL OF SPAIN OFFERS
• PROPEL YOUR EDUCATION BY EARNING A DOUBLE DEGREE THAT BEST SUITS YOUR
 PROFESSIONAL GOALS
• STUDY A SEMESTER ABROAD AND BECOME A GLOBAL CITIZEN WITH THE BEYOND BORDERS
 EXPERIENCE

93%
OF MIM STUDENTS ARE

WORKING IN THEIR SECTOR 3 MONTHS
FOLLOWING GRADUATION

http://s.bookboon.com/MIMEnglish

C Programming in Linux

26

Data and Memory

Generally we keep a close eye on the scope of data, and pass either read-only copies, or labelled memory
addresses to our data to parts of the programs that might need to do work on it and even change it.
These labelled memory addresses are called pointers.

We are using for output the printf family of library functions (sprintf for creating strings, fprintf for
writing to files etc.) which all use a common format string argument to specify how the data is to be
represented.

-- %c character
-- %s string
-- %d integer
-- %f floating point number etc.

The remaining series of variables in the arguments are placed in sequence into the format string as
specified.

In C it is a good idea to intialise any data you declare as the contents of the memory allocated for them
is not cleared but may contain any old rubbish.

Compile with: gcc -o data1 chapter2_1.c -lc
Output of the program when called with : ./data1

Town name: Guildford population:66773
County: Surrey
Country: Great Britain
Location latitude: 51.238598 longitude: -0.566257
char = 1 byte int = 4 bytes float = 4 bytes
memory used:780 bytes

Download free eBooks at bookboon.com

C Programming in Linux

27

Data and Memory

Download free eBooks at bookboon.com

C Programming in Linux

28

Data and Memory

2.2	 What is a string?

Some programming languages like Java and C++ have a string data type that hides some of the complexity
underneath what might seem a simple thing.

An essential attribute of a character string is that it is a series of individual character elements of
indeterminate length.

Most of the individual characters we can type into a keyboard are represented by simple numerical ASCII
codes and the C data type char is used to store character data.

Strings are stored as arrays of characters ending with a NULL so an array must be large enough to hold
the sequence of characters plus one. Remember array members are always counted from zero.

In this example we can see 5 individual characters declared and initialised with values, and an empty
character array set to “”.

Take care to notice the difference between single quote marks ‘ used around characters and double quote
marks “ used around character strings.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/EOT

C Programming in Linux

29

Data and Memory

Compile with: gcc -o data2 chapter2_2.c -lc
Output of the program when called with : ./data2

david

2.3	 What can a string “mean”

Anything at all – name given to a variable and its meaning or its use is entirely in the mind of the
beholder. Try this

Download free eBooks at bookboon.com

C Programming in Linux

30

Data and Memory

Compile with: gcc -o data3 chapter2_3.c -lc

As superuser copy the program to your public_html/cgi-bin directory (or /srv/www/cgi-bin (OpenSuse)
or /usr/lib/cgi-bin (Ubuntu)).

In the browser enter: http://localhost/cgi-bin/data3?red
what you should see is this:

Or if send a parameter of anything at all you will get surprising results:

Download free eBooks at bookboon.com

http://localhost/cgi-bin/data3?red

C Programming in Linux

31

Data and Memory

What we are doing here is using the string parameter argv[1] as a background colour code inside an
HTML body tag. We change the Content-type specification to text/html and miraculously now our
program is generating HTML content. A language being expressed inside another language. Web browsers
understand a limited set of colour terms and colours can be also defined hexadecimal codes such as
#FFFFFF (white) #FF0000 (red) #00FF00 (green) #0000FF (blue).

This fun exercise is not just a lightweight trick, the idea that one program can generate another in another
language is very powerful and behind the whole power of the internet. When we generate HTML (or
XML or anything else) from a common gateway interface program like this we are creating dynamic
content that can be linked to live, changing data rather than static pre-edited web pages. In practice
most web sites have a mix of dynamic and static content, but here we see just how this is done at a very
simple level.

Throughout this book we will use the browser as the preferred interface to our programs hence we will
be generating HTML and binary image stream web content purely as a means to make immediate the
power of our programs. Writing code that you peer at in a terminal screen is not too impressive, and
writing window-type applications is not nearly so straightforward.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

C Programming in Linux

32

Data and Memory

In practice most of the software you may be asked to write will be running on the web so we might as
well start with this idea straight away. Most web applications involve multiple languages too such as CSS,
(X)HTML, XML, JavaScript, PHP, JAVA, JSP, ASP, .NET, SQL. If this sounds frightening, don’t panic.
A knowledge of C will show you that many of these languages, which all perform different functions,
have a basis of C in their syntax.

2.4	 Parsing a string

The work involved in extracting meaning or valuable information from some kind of input string is
called “parsing”. We will now build another fun internet-callable CGI program to demonstrate the power
in our hands.

Download free eBooks at bookboon.com

C Programming in Linux

33

Data and Memory

Compile with: gcc -o data4 chapter2_4.c -lc
As superuser copy the program to /srv/www/cgi-bin (OpenSuse) or /usr/lib/cgi-bin (Ubuntu).

In the browser enter:
http://localhost/cgi-bin/data4?red:blue:5:5:
what you should see is this:

In this program we take argv[1] which here is yellow:blue:5:5: and parse it using the library function
strtok which chops the string into tokens separated by an arbitrary character ‘:’ and use these tokens as
strings to specify colours and integer numbers to specify the row and cell counts of a table.

The function atoi converts an string representation of a integer to an integer (“1” to 1).

The function strtok is a little odd in that the first time you call it with the string name you want to parse,
then on subsequent calls the first parameter is changed to NULL.

The for(…) loop mechanism was used to do something a set number of times.

The HTML terms introduced were:

<html> <body> <table> <tr> table row <td> table data cell

Download free eBooks at bookboon.com

C Programming in Linux

34

Data and Memory

2.5	 Data and Memory – conclusion

We have used some simple data types to represent some information and transmit input to a program
and to organise and display some visual output.

We have used HTML embedded in output strings to make output visible in a web browser.

As an exercise try this:

Write a program to put into your /public_html/cgi-bin folder which can be called in a browser with
the name of a sports team or a country and a series of colours specified perhaps as hexadecimals e.g.
ff0000 = red (rrggbb) used for the team colours or map colours, and which displays something sensible.
My version looks like this:

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

C Programming in Linux

35

Data and Memory

Download free eBooks at bookboon.com

C Programming in Linux

36

Functions, pointers and structures

3	� Functions, pointers and
structures

3.1	 Functions

The entry point into all our programs is called main() and this is a function, or a piece of code that does
something, usually returning some value. We structure programs into functions to stop them become
long unreadable blocks of code than cannot be seen in one screen or page and also to ensure that we do
not have repeated identical chunks of code all over the place. We can call library functions like printf
or strtok which are part of the C language and we can call our own or other peoples functions and
libraries of functions. We have to ensure that the appropriate header file exists and can be read by the
preprocessor and that the source code or compiled library exists too and is accessible.

As we learned before, the scope of data is restricted to the function in which is was declared, so we use
pointers to data and blocks of data to pass to functions that we wish to do some work on our data. We
have seen already that strings are handled as pointers to arrays of single characters terminated with a
NULL character.

Download free eBooks at bookboon.com

C Programming in Linux

37

Functions, pointers and structures

In this example we can repeatedly call the function “doit” that takes two integer arguments and reurns
the result of some mathematical calculation.

Compile: gcc -o func1 chapter3_1.c -lm
Copy to cgi-bin: cp func1 /home/david/public_html/cgi-bin/func1

(You should be using the Makefile supplied or be maintaining a Makefile as you progress, adding targets
to compile examples as you go.)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca

C Programming in Linux

38

Functions, pointers and structures

The result in a browser looks like this called with “func1?5:5”.

In this case the arguments to our function are sent as copies and are not modified in the function but used.

If we want to actual modify a variable we would have to send its pointer to a function.

We send the address of the variable ‘result’ with &result, and in the function doit we de-reference the
pointer with *result to get at the float and change its value, outside its scope inside main. This gives
identical output to chapter3_1.c.

3.2	 Library Functions

C contains a number of built-in functions for doing commonly used tasks. So far we have used atoi,
printf, sizeof, strtok, and sqrt. To get full details of any built-in library function all we have to do is
type for example:

man 3 atoi

and we will see all this:

Download free eBooks at bookboon.com

C Programming in Linux

39

Functions, pointers and structures

Which pretty-well tells you everything you need to know about this function and how to use it and
variants of it. Most importantly it tells you which header file to include.

3.3	 A short library function reference

Full details of all the functions available can be found at:
http://www.gnu.org/software/libc/manual/

Download free eBooks at bookboon.com

http://www.gnu.org/software/libc/manual/

C Programming in Linux

40

Functions, pointers and structures

There is no point in learning about library functions until you find you need to do something which
then leads you to look for a function or a library of functions that has been written for this purpose. You
will need to understand the function signature – or what the argument list means and how to use it and
what will be returned by the function or done to variables passed as pointers to functions.

Download free eBooks at bookboon.com

C Programming in Linux

41

Functions, pointers and structures

3.4	 Data Structures

Sometimes we wish to manage a set of variable as a group, perhaps taking all the values from a database
record and passing the whole record around our program to process it. To do this we can group data
into structures.

This program uses a struct to define a set of properties for something called a player. The main function
contains a declaration and instantiation of an array of 5 players. We pass a pointer to each array member
in turn to a function to rank each one. This uses a switch statement to examine the first letter of each
player name to make an arbitrary ranking. Then we pass a pointer to each array member in turn to a
function that prints out the details.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

 .

http://s.bookboon.com/AlcatelLucent

C Programming in Linux

42

Functions, pointers and structures

Download free eBooks at bookboon.com

C Programming in Linux

43

Functions, pointers and structures

The results are shown here, as usual in a browser:

This is a very powerful technique that is quite advanced but you will need to be aware of it. The idea of
structures leads directly to the idea of classes and objects.

We can see that using a struct greatly simplifies the business task of passing the data elements around the
program to have different work done. If we make a change to the definition of the struct it will still work
and we simply have to add code to handle new properties rather than having to change the argument
lists or signatures of the functions doing the work.

The definition of the structure does not actually create any data, but just sets out the formal shape of what
we can instantiate. In the main function we can express this instantiation in the form shown creating a
list of sequences of data elements that conform to the definition we have made.

You can probably see that a struct with additional functions or methods is essentially what a class is
in Java, and this is also the case in C++. Object Oriented languages start here and in fact many early
systems described as “object oriented” were in fact just built using C language structs.

If you take a look for example, at the Apache server development header files you will see a lot of structs
for example in this fragment of httpd.h:

Download free eBooks at bookboon.com

C Programming in Linux

44

Functions, pointers and structures

Dont worry about what this all means – just notice that this is a very common and very powerful
technique, and the design of data structures, just like the design of database tables to which it is closely
related are the core, key, vital task for you to understand as a programmer.

You make the philosophical decisions that the world is like this and can be modelled in this way. A
heavy responsibility – in philosophy this work is called ontology (what exists?) and epistemology (how
we can know about it?). I bet you never thought that this was what you were doing!

3.5	 Functions, pointers and structures – conclusion

We have used some simple data types to represent some information and transmit input to a program
and to organise and display some visual output.

We have used HTML embedded in output strings to make output visible in a web browser.

We have learned about creating libraries of functions for reuse.

We have learning about data structures and the use of pointers to pass them around a program.

Exercise:

Using C library functions create a program that:

•	 opens a file in write mode,
•	 writes a command line argument to the file
•	 closes the file
•	 opens the file in read mode
•	 reads the contents
•	 closes the file
•	 prints this to the screen

This will give you experience with finding things out, looking for suitable library functions, and finding
examples on-line or from a book.

Download free eBooks at bookboon.com

C Programming in Linux

45

Logic, loops and flow control

4	 Logic, loops and flow control
4.1	 Syntax of C Flow of control

We can can use the following C constructs to control program execution.
When we can count our way through a sequence or series:

for(initial value; keep on until ; incremental change)
{ do this; and this; and this; }

When we are waiting for some condition to change:

while(this is true)
{ do this; and this; and this; }

or if we want to do something at least once then test:
do { do this; and this; and this; }

while(this is true)

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

C Programming in Linux

46

Logic, loops and flow control

When we have a single option to test:

if(this is true)
{ do this; and this; and this; }

else
{ do this; and this; and this; }

When we have more options to test:

if(this is true)
{ do this; and this; and this; }

else if (this is true)
 { do this; and this; and this; }

else
{ do this; and this; and this; }

When we have more options to test based on an integer or single character value:

switch(on an integer or character value)
{

case 0: do this; and this; and this; break;
case n: do this; and this; and this; break;
default:do this; and this; and this; break;

}

4.2	 Controlling what happens and in which order

This part is all about if, and then, and else and true and false – the nuts and bolts of how we express
and control the execution of a program. This can be very dry and dusty material so to make it more
understandable we are going to solve a problem you are going to need to solve to do any interactive
web work of any complexity.

We will build something we can use in order to provide something like the functionality that can be
obtained from typical getParameter(“ITEM1”) method in Java servlets or $_REQUEST[“ITEM1”]
function in PHP.

In Chapter 1 we saw that environment variables can be accessed by the implicit argument to the main
function. We can also use the library function getenv() to request the value of any named environment
variable.

Download free eBooks at bookboon.com

C Programming in Linux

47

Logic, loops and flow control

Here we display the QUERY_STRING which is what the program gets as the entire contents of an HTML
form which contains NAME=VALUE pairs for all the named form elements.

An HTML form by default uses the GET method which transmits all form data back to the program or
page that contains the form unless otherwise specified in an action attribute. This data is contained in
the QUERY_STRING as a series of variable = value pairs separated by the & character.

Calling this program in a browser we see a form and can enter some data in the boxes:

Download free eBooks at bookboon.com

C Programming in Linux

48

Logic, loops and flow control

And after submitting the form we see:

To make much sense of the QUERY_STRING and find a particular value in it, we are going to have to
parse it, to chop it up into its constituent pieces and for this we will need some conditional logic (if,
else etc.) and some loop to count through the characters in the variable. A basic function to do this
would ideally be created as this is a task you might need to do do again and again so it makes sense to
have a chunk of code that can be called over again.

In the next example we add this function and the noticeable difference in the output is that we can insert
the extracted values into the HTML boxes after we have parsed them. We seem to have successfully
created something like a java getParameter() function – or have we?

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI

C Programming in Linux

49

Logic, loops and flow control

Have a good long look at chapter4_2.c and try it out with characters other than A-Z a-z or numerals and
you will see something is not quite right. There is some kind of encoding going on here!

If I were tp type DAVID !!! into the first field:

I get this result:

A space character has become a + and ! has become %21.

This encoding occurs because certain characters are explicitly used in the transmission protocol itself.
The & for example is used to separate portions of the QUERY_STRING and the space cannot be sent
at all as it is.

Download free eBooks at bookboon.com

C Programming in Linux

50

Logic, loops and flow control

Any program wishing to use information from the HTML form must be able to decode all this stuff
which will now attempt to do.

The program chapter4_2.c accomplishes what we see so far. It has a main function and a decode_value
function all in the same file.

The decode_value function takes three arguments:

the name of the value we are looking for “ITEM1=” or “ITEM2=”.
the address of the variable into which we are going to put the value if found
the maximum number of characters to copy

The function looks for the start and end positions in the QUERY_STRING of the value and then copies
the characters found one by one to the value variable, adding a NULL charcter to terminate the string.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

C Programming in Linux

51

Logic, loops and flow control

It looks like we are going to have to do some serious work on this decode_value package so as this is
work we can expect to do over and over again it makes sense to write a function that can be reused.

Download free eBooks at bookboon.com

C Programming in Linux

52

Logic, loops and flow control

First off we can put this function into a separate file called decode_value.c and create a file for all the
functions we may write called c_in_linux.h and compile all this into a library. In the Make file we can add:

This looks horrible and complex but all it means is this:
typing “make all” will:

compile all the *.c files listed in the list OBJ_SRC and into object files *.o
compile all the object files into a library archive called lib_c_in_linux.a
compile 4-4 using this new archive.

This is the model we will use to keep our files as small as possible and the share-ability of code at its
maximum.

We can now have a simpler “main” function file, and files for stuff we might want to write as call-able
functions from anywhere really which we do not yet know about. All this is organised into a library
file (*.a for archive) – these can also be compiled as dynamically loadable shared objects *.so whch are
much like Windows DLLs. This exactly how all Linux software is written and delivered.

For example the MySQL C Application Programmers Interface (API) comprises:

all the header files in /usr/include/mysql
the library file /usr/lib/mysql/libmysqlclient.a

Download free eBooks at bookboon.com

C Programming in Linux

53

Logic, loops and flow control

What we are doing really is how all of Linux is put together – we are simply adding to it in the
same way.

Our main file now looks like this:

This code calls the function decode_value in the same way but because the library, c_in_linux.a was
linked in when it was compiled and as it has access to the header file c_in_linux.h that lists all the
functions in the library it all works properly.

Download free eBooks at bookboon.com

C Programming in Linux

54

Logic, loops and flow control

Try to describe the process in pseudocode of decoding this QUERY STRING:

get the QUERY_STRING
find the search string “ITEM1=” inside it
look for the end of the value of “ITEM1=”
copy the value to our “value” variable, translating funny codes such as:

%21 is ! %23 is #

These special codes are generated by the browser so that whatever you put in an HTML form will get
safely transmitted and not mess about with the HTTP protocol. There are lot of them and the task for
this chapter is to finish this task off so that EVERY key on your keyboard works as you think it should!!

Program chapter4_3.c calls this unfinished function decode_value which this far can only cope with the
space character and ! – it uses if and else and for and the library function getenv, strcpy, strlen, ststr
in a piece of conditional logic in which a string is analysed to find a specific item and this thing then
copied into a piece of memory called value which has been passed to it.

The result shows the decoded value pasted into the first field;

Download free eBooks at bookboon.com

C Programming in Linux

55

Logic, loops and flow control

Download free eBooks at bookboon.com

C Programming in Linux

56

Logic, loops and flow control

4.3	 Logic, loops and flow conclusion

The most important part of controlling the flow of your program is to have a clear idea about what it is
you are trying to do. We have also learned to break our code up into manageable lumps, and started to
build and use a library and header file of our own.

Being able to express a process in normal words or pseudocode is useful and helps you to break the
code into steps.

Use for loops to explicitly count through things you know have an ending point.
Use while and do…while loops to do things until some condition changes.
Use switch statements to when integers or single characters determine what happens next.
Use if and else if and else when mutually exclusive things can be tested in a sequence.
Complex sets of if and else and not (!) conditionals can end up unreadable.
Use braces ({ }) to break it all up into chunks.

Exercise:

A useful task now would be to complete the function decode_value so you have a useful tool to grab
web content from HTML forms decoding all the non alpha-numeric keys on your keyboard.
You will use this exercise again and again so it is worth getting it right.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

C Programming in Linux

57

Database handling with MySQL

5	 Database handling with MySQL
5.1	 On not reinventing the wheel

It is pretty sensible to not start from scratch at every project so we build on work done by others who
came this way. All of the C libraries we are using were written by someone from even lower level bits and
pieces and we can access and modify this code should we want to. This is what Open Systems is all about.
In practice we simply want to use reliable services, and the first two we are going to use are ubiquitous –
databases access and graphical image generation.

5.2	 MySQL C API

To access the set of MySQL functions we make sure our compiler can access the header and libraries of
MySQL and simply call some mysql functions we have not had to write ourselves.

In this next example we join the database code onto the last work we did and insert the decoded data
into a database, and read out what we have stored there so far.

In a new terminal window we type:

mysql test
then:

create table CIL (ITEM1 varchar(255),ITEM2 varchar(255));

This creates a table for the program to write to in the test database that should already be created in
your MySQL setup.

It looks like this if it all works out OK.

Download free eBooks at bookboon.com

C Programming in Linux

58

Database handling with MySQL

The data types declared MYSQL, MYSQL_RES, and MYSQL_ROW are preprocessor definitions that
stand for more complex C declarations in mysql.h and all we need to know is how to call them.

The documentation at MySQL provides all the information you will need to do more complex operations.

Download free eBooks at bookboon.com

C Programming in Linux

59

Database handling with MySQL

Understood all that?

In barely 10 lines (highlighted) of C we have inserted our data into a database table and can read it out
again, which is pretty painless. With mysql_init we obtain a pointer to a data structure of type MYSQL,
we can then se this to connect to the test database with mysql_options and mysql_real_connect, then
we execute SQL statements just as we would in a terminal session. The results of a query can be retrieved
as a sequence of MYSQL_ROW arrays of strings with mysql_use_results. We free up the memory used
with mysql_free_result and close the database with mysql_close.

As is usual with C libraries, you need to be able understand the usually sparse documentation to
understand the function calls, and for MySQL 5.1 we can find all this information at:

http://dev.mysql.com/doc/refman/5.1/en/index.html

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://dev.mysql.com/doc/refman/5.1/en/index.html
http://s.bookboon.com/Subscrybe

C Programming in Linux

60

Database handling with MySQL

The MySQL 5.1 Reference Manual / Connectors and APIs / MySQL C API includes:

mysql_affected_rows()

mysql_autocommit()

mysql_change_user()

mysql_character_set_name()

mysql_close()

mysql_commit()

mysql_connect()

mysql_create_db()

mysql_data_seek()

mysql_debug()

mysql_drop_db()

mysql_dump_debug_info()

mysql_eof()

mysql_errno()

mysql_error()

mysql_escape_string()

mysql_fetch_field()

mysql_fetch_field_direct()

mysql_fetch_fields()

mysql_fetch_lengths()

mysql_fetch_row()

mysql_field_count()

mysql_field_seek()

mysql_field_tell()

mysql_free_result()

mysql_get_character_set_info()

mysql_get_client_info()

mysql_get_client_version()

mysql_get_host_info()

mysql_get_proto_info()

mysql_get_server_info()

mysql_get_server_version()

mysql_get_ssl_cipher(

mysql_hex_string()

mysql_info()

mysql_init()

mysql_insert_id()

mysql_kill()

mysql_library_end()

mysql_library_init()mysql_list_dbs()

mysql_list_fields(

mysql_list_processes()

mysql_list_tables()

mysql_more_results()

mysql_next_result()

mysql_num_fields()

mysql_num_rows()

mysql_options()

mysql_ping()

mysql_query()

mysql_real_connect()

mysql_real_escape_string()

mysql_real_query()

mysql_refresh(

 mysql_reload()

mysql_rollback()

mysql_row_seek()

mysql_row_tell()

mysql_select_db()

mysql_set_character_set()

mysql_set_local_infile_default()

mysql_set_local_infile_handler()

mysql_set_server_option()

mysql_shutdown()

mysql_sqlstate()

mysql_ssl_set()

mysql_stat()

mysql_store_result()

mysql_thread_id()

mysql_use_result()

mysql_warning_count()

Download free eBooks at bookboon.com

C Programming in Linux

61

Graphics with GD library

6	 Graphics with GD library
The ability to generate interesting images dynamically to suit the situation is an enjoyable, challenging,
and rewarding type of programming. We will be using Thomas Boutell’s GD C library which has been
around for many years as an open systems project.

6.1	 Generating binary content

Here we create an image and print into it the value of the TEXT= part of the QUERY STRING and set
our content type to image/gif. The gdImageGif function writes the binary image out to stdout which is
the output stream instead of to a file, so binary image data is sent back to the browser.

Download free eBooks at bookboon.com

C Programming in Linux

62

Graphics with GD library

The program produces this output when called with cgi-bin/gdgraph1?TEXT=DavidHaskins

While this is not the most fancy or attractive exercise but does at least demonstrate the key principles
involved in generating graphical output. With the GD library you can load existing images and generate
them in many formats such as GIF, JPEG, PNG, WMBP and even create animated GIFS.

If you have used PHP development tools you will recognise the GD library functions as they are pretty
well identical showing that PHP is a wrapper in this case around the same C library.

The text displayed here is using one of the internal fonts, Tiny, Small, Medium Bold, Large and Giant
which are adequate for simple labelling but you can also use TrueType fonts for more attractive output.

Geometric drawing with lines or certain styles, filled and open polygons, and circles, arcs can be created.
The main thing to remember is that the origin of an image is the TOP left hand corner which might
seem unintuitive to anyone who has studied mathematics – quite why this is I have never discovered
but can only imagine that the first programmer to do anything in this area happened to not know about
graphs in which we think of the origin x=0, y=0 as being at the bottom left hand.

Colours are specified as RGB values in the range 0 to 255 so that white is 255,255,255 and red is 255,0,0.
To work out fine-grained hues use a graphics tool like GNU GIMP which has colour pickers so you can
find out subtle RGB values. Palettes of colours from one image can be used in another and the closest
colour in a palette requested or created if there is space for it to be allocated.

Download free eBooks at bookboon.com

C Programming in Linux

63

Graphics with GD library

6.2	 Using TrueType Fonts

In this example we modify the previous program to generate a label using TrueType font.

Download free eBooks at bookboon.com

C Programming in Linux

64

Graphics with GD library

We call this program as before with cgi-bin/gdgraph1?TEXT=C+PROGRAMMING+IN+LINUX

to get this kind of output which you will probably see is more likely to be a useful kind of tool. The
location and contents of your systems fonts will vary but the code gives an example:

-- OpenSuse /usr/share/fonts/truetype/*.ttf
-- Ubuntu. /usr/share/fonts/truetype/ttf-dejavu/*.ttf

To get any good at using a library like GD you have to be prepared to experiment and take a lot of time
to understand the function parameters, looking in great detail at the available documentation at:

http://www.boutell.com/gd

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://www.boutell.com/gd
http://s.bookboon.com/volvo

C Programming in Linux

65

Graphics with GD library

6.3	 GD function reference

A full detailed set of documentation is maintained at: http://www.boutell.com/gd

GD contains a wealth of functionality for all kinds of drawing and many formats, as well as TrueType
fonts and animated Gif images. A categorised list of functions follows:

Image creation, destruction, loading and saving:

gdImageCreate(int sx, int sy)
gdImageCreateFromJpeg(FILE *in)
gdImageCreateFromPng(FILE *in)
gdImageCreateFromGif(FILE *in)
gdImageCreateFromGd(FILE *in)
gdImageCreateFromWBMP(FILE *in)
gdImageDestroy(gdImagePt rim)
void gdImageJpeg(gdImagePt rim, FILE*out, int quality)
void gdImageGif(gdImagePt rim, FILE*out)
void gdImagePng(gdImagePtr im, FILE*out)
void gdImageWBMP(gdImagePtr im, int fg, FILE*out)
void gdImageGd(gdImagePtr im, FILE*out)

Drawing Functions:

void gdImageSetPixel(gdImagePtr im, int x, int y, int color)
void gdImageLine(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
void gdImageDashedLine(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
void gdImagePolygon(gdImagePtr im, gdPoint Ptr point s, int point sTotal, int color)
void gdImageOpenPolygon(gdImagePtr im, gdPoint Ptr point s, int point sTotal, int color)
void gdImageRectangle(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
void gdImageFilledPolygon(gdImagePtr im, gdPoint Ptr point s, int point sTotal, int color)
void gdImageFilledRectangle(gdImagePtr im, int x1, int y1, int x2, int y2, int color)
void gdImageArc(gdImagePtr im, int cx, int cy, int w, int h, int s, int e, int color)
void gdImageFilledArc(gdImagePtr im, int cx, int cy, int w, int h, int s, int e, int color, int style)
void gdImageFilledEllipse(gdImagePtr im, int cx, int cy, int w, int h, int color)
void gdImageFillToBorder(gdImagePtr im, int x, int y, int border, int color)
void gdImageFill(gdImagePtr im, int x, int y, int color)
void gdImageSetAntiAliased(gdImagePtr im, int c)
void gdImageSetAntiAliasedDontBlend(gdImagePtr im, int c)
void gdImageSetBrush(gdImagePtr im, gdImagePtr brush)

Download free eBooks at bookboon.com

http://www.boutell.com/gd

C Programming in Linux

66

Graphics with GD library

void gdImageSetTile(gdImagePtr im, gdImagePtr tile)
void gdImageSetStyle(gdImagePtr im, int *style, int styleLength)
void gdImageSetThickness(gdImagePtr im, int thickness)
void gdImageAlphaBlending(gdImagePtr im, int blending)
void gdImageSaveAlpha(gdImagePtr im, int saveFlag)
void gdImageSetClip(gdImagePtr im, int x1, int y1, int x2, int y2)
void gdImageGetClip(gdImagePtr im, int *x1P, int *y1P, int *x2P, int *y2P)

Query Functions:

int gdImageAlpha(gdImagePtr im, int color)(MACRO)
int gdImageGetPixel(gdImagePtr im, int x, int y)
int gdImageBoundsSafe(gdImagePtr im, int x, int y)
int gdImageGreen(gdImagePtr im, int color)(MACRO)
int gdImageRed(gdImagePtr im, int color)(MACRO)
int gdImageSX(gdImagePtr im)(MACRO)
int gdImageSY(gdImagePtr im)(MACRO)
int gdImageTrueColor(im)(MACRO)

Text-handling functions:

gdFontPtr gdFontGetSmall(void)
gdFontPtr gdFontGetLarge(void)
gdFontPtr gdFontGetMediumBold(void)
gdFontPtr gdFontGetGiant(void)
gdFontPtr gdFontGetTiny(void)
void gdImageChar(gdImagePtr im, gdFontPtr font, int x, int y, int c, int color)
void gdImageCharUp(gdImagePtr im, gdFontPtr font, int x, int y, int c, int color)
void gdImageString(gdImagePtr im, gdFontPtr font, int x, int y, unsigned char*s, int color)
void gdImageString16(gdImagePtr im, gdFontPtr font, int x, int y, unsigned short *s, int color)
void gdImageStringUp(gdImagePtr im, gdFontPtr font, int x, int y, unsigned char*s, int color)
void gdImageStringUp16(gdImagePtr im, gdFontPtr font, int x, int y, unsigned short*s, int color)

char *gdImageStringFT(gdImagePtr im, int *brect, int fg, char *fontname, double
ptsize, double angle, int x, int y, char*string)

char *gdImageStringFTEx(gdImagePtr im, int *brect, int fg, char *fontname, double
ptsize, double angle, int x, int y, gdFTString ExtraPtr strex)

char *gdImageStringFTCircle(gdImagePtr im, int cx, int cy, double radius,
double textRadius, double fillPortion, char*font, double point s,

char*top, char*bottom, int fgcolor)
char *gdImageStringTTF(gdImagePtr im, int *brect, int fg, char *fontname,
double ptsize, double angle, int x, int y, char *string)

Download free eBooks at bookboon.com

C Programming in Linux

67

Graphics with GD library

Color-handling functions:

int gdImageColorAllocate(gdImagePtr im, int r, int g, int b)
int gdImageColorAllocateAlpha(gdImagePtr im, int r, int g, int b, int a)
int gdImageColorClosest(gdImagePtr im, int r, int g, int b)
int gdImageColorClosestAlpha(gdImagePtr im, int r, int g, int b, int a)
int gdImageColorClosestHWB(gdImagePtr im, int r, int g, int b)
int gdImageColorExact(gdImagePtr im, int r, int g, int b)
int gdImageColorResolve(gdImagePtr im, int r, int g, int b)
int gdImageColorResolveAlpha(gdImagePtr im, int r, int g, int b, int a)
int gdImageColorsTotal(gdImagePtr im)(MACRO)
int gdImageRed(gdImagePtr im, int c)(MACRO)
int gdImageGreen(gdImagePtr im, int c)(MACRO)
int gdImageBlue(gdImagePtr im, int c)(MACRO)
int gdImageGetInterlaced(gdImagePtr im)(MACRO)
int gdImageGetTransparent(gdImagePtr im)(MACRO)
void gdImageColorDeallocate(gdImagePtr im, int color)
void gdImageColorTransparent(gdImagePtr im, int color)
void gdTrueColor(int red, int green, int blue)(MACRO)
void gdTrueColorAlpha(int red, int green, int blue, int alpha)(MACRO)

Download free eBooks at bookboon.com

Click on the ad to read more

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

C Programming in Linux

68

Graphics with GD library

Resizing functions:

void gdImageCopy(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX, int
srcY, int w, int h)

void gdImageCopyResized(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int
srcX, int srcY, int destW, int destH, int srcW, int srcH)

void gdImageCopyResampled(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int
srcX, Int srcY, int destW, int destH, int srcW, int srcH)

void gdImageCopyRotated(gdImagePtr dst, gdImagePtr src, doubledstX, doubledstY,
int srcX, int srcY, int srcW, int srcH, int angle)

void gdImageCopyMerge(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX,
 int srcY, int w, int h, int pct)

void gdImageCopyMergeGray(gdImagePtr dst, gdImagePtr src, int dstX, int dstY, int srcX,
int srcY, int w, int h, int pct)
void gdImagePaletteCopy(gdImagePtr dst, gdImagePtr src)
void gdImageSquareToCircle(gdImagePtr im, int radius)
void gdImageSharpen(gdImagePtr im, int pct)

Miscellaneous Functions:

int gdImageCompare(gdImagePtr im1, gdImagePtr im2)
gdImageInterlace(gdImagePtr im, int int erlace)
gdFree(void *ptr)

In order to use a library like this you will need familiarity with the arguments which are often data types
defined within the library itself such as gdmagePtr which is a pointer to some kind of structure containing
all the data for an image to be processed or stored. These may all seem unusual but after a while you will
begin to get used to the syntax and on-line documentation and begin to see patterns in the complexity.

Download free eBooks at bookboon.com

C Programming in Linux

69

Apache C modules

7	 Apache C modules
7.1	 Safer C web applications

In real life few web administrators would dream of letting anyone run C programs as CGI content
generators because of the risk of crashes and core dumps. However the Apache server is itself written
in C and there are simple utilities that come with its development tools that permit you to create code
stubs into which you can place your C programs and run them as Apache modules when they are loaded
as part of the server and managed safely in a kind of “sand-box”. Here we will take an earlier example
and turn it into an Apache module.

A utility called apxs2 is included in the Apache2 development libraries which can be invoked to generate
a code stub for a program which can be compiled into a module that is loaded and managed by the
Apache web server. These modules can be used to perform a huge variety of tasks but in our case we will
do something which is akin the an ISAPI DLL found in the IIS server. The exact location of the apxs2
utility will change according to the Linux distribution you are using but with OpenSuse it runs like this.

In a terminal type: apxs2 -n labelmaker -g

This creates a folder of the name you give it (labelmaker) and a Makefile, a modules.mk file which can
be used by the Make utility, and a file called mod_labelmaker.c.

The C file generated is kind of like a Hello World for Apache. It may look like a complex thing but it does
supply a long explanatory comment header which is worth reading. The idea is that when Apache starts any
modules in a specified location which are configured as needing to be loaded in the server configuration
files, will be loaded. The *_register_hooks function lists the names and signatures of functions that can be
called at specific stages in the Apache server process. In this case if the name http://localhost/labelmaker
is called this module will be asked to handle whatever happens in the *_handler function.

Download free eBooks at bookboon.com

C Programming in Linux

70

Apache C modules

The configuration of the server can be a bit fiddly but in OpenSuse we have to add this to the file

/etc/apache2/sites-available/default

<Location /labelmaker>
SetHandler labelmaker

</Location>

and in /etc/config.sys/apache2 we add the name of our module labelmaker to long comma-separated
list in the line starting

APACHE_MODULES=”…..,labelmaker”
Now go to the folder labelmaker and type:

sudo apxs2 -c -i mod_labelmaker.c
sudo /etc/init.d/apache2 restart

Download free eBooks at bookboon.com

Click on the ad to read more

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

C Programming in Linux

71

Apache C modules

Call this in a browser like this:

Download free eBooks at bookboon.com

C Programming in Linux

72

Apache C modules

7.2	 Adding some functionality

Now we can plug in the work we did for the graphics library in Chapter 6 as a replacement handler function
(in the code Chapter7_1.c there are BOTH handlers, one commented out). Note the (highlighted) call
to a modified decode_value function that uses the r->args pointer to get the QUERY_STRING rather
than getenv(). Also Apache handles the output a bit differently too – get get a pointer to the array of
bytes in the image by calling gdImageGifPtr then the ap_rwrite function outputs the data. We have to
free the pointer with gdFree after the output call.

Download free eBooks at bookboon.com

C Programming in Linux

73

Apache C modules

7.3	 Apache Modules Conclusion

Whilst tricky to write and debug, this is probably the most rewarding and esoteric area where you can
do real, commerically useful and safely deployable web content generation. It is easy to see how this
example could be extended with parameters for colours and fonts to make a useful web content tool.

There is very little clear simple material about apache modules but start with the on-line documentation
at http://httpd.apache.org/docs/2.2/developer/

One recent book worth looking at is “The Apache Modules Book” Nick Kew, Prentice Hall.

Download free eBooks at bookboon.com

Click on the ad to read more

Free eBook on
Learning & Development
By the Chief Learning Officer of McKinsey

Download Now

http://httpd.apache.org/docs/2.2/developer/
http://s.bookboon.com/Download_Free

C Programming in Linux

74

The Ghost project

8	 The Ghost project
8.1	 A PHP web site generator project

The ability to write short programs in C to automate tedious tasks or to do things that would otherwise
take hours of fiddling about with cumbersome tools such as doing mail-merge, is one on the things you
will be most pleased you have learned how to do. This project is such a time-saver. Ghost is a lightweight
PHP generator for you to customise.

If you find yourself having to build PHP web sites all the time, a quick way to generate all the parameter-
passing, decoding, forms building and database management code in one step would be useful. Tools
like Ruby on Rails offer such functionality but are infinitely more complex to set up and run and you
end up with needing to learn yet another language to go any further.

Probably the best way to start with this tool is to compile and run it. Unzip the ghost.zip source into your
public_html folder which creates a folder called ghost. The Makefile contains a target g1 that compiles
and links ghost. So go to public_html/ghost and type: make g1.

To run the site generator type:

-- ./ghost testwebsite data1 data2 data1 data3 data4 data6 data6
-- This will create:
-- a folder public_html/testwebsite
-- a mysql database table called testwebsite with text fields data1 data2 data1 data3 data4 data6

data6
-- a testwebsite.css file
-- empty header.html and footer.html pages
-- index.php that demonstrates a form handling entry, edit & update, and delete to the

database table for the data items specified.

Download free eBooks at bookboon.com

C Programming in Linux

75

The Ghost project

In a browser what you see is this at http://localhost/~yourname/testwebsite

The idea behind this is that all the mechanical bits to create and manage the form content are done
and can be customised. This screen shot shows the result of submitting one record. The top row is for
entering new data, the lower row(s) allow editing or deleting of records. It is a framework that allows
you to take and use parts in your own website design.

Let us examine this code in sections.

The first section declares the required data and creates the folder and CSS file.

Download free eBooks at bookboon.com

http://localhost/~yourname/testwebsite

C Programming in Linux

76

The Ghost project

Next the header.html and footer.html files are generated. These files is loaded by the PHP file and could
be used as a generic common header and footers. The CSS file is referenced from the header.html file.

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

C Programming in Linux

77

The Ghost project

Next we create the data base.

The complicated part starts now, of generating a php script. The best way to understand this is to examine
the actual output of the program when we view the source of the page in the browser.

The top row is a form with a text box for each column defined in the table generated by running the
ghost program.

Download free eBooks at bookboon.com

C Programming in Linux

78

The Ghost project

For each row in the table we now generate a form allowing editing of the data and an anchor link to do
a delete operation.

Close examination of the file index.php will allow you to see where all this happens, and to work backward
to find where in the ghost.c source code this PHP code is generated. A good idea is to use a highlighter
pen on a printout as we are embedding a language (HTML) inside another language (PHP) which is
in turn inside another language so very very careful use is made of the escape characters ‘\ ‘to express
quotation marks both single and double where necessary to make it all work. This may seem complex –
but the speedy prototyping that ghost permits makes it worthwhile to spend time customising the C
code so the PHP that you want and the database you want come out the way you want it.

Download free eBooks at bookboon.com

Click on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

C Programming in Linux

79

The Ghost project

Here is the part of the PHP file index.php which generates the edit or delete rows. The static HTML is
highlighted and the other parts are inserted by MySQL PHP function calls.

As you can see a great deal of tedious and repetitive work has been automated. You can move on by
modifying the PHP code or go deeper to customise the C program which generates all of it.

I personally use ghost frequently to save time on site-building and this is why I wrote it. I got bored making
mistakes writing virtually identical code to decode HTML forms and populate or update databases.

Download free eBooks at bookboon.com

C Programming in Linux

80

Conclusion

12	 Conclusion
Now you have worked through these simple examples I hope you can see why a knowledge of the C
language is always going to be a useful and continually practical skill.

After 25 years I still regularly write C programs to do everyday tasks quickly and effectively and once
written they form part of a set of durable tools that suit me and which are portable.

This short book contains a number of “tricks” that I have learned over the years for which there is little
explicit documentation, and it frankly presupposes a familiarity with Linux. After testing the material
with students of a wide range of experience I am confident that an attentive careful student will get all
this material working and can start from there to discover the joy of C. Many of my students say “This
is much more fun that Java, I can see what is really going on!” which is most gratifying and makes me
confident you will find the material useful.

Those interested might ask the publisher to commission me to write a companion volume :

C++ Standard Template Library Programming in Linux

Good luck and happy programming.

David
March 31st 2014

Download free eBooks at bookboon.com

	DDE_LINK
	DDE_LINK5
	DDE_LINK4
	About the author, David Haskins
	Introduction
	Setting up your System
	1	Hello World
	1.1	Hello Program 1
	1.2	Hello Program 2
	1.3	Hello Program 3
	1.4	Hello Program 4
	1.5	Hello World conclusion

	2	Data and Memory
	2.1	Simple data types?
	2.2	What is a string?
	2.3	What can a string “mean”
	2.4	Parsing a string
	2.5	Data and Memory – conclusion

	3	�Functions, pointers and structures
	3.1	Functions
	3.2	Library Functions
	3.3	A short library function reference
	3.4	Data Structures
	3.5	Functions, pointers and structures – conclusion

	4	Logic, loops and flow control
	4.1	Syntax of C Flow of control
	4.2	Controlling what happens and in which order
	4.3	Logic, loops and flow conclusion

	5	Database handling with MySQL
	5.1	On not reinventing the wheel
	5.2	MySQL C API

	6	Graphics with GD library
	6.1	Generating binary content
	6.2	Using TrueType Fonts
	6.3	GD function reference

	7	Apache C modules
	7.1	Safer C web applications
	7.2	Adding some functionality
	7.3	Apache Modules Conclusion

	8	The Ghost project
	8.1	A PHP web site generator project

	12	Conclusion

