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Abstract 

In the emerging banking sector, credit is an important product. The decision to give 

or not to give credit to the customer is a decision that should be taken carefully from 

the point of view of the bank and  as credit requests increase, the evaluation of 

applicants becomes even more complex. Decisions may be subjective because the 

evaluators may consider different criteria. In this case, various statistical and non-

statistical techniques are used to answer both the increasing number of applications 

and to make objective decisions without subjective criteria. 

In this study, we tried to distinguish between good and bad customers with twenty 

variables of the german loan data set, and the results of the applications are compared 

with one another. 

Some non-statistical techniques were used in the study: Artificial Neural Network 

and Support Vector Machine and the practice of these techniques are discussed. 

Practice presented as theoretical information without their practice are Logistic 

Regression, Random Forest, Decision Tree and K-Nearest Neighbor Approach. 

Practice related to these techniques will reprieve to work in the future. 

Since there are various advantages and disadvantages in the implementation of 

models, it can be said that the model with the highest prediction success, according to 

the data set used is Support Vector Machine -Vanilladot Kernel method. 

Keywords : Credit Scoring, Artificial Neural Networks, Support Vector Machines. 
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Introduction 

Credit scores, one of the first developed financial risk management issues, is one of 

the most successful statistical and operational models used in finance and banking 

and credit scoring analysts are needed more and more over time. The credit scoring, 

which is also affected by the increase in credit cards, automatically calculates the risk 

and the models that make up this account are able to expand the card volumes of 

credit card issuing banks more easily based on the data in their hand. 

Credit scoring has provided extensive user support in economic environments since 

1995. That year,  major US mortgage agencies, Fannie Mae and Freddie Mac, 

advised lenders to use FICO score ratings. two agencies had more than two thirds of 

the US mortgage market, it is not difficult to calculate the effect of this 

recommendation. 

Credit scoring has provided extensive user support in economic environments since 

1995. That year,to major US mortgage agencies, Fannie Mae and Freddie Mac, 

advised lenders to use FICO skor ratings.  two agencies had more than two thirds of 

the US mortgage market , it is not difficult to calculate the effect of this 

recommendation. 

Contain in the first part of this study, the definition of credit scoring, the history and 

the development of scorecards. The key points of the model, such as sampling 

selection, data sources, separation of customers as good or bad, and classification of 

required data in credit card application form, are considered in this chapter. The data 

set used in the implementation phase contains the information of a bank's customers 

and assuming that the theoretical background described for the preparation of the data 

was used to prepare the data beforehand, no changes were made to the data.  

In the second part of the study, information on the theoretical backgrounds of some 

non-statistical techniques used in the classification of customer data in credit scoring 

is given. Logistic Regression, Random Forest, Conditional Inference Trees, Bayesian 

Network was examined during non-statistical techniques. 

Support Vector Machine (SVM) algorithms such as VanillaDot Kernel and Gaussian 

RBF Kernel models, as well as techniques such as an Artificial Neural Network, are 

included in the third chapter. Firstly approaches theoretical knowledge of these non-
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static techniques and then given place practically how these techniques are used to 

classify customers as well-bad in credit scoring. 

Finally, models applied at the end are evaluated together and the comparison between 

the techniques is given. 
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1. DEFINITION and CREATION of  CREDIT SCORING 

1.1 What is Credit Scoring? 

Calculating the probability that a customer will not be able to repay loans on a loan 

application is called credit scoring. 

CS (credit scoring) is the decision models and techniques that help the lender give the 

consumer credit. These techniques will help to make decisions about whom and will 

be given credit how much and what kind of operational strategies will increase the 

profitability of the borrower. 

By credit score refusing to give credit to high-risk customers will reduce the potential 

harm to the financial institution, will increase the profit by giving loans to low-risk 

customers, therewithal it will also reduce the inconvenience caused by customers 

who cannot reimburse for debt.  

CS techniques dissipate the risk of giving credit to a particular customer. Credit 

worthiness is not a personal attribute such as weight, length, or income. It shows the 

relationship of the debt with the lender and reflects the conditions of both parties and 

shows the possible future economic scenarios in terms of the lender. Thus, lenders 

class according to whether an individual is worthy or not worthy of a credit. The 

biggest long-term danger of CS is that this process is stopped, and some customers 

are borrowing from all lenders but some customers never get it. Defining a customer 

as not suitable for a credit leads to reaction. It is best for creditors to show the truth. 

There is always a risk of non-repayment of debts received, lenders should never 

forget that. 

A lender should decide two kinds: to decide whether to give credit to a new 

application and to determine how to act against existing customers who want to 

increase their credit limits. While the techniques that describe the first type of 

question are called credit scoring, the second type of decision is called behavior 

scoring.  

Whichever technique is used, it is important point in both decision types: it is 

necessary to sample a lot of detailed information and credit history information from 

previous clients. All techniques use sampling to describe the relationships between 

the characteristics of the customers and to make a good-bad distinction based on their 
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past history. Most of the techniques from a scorecard, on which features a score is 

given and the sum of these scores allows you to determine whether giving a credit to 

a person has a bad outcome. Some techniques, such as score cards, directly 

understand that the customer is not good at giving credit, and these techniques work 

in parallel with credit and behavioral scoring. 

Although scoring is generally used in credit terms, it has been used in many different 

areas, especially recently time. It is especially useful in direct and other marketing 

techniques to determine the target customer group. In the finance and retail sectors, 

many companies need to apply scoring techniques to store data. Similarly, data 

mining and highly sophisticated information systems are preparing successfully 

scoring applications. 

1.2 History of Credit Scoring 

Although the credit history is based on 5000 years, credit scoring is only used for 50 

years. KS is the most important way of describing different groups in a main group, 

based on their interrelated properties. Fisher first introduced a statistical approach to 

solve such problems in 1936. He tried to distinguish two species of a flower named 

Iris according to their physical size and structure. In 1941, Durand tried to classify 

good and bad debts for the first time using the same techniques. 

In the 1930s, mail-ordering companies developed a numerical scoring system to 

eliminate the adverse effects of credit decisions. Along with the beginning of the 

Second World War, all lenders and postal sales companies suffer from difficulties in 

credit management. By going to the troops of credit analysts, the number of 

specialists in this sector has decreased considerably. Thus, companies want their 

analysts to write down the rules they apply to when deciding whom to give credit 

(Johnson, 1992).  Some of these have led to the establishment of digital scoring 

systems, while others have created the conditions that make up the satisfaction of 

needs. These rules have thus led even non-experts to take credit decisions (Thomas et 

al., 2002). 

Soon after the war ended, automatic landing systems, statistical classification models, 

began to be used in lending decisions. The first consulting firm on this subject was 

founded in San Francisco by Bill Fair and Earl Isaac in the early 1950s and clients are 

financial houses, retailers and mail-order companies (Thomas VD., 2002).  
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With the introduction of credit cards at the end of the 1960s, CS has become very 

useful for credit card issuers. With the use of computers, this technique can evaluate 

the application of many people every day. Thus, companies have seen CS as a very 

good predictor and decision-making tool. CS is a legal technique used in lending with 

the Equal Loan Opportunity Act introduced in the US in 1975 and 1976. Thus, in the 

next 25 years KS analysis has become a rapidly growing profession. It has become 

very popular, especially in the United States and the UK (Thomas et al., 2002).  

In the 1980s, with the success of  CS's credit cards, the banks began to use this 

technique in other products such as personal loans, home loans and small investor 

loans. In the 1990s, the use of scorecards in direct marketing has led to increased 

returns to advertising campaigns. Developments in the computer have allowed other 

techniques to be used to generate score cards. In the 1980s, two of the most important 

techniques used today, logistic regression and linear programming techniques, began 

to be used. Recently, artificial intelligence and neural network techniques have been 

used for testing purposes. 

Today, the purpose, function is based on how customers can earn more than such 

customers, rather than to minimize their debt repayments. Significant improvements 

were made in the risk estimates of customers who did not pay the debt with score 

cards. Scorecards  "How often will customers use a new product and direct sales?", 

"How often will customers use a product?", "How much time will they use the old 

product when a new product emerges?", "Will customers submit another loan?  "How 

will customers be able to pay off their debts, and what will be their attitude towards 

them?" And "How to avoid fraud on applicants" It helps to find answers to questions 

such as. 

1.3 Credit Scoring and Data Mining 

Data mining is a data analysis and research technique to identify meaningful 

relationships and constructs in data. Similar to mining, it is tried to determine where 

and how to find the necessary data in this technique. In recent years, companies, 

especially banks and retailers, have been conceptualizing the value of identifying 

information about their customers. With electronic fund transfer and widespread use 

of loyalty cards, such companies can easily gather information about their customers. 

Computer technology also facilitates the analysis of large quantities of collecting 



13 
 

data. Increasing competition, substitute products and easy communication channels 

such as the internet make customers easily relocate. Thus, understanding and 

analyzing customer behavior is of great importance. For this reason, companies spend 

a huge amount of money to create data warehouses and use techniques such as data 

mining. 

When you look at the main techniques of data mining, it is seen that this technique 

provides very successful results in credit scoring. Basic data mining techniques 

include data summary, variable reduction, observation clustering, prediction and 

explanation. Standard descriptive statistics such as frequency, median, variance, and 

cross tabulation is used to summarize the data. It is also very useful for categorizing 

continuous variables in discrete classes. Descriptive statistics are rough classification 

techniques that are widely used in CS. Determining which variables is most 

important and removing unnecessary ones from the analysis is also used in data 

mining applications as well as frequently used techniques in CS applications. It is 

another data mining tool to segment customers into groups according to different 

products they purchase or other features. KS also creates different groups according 

to the behaviors of the customers and a separate score card is prepared for each 

group. This idea implies the segmentation of the sub-masses so that a score card 

profile is created for each sub-mass. 

In fact, techniques developed for use in CS, such as estimating which client will use, 

which financial instrument next year, are also very important for data mining. In fact, 

segmentation analysis used in data mining is used to show segments with certain 

types of behavior. Thus, data mining is an indispensable technique and technology 

for KS, and it needs to be applied to a wider area. Those who use data mining in 

combination with KS will achieve much more success and development in their work 

in order to prevent mistakes in implementation, to prevent deficiencies and to apply 

them in other areas. 

1.4 Sampling Selection  

All methods related to Credit Scoring (DS) and Behavioral Score (DS) require 

customer history and their stories to improve the scoring system. There are two issues 

to consider when choosing a sample. First; the sampling should represent the 

applicants in the future as possible. Secondly; the sample should include enough 
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information to reflect that the payment habits are good or bad. The best example of 

this is the database where the information of borrowed persons is included in the 

most recent possible period. In the application scoring these last 12 months and in the 

behavior scoring the last 18-24 months (Thomas et al., 2002). 

Another point to note when choosing a sample is; how much will be the sample size 

and which elements of the good-bad loans will be separated. Should the good 

customer-bad customer ratio in the sample is equal or should it be represented as it is 

in the main mass? When the well-to-bad ratio is determined according to the ratio in 

the mainstream, it is generally assumed that this ratio is 50:50 since the data are not 

available in the sample until the bad loans are announced. If the distributions of the 

good-bad variables in the sample are not the same, the results must be corrected to 

obtain the sample that will permit it. 

For Lewis sampling size and good-to-bad credit ratio; 1500 was good and 1500 was 

bad enough (Lewis, 1992). In practice, much larger samples are used. 

If the sampling is randomly selected from the existing mainstream, you need to make 

sure that it is really random. If one out of every 10 bones in the list of main mass is 

selected, this will be 10% of the sample. However, it is important to make sure that 

the first things to be done when it is necessary to go to the branches randomly select 

rural and urban areas. Or, at the time the sample was selected, it should be checked 

whether certain products were marketed or not addressed to specific masses. For 

example, when a certain month is taken as sampling, one product may be marketed in 

that month, and if this product appeal to young people, it is inevitable that the sample 

rate in the sample will be higher. 

1.5 Good Customer-Bad Customer Description 

In the development of the scorecard, one of the stages is how to do good customer-

bad customer classification. Poor identification of some customers does not mean that 

all other customers are good. There are at least 2 more choices besides customers 

being good-bad. The first one is "unidentifiable" and the second is "not worth 

watching". 

Generally, those who suffered from 3 period problems among the payments without 

improvement of  CS are described as problem loans. Those who cannot be defined 
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are those who experience problems for 2 terms and those who do not return for 3 

years. 

Whatever the good-bad distinction is made, the KS technique is not affected. It is 

necessary to remove the "unidentifiable" and "insignificant" from the sample and 

develop a scorecard only for good-bad classification. Of course different 

classification of good-bad will develop different scorecard results. Another problem 

stems from the fact that the bad credit is defined as an extremity. In this case, the 

reliability of the model 8 may be shaken by poor credit (Thomas et al., 2002). 
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2. CLASSIFICATION METHODS USED IN CREDIT SCORE 

2.1 Traditional Approach to Credit Scores 

In the traditional approach; the lenders decide on the 5C of the lender. These; 

character, capacity, capital, collateral and external factors. In this approach, the 

experience of the person using the credit, taking advantage of his / her past 

knowledge, and his / her views on the future situation of the person who will use the 

credit are important. With the credit scoring methods, the risks of the person or 

company that will use the credit are reduced by certain models. 

The greatest benefit of credit scoring methods arises when making decisions that will 

affect customers. In the decision-making process, the person or institution that will 

give the loan will be in lending action according to different scenarios and policies; 

acceptance / non-acceptance, loan interest, duration of the loan. The credit scoring 

approach leaves place to traditional methods by credit specialists in situations where 

there is not enough credit for scoring and when the likely profit is too high. 

Credit scores have different names depending on their usage. These; 

 Application Score: In this scoring technique for newly started customers, the 

scorecards are being used within the data obtained from past agreements and 

credit facilities of the customers. 

 Behavior Score: Movements in existing customers 'accounts are used to 

identify gore customers' behaviors and to set limits and allow actions. 

 Collection Score: A scoring method used for the collection process. 

 Customer Score: It is used to analyze the customer behavior of many accounts 

and to manage customer's accounts and cross-sell. 

 Office Score: A scoring used by the credit bureaus to estimate the office score, 

delays and bankruptcies. 

Scoring studies have several common characteristics in spite of their different 

nomenclature for their purposes. 

The customer uses internal and external data as data. 

1.  Customer behavior has 4 forms. These; risk, income, reaction and incentive. 
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2.  All these scores can be used in marketing, new business processes, collections, 

advertising campaigns (Anderson, 2007). 

2.2 Classification Methods in Credit Scores 

Credit scoring methods use past experiences to predict whether the situation will be 

good or bad in the future, using predictive methods (algorithms). Despite the use of 

different algorithms and methods in credit scoring approaches, the most accepted 

approach is regression, which is a statistical method. Various methods have been 

used for the development of credit scoring methods to the development of the 

scorecards. These methods are now divided into parametric and non-parametric. 

While parametric methods accept some assumptions on the data used, there is no 

assumption of the data used in non-parametric methods (Anderson, 2007). 

 Parametric methods;  

1. Logistic regression 

 Non-Parametric methods;  

1. Random Forest 

2. Decision Tree 

3. K nearest neighborhood 

4. Support vector machine 

5. Artificial neural networks 

2.2.1 Logistic Regression 

Logistic regression (LR) is a widely used model during the development period of 

credit scoring models. The reason for this is that the target variables in the credit 

scoring model are binary. Logistic regression uses the maximum likelihood 

estimation process (Anderson, 2007). 

 This process; 

 (1) transforming dependent variables into a logarithmic function,  

(2)  which coefficients should be,  

(3) the determination of coefficient changes and the maximization of the logarithmic 

likelihood. 
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ln (
𝑝(𝐺𝑜𝑜𝑑)

1
− 𝑝(𝐺𝑜𝑜𝑑)) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑏2 + ⋯ + 𝑏𝑘𝑏𝑘 + 𝑒 (𝟏) 

The assumptions required to use logistic regression; 

1. categorical target variable, 

2. linear relationship in logarithmic odds functions, 

3. Independent error term, 

4. unrelated estimators,  

5. the appropriate variables.  

Today, credit scoring models are developed and logistic regression is accepted as the 

most important method. The reasons for this are;  

1. design of binary outputs for finalization, 

2. the probability of the results remaining between 0 and 1, 

3. is to be able to make highly accurate probability estimates with the given 

information. 

Compared with logistic regression, discriminant analysis and linear regression 

methods, it has the following advantages; 

1. Logistic regression requires no assumption of normal distribution of 

arguments.  

2. Logistic regression can work well if there are large differences between group 

sizes. 

3. The models presented by many people are quite understandable.b 
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Figure 1. Standard Logistics Regression chart 

2.2.2 Random Forest  

Random forests or random decision forests are a community learning method for 

working classifications, regression and other tasks by creating a large number of 

decision trees at the time of the training and by creating a class (classifying) mode or 

average estimation (regression) of classes. Unstable decision forests correct the habit 

of over-fitting decision trees to the educational setting. 

The first algorithm for random decision forests was created by Tin Kam Ho using the 

random subspace method, which is a way of applying a "stochastic discrimination" 

approach to the classification proposed by Eugene Kleinberg in Ho's formulation. 

The Random Forest (RF) is a community classifier that uses the paging mechanism. 

RF consists of a series of CART classifiers. At each node of a tree, only a small 

subset of features is selected for the partition; this allows the algorithm to quickly 

classify for high-dimensional data. The number of randomly selected features (try) 

should be determined in each section. The default value is secret (p) for the 

classification of the number of properties of p. The separation criterion is the Gini 

index, as shown in Equation (1). 
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𝑔𝑖𝑛𝑖(𝑁) =
1

2
(∑ 𝑝(𝜔𝑗)

2

𝑗

) (𝟐) 

2.2.3 Decision Tree 

Decision tree (DT) is a graphical tool that shows the possible consequences of events 

to decision makers. Decision trees are also used in classification problems and 

estimation problems. One of the advanced methods is data analysis. 

As an example of decision trees, the following graph can be given; 

When this decision is considered downward, the top-tier age is defined as the basic 

needs of living with the family and becoming professional. Intermediate boxes; age, 

children, possession of the house, and intermediate nodes and bottom boxes are 

defined as end nodes. When the decision tree is over, the scores obtained from the 

finish node are used. A sample decision tree structure is shown in Figure 2. 

 

Figure 2. A schematic representation of a sample decision tree structure 

Decision trees have several disadvantages and advantages over other techniques; 

1. In the case of a set of rules, this technique can identify high or low risk 

categories that can be quickly and easily understood.  

 

2. It is very simple to use with computer programs. The process ends with the 

selection of the variables and the creation of the decision tree structure. But it 

is not a modeling process that has a lot of flexibility. There is not enough 
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information on how to make a lot of changes in the variables and affect the 

result.  

 

3. The use of small data sets may lead to doubts about the reliability of the 

results. In order not to worry about the reliability of the model, it is necessary 

to work with large data sets.  

 

4. It is quite simple to examine the results in simple decision trees. But it is rather 

difficult to examine the results when the decision tree structure is complicated 

(Anderson, 2007). 

2.2.4 K-Nearest Neighbour Approach 

The nearest neighbors technique is a standard, non-parametric approach to the 

classification problem developed by Fix and Judges for the first time. This technique 

K - nearest neighbor approach was first applied by Chatterjee and Barcun, then by 

Henley and Hand. The logic on which this technique is based on choosing a distance 

in the application data space to measure how far apart any two applications are from 

each other. Sampled representation of past applicants is taken as standard. A new 

applicant is classified as good or bad on the basis of the well-bad ratio between close-

up applicants (the nearest neighbor of the new application) in the sample (Thomas, 

2002). 

To implement this approach, three parameters are needed: the distance, how many 

reference counts (k) constitute the nearest neighbors set, and what should be the best 

rate of application for an application to be classified as good. Normally, if the 

majority of the neighbors is good, the referral is classified as good. Otherwise the 

application is classified as bad. Define the average existing cost M, and the average 

loss profit K of rejecting good. If at least M / M + K of the nearest neighbors is good, 

a new reference is classified as good. If the proportion of neighbors who are likely to 

be good at a new application, this criterion will minimize the expected loss. 

The choice of distance is very important. Fukanaga and Flick defined a general 

distance; 

𝑑(𝑥1, 𝑥2) = (𝑥1 − 𝑥2)𝐴 (𝑥𝑎)((𝑥1 − 𝑥2)𝑡)
1

2 (𝟑) 
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𝐴 (𝑥), is a p × p symmetric end positive matrix. If connected to x, A (x) is called local 

distance, if it is independent of x it is called global distance. The lack of local 

distance often takes into account the characteristics of the unsuitable test set. For this 

reason, many researchers focus on global distance. The most detailed application of 

the nearest neighbors approaches in CS was done by Henley and Hand. With this 

technique, the focus is on a mixture of Euclidean length and good length, which best 

distinguishes evil. If w; the p-dimensional direction vector is the distance expression 

of  Henley and Hand; 

𝑑(𝑥1, 𝑥2) = {(𝑥1 − 𝑥2)𝑇(𝐼 + 𝐷 𝑤𝑇)(𝑥1 − 𝑥2)}
1

2 (𝟒) 

Although the CS is not as frequently used as linear and logistic regression 

approaches, the nearest neighbors have some important features for real applications. 

It is very easy to update the experiment set by dynamically adding new events and it 

can be easily removed from the sample when it is known that the addition is good or 

bad. Finding a good distance the first time is almost equivalent to creating a 

scorecard with the regression technique. Thus, most practitioners prefer to stop at this 

point and use a traditional scorecard. When we compare it with the classification tree 

approach, the nearest neighbor approach does not produce a score for the future of 

each applicant. They identify a balance point for practitioners and they enable them 

to understand what the system actually does. 
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3.SUPPORT VECTOR MACHINE AND NEURAL NETWORK CREDIT 

SCORING CLASSIFICATION MODELS 

3.1 Data Preprocessing 

The R programming language was used to establish the models for classification in 

Credit Scores. 

The German data set is used for modeling. The set consists of 21 columns (variable) 

and 1000 lines (data). 

Variables- Existing account status, Month period, Credit history, Aim,Amount of 

credit, Savings account / stock, Since then get a job, Installment rate, Personal status 

and sex, Other debtors / sureties, Place of  residence, Estate, Age, Other plans of 

installments,Home, Number of existing loans in this bank,Job, The number of persons 

obliged to provide care,Phone, Foreign employee, Cost Matrix. 

The extensive article attached to this article is given in Table 1. 

  Attribute Data Type Value Description 

1 Existing 

account 

status 

qualitative A11 <0 

A12  0 <= ... <  200  

A13 >= 200 

A14 no checking account 

2 Month 

period 

numerical   Duration in month 

3 Credit 

history 

qualitative A30 no credits taken/all credits paid back duly 

A31 all credits at this bank paid back duly 

A32 existing credits paid back duly till now 

A33 delay in paying off in the past 

A34 critical account/other credits existing (not at this bank) 

4 Aim qualitative A40 car (new) 

A41 car (used) 

A42 furniture/equipment 
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A43 radio/television 

A44 domestic appliances 

A45 repairs 

A46 education 

A47 (vacation - does not exist?) 

A48 retraining 

A49 business 

A410 others 

5 Amount of 

credit 

numerical     

6 Savings 

account / 

stock 

qualitative A61 <100 

A62 100 <= ... <  500 

A63 500 <= ... < 1000 

A64 >= 1000  

A65 unknown/ no savings account 

7 Since then 

get a job 

qualitative A71 unemployed 

A72 < 1 year 

A73 1  <= ... < 4 years 

A74 4  <= ... < 7 years 

A75 >= 7 years 

8 Installment 

rate 

numerical     

9 Personal 

status and 

sex 

qualitative A91 male: divorced/separated 

A92 female: divorced/separated/married 

A93 male: single 

A94 male: married/widowed 

A95 female: single 

10 Other qualitative A101 none 
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debtors / 

sureties 

A102 co-applicant 

A103 guarantor 

11 Place of  

residence 

numerical     

12 Estate qualitative A121 real estate 

A122 if not A121 : building society savings agreement/life insurance 

A123 if not A121/A122 : car or other, not in attribute 6 

A124 unknown / no property 

13 Age numerical     

14 Other plans 

of 

installments 

qualitative A141 bank 

A142 stores 

A143 none 

15 Home qualitative A151  rent 

A152 own 

A153 for free 

16 Number of 

existing 

loans in this 

bank 

numerical     

17 Job qualitative A171  unemployed/ unskilled  - non-resident 

A172 unskilled - resident 

A173 skilled employee / official 

A174 management/ self-employed/highly qualified employee/ officer 

18 The 

number of 

persons 

obliged to 

provide 

care 

numerical     

19 Phone qualitative A191  none 

A192 yes, registered under the customers name 
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20 Foreign 

employee 

qualitative A201  yes 

A202 no 

21 Cost Matrix numerical 1 good 

2 bad 

 

Table 1. Information about the variables used in the Credit Scores 

For modeling, Month period, Amount of credit, Installment rate , Place of  residence, 

Age, Number of existing loans in this bank, The number of persons obliged to provide 

care  variables convert to numeric types. 

3.1.1 Analysis of Variables 

There are 300 bad and 700 good customers in the dataset. The customer analysis is 

described with charts using R graph, while the following values are calculated for 

each change. 

 Names-  the value of the variable in the data set 

 Good-  good customer count 

 Bad-  bad customer count 

 Good_pct- good customer count by percentage 

 Bad_pct- bad customer count by percentage 

 Total-total customer count 

 Total_Pct- total customer count by percentage 

 Bad_Rate-Bad rate or response rate 

 grp_score-score for each group 

 WOE-Weight of  Evidence for each group 

 IV-Information value for each group 

 Efficiency- Efficiency for each group 
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Figure 3. Division of customer data for analysis and representation by histogram 

chart 

Variable- Existing account status :
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Figure 4. Variable- Existing account status 

 

Table 2. Value of Variable- Existing account status 

Variable- Month period : 

 

 

Figure 5. Variable- Month period 
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Table 3. Value of Variable- Month period 

 

Variable- Credit History : 
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Figure 6. Variable- Credit History 

 

Table 4. Value of Variable- Credit History 

Variable- Aim of the loan : 
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Figure 7. Variable- Aim of the loan 

 

Table 5. Value of Variable- Aim of the loan 

Variable- Amount of credit : 
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Figure 8. Variable- Amount of credit 

 

Table 6. Value of Variable- Amount of credit 

Variable- Savings account / stock : 

 

Figure 9. Variable- Savings account / stock 
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Table 7. Value of Variable- Savings account / stock 

Variable- Since then get a job : 

 

Figure 10. Variable- Since then get a job 

 

Table 8. Value of Variable- Since then get a job 

Variable- Installment rate : 
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Figure 11. Variable- Installment rate 

 

Table 9. Value of Variable- Installment rate 

Variable- Personal status and sex : 

 

Figure 12. Variable- Personal status and sex 
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Table 10. Value of Variable- Personal status and sex 

Variable- Other debtors / sureties : 

 

Figure 13. Variable- Other debtors / sureties 

 

Table 11. Value of Variable- Other debtors / sureties 

Variable- Place of  residence : 
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Figure 14. Variable- Place of  residence 

 
Table 12. Value of Variable- Place of  residence 

Variable- Estate : 

 
Figure 15. Variable- Estate 
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Table 13. Value of Variable- Estate 

Variable- Age : 

 

Figure 16. Variable- Age 
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Table 14. Value of Variable- Age 

Variable- Other plans of  installments : 
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Figure 17. Variable- Other plans of  installments 

 
Table 15. Value of Variable- Other plans of  installments 

Variable- Home : 
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Figure 18. Variable- Home 

 
Table 16. Value of Variable- Home 

Variable- Number of existing loans in this bank : 

 

Figure 19. Variable- Number of existing loans in this bank 

 
Table 17. Value of Variable- Number of existing loans in this bank 

Variable- Job : 
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Figure 20. Variable- Job 

 
Table 18. Value of Variable- Job 

Variable- The number of persons obliged to provide care: 
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Figure 21. Variable- The number of persons obliged to provide care 

 
 

Table 19. Value of Variable- The number of persons obliged to provide care 

Variable-Telephone Number (Yes/No) : 
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Figure 22. Variable- Telephone Number (Yes/No) 

 
Table 20. Value of Variable- Telephone Number (Yes/No) 

Variable-Foreign Employee (Yes/No) : 
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Figure 23. Variable- Foreign Employee (Yes/No) 

 
Table 21. Value of Variable- Foreign Employee (Yes/No) 

3.1.2 Partition of Data 

After the data is analyzed, the partition is processed in the data set. 

We can divide random samples with 50-50, 60-40, or 70-30 ratios for training (Model 

to be developed or trained), and Test (validation / retention pattern model can be 

tested according to population size). In the thesis, we will split the sample into 70-30. 

Three types of basic sampling strategy: 

 Random 

 Systematic 

 Stratified 
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Simple random sampling is a sampling technique (example) when selecting a 

group of subjects to work with a larger group (population). Every individual is 

chosen purely by chance and every member of the population equals the chance of 

being included in the sample. 

Select train sampling : 

 

Select test sampling : 

 

3.2 Support Vector Machine (SVM) Modeling 

3.2.1 Support Vector Machine (SVM) 

It is one of the most effective and simple methods used for classification. It is 

possible to distinguish two groups by drawing a boundary between the two groups in 

a plane for classification. The place where this border can be drawn is that the two 

groups should be the farthest place to their members. Here SVM determines how this 

boundary is drawn. 

In order to do this, two near and two parallel border lines are drawn on the two 

groups and these boundary lines are drawn closer together to produce a common 

boundary line. Take, for example, the following two groups: 
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Figure 24. Support Vector Machine algorithm 

In this way, two groups are shown on a two-dimensional plane. It is possible to think 

of these planes and dimensions as properties. In other words, a feature extraction of 

each input that enters the system in a simple sense has resulted in a different point 

that shows every input in this two-dimensional plane. The classification of these 

points is the classification of inputs according to the properties that have been 

extracted. 

It is possible to say the tolerance (offset) between the two classes above. The 

definition of each point in this plane can be made by the following notation: 

𝐷 = {(𝑥𝑖 , 𝑐𝑖)|𝑥𝑖 ∈ 𝑅𝑝, 𝑐𝑖 ∈ {−1,1}}
𝑖=1

𝑛
 (𝟓) 

It is possible to read the above formula as follows. For every x, c, the vector X is a 

point in our space and c is the value indicating that this point is -1 or +1. This set of 

points goes up to i = 1 'den n. 

So this formula refers to the points of the previous form. 

If we think that this formula is on an extreme plane (hyper plane). Every point in this 

formula: 

𝑤𝑥 − 𝑏 = 0 (𝟔) 
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can be expressed by the equation. Where w is the normal vector perpendicular to the 

hyper plane and x is the varying parameter of the point and b is the shear rate. It is 

possible to compare this equation to the equation for calc ax + b. 

Again, according to the above equation b / || w || The value gives us the distance 

difference between the two groups. We have already given the tolerance (offset) 

value to this distance difference. In order to obtain the highest value of the distance 

according to this distance difference equation, 2 / || w || in the equation giving 3 

straight values having the values 0, -1 and +1 shown in the first above, formula is 

used. That is, the distance between the lines is 2 units. 

The two right equations obtained according to this equation are: 

𝑤𝑥 − 𝑏 = −1 (𝟕) 

𝑤𝑥 + 𝑏 = 1 (𝟖) 

In fact, these equations are the result of finding the highest values obtained as a result 

of shifting the truths. It is also assumed that the problem is linearly separable with 

these equations. 

As expected, it is not possible that the hyper plane between the two groups is one 

way. Here is an example of this situation: 
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Figure 25. In the SVM, it is not possible for the hyper plane to be unidirectional 

between the two groups 

In case of two different hyper planes (extreme planes) as above, the SVM method 

takes the one with the greatest possible offset from these possibilities. 

3.2.2 SVM - Vanilladot Kernel 

Support Vector Machines are the perfect tool for classification, regression and 

innovation detection. Svc, nu-saver (regression), no-Svc (classification) formulations 

with the well-known single class Svc (novelty) eps-saver, together with the kSVM, 

the classification formulations in native multi-species and the borderline SVM 

formulations. In addition, KSVM supports confidence intervals and class probability 

output for regression. 

KSVM Basic Model: 

𝑘𝑠𝑣𝑚(𝑥, 𝑑𝑎𝑡𝑎, 𝑘𝑒𝑟𝑛𝑒𝑙) 

𝑥 - A symbolic description of the model to follow. If you do not use a formula, x may 

be a matrix or vector containing training data, or a list of character vectors (for use 

with a character string kernel) or a kernel matrix of the class core matrix of training 

data. Note that regardless of whether the cut point is given in the form, it is always 

excluded. 

𝑑𝑎𝑡𝑎 - is the data set containing the training data when using the formula. When no 

parameter is given, the data are taken from the environment where `ksvm 'is called. 

𝑘𝑒𝑟𝑛𝑒𝑙 - the core function used in prediction and training. This parameter can be set 

to any function of the core class that computes the inner product of the property field 

between the two vector arguments. Kernlab provides the most popular kernel 

functions that can be used by setting the kernel parameter to the following strings: 

 rbfdot - Radial Basis kernel "Gaussian" 

 polydot - Polynomial kernel 

 vanilladot - Linear kernel 

 tanhdot - Hyperbolic tangent kernel 

 laplacedot - Laplacian kernel 

 besseldot - Bessel kernel 

 anovadot - ANOVA RBF kernel 
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 splinedot-  Spline kernel 

 stringdot - String kernel 

We have chosen the "VanillaDot Kernel" parameter as a kernel in designing our 

model. 

𝑘𝑠𝑣𝑚(𝑥 = [𝑔𝑜𝑜𝑑_𝑏𝑎𝑑~], 𝑑𝑎𝑡𝑎 = [𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎_𝑠𝑒𝑡], 𝑘𝑒𝑟𝑛𝑒𝑙 = [𝑉𝑎𝑛𝑖𝑙𝑙𝑎𝑑𝑜𝑡]) 

3.2.3 SVM - Gaussian RBF kernel 

Radial base function kernel, also called RBF kernel, or Gaussian kernel is a cure in 

the form of a radial basis function (more specifically a Gaussian function). Gaussian 

kernel is probably the most used kernel functions. RBF kernel : 

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 {−
‖𝑥 − 𝑦‖2

2𝜕2
} (9) 

Matches the input field to the infinite size property field. This feature is very flexible 

and can accommodate a wide variety of decision boundaries. The Gaussian kernel is 

often called the radial basis function (RBF). In some cases, it is parameterized 

somewhat differently: 

𝐾𝑅𝐵𝐹(𝑥, 𝑦) = 𝑒𝑥𝑝[−𝛾‖𝑥 − 𝑦‖2] (10) 

The following function is used in our model in the Gauss Kernel model. 

𝑘𝑠𝑣𝑚(𝑥 = [𝑔𝑜𝑜𝑑_𝑏𝑎𝑑~], 𝑑𝑎𝑡𝑎 = [𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎_𝑠𝑒𝑡], 𝑘𝑒𝑟𝑛𝑒𝑙 = [𝑅𝐵𝐹𝐷𝑜𝑡]) 

3.3 Artificial Neural Network Modeling 

3.3.1 Artificial Neural Network (ANN) 

An artificial neural network is an information processing system arising from the 

imitation of the nerve cell and the nerve network by a computer. Artificial neural 

networks are interconnected, connected in parallel, distributed systems, each of 

which has its own information processing capability and memory. Artificial neural 

networks are systems of similar structure derived from artificial neurons in the human 

brain. Artificial neural networks are a mathematical model or measurement model 

developed based on biological neurons. 
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Artificial neural networks are artificial intelligence technologies that are multivariate 

and produce successful results when there is complex, mutual interaction between 

variables, or when a single set of solutions is not found. 

Artificial neural networks have been developed through the mathematical modeling 

of human nervous systems and have certain assumptions (Fausett, 2004);   

 Information processing is through the elements called neurons. 

 The signal is propagated through the connections between the neurons. 

 Each connection has a certain weight and these weights are multiplied by the 

signals. 

 Each neuron has an activation function that generates the output signal by 

means of a formula. 

Artificial neural networks are characterized by the following forms; 

 the connections between neurons, 

 (learning, teaching, algorithm) of the connections between the links, 

 activation formula (Fausett, 2004). 

 

 

Figure 26. Systematic representation of Artificial Neural Network and biological 

neural network 
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Input 

Entries are information from an outside world into an artificial neural cell. Entries 

in artificial neural networks are unprocessed data. Artificial neural network's 

output according to input data. According to the weights of the inputs, the learning 

function is performed and the training phase is carried out. 

Weights 

Weights are the values that determine the effect of incoming information on the 

cell. The information enters the cell through the weights on the links and the 

weights show the relative strength (mathematical coefficient) of the values to be 

used as inputs in the artificial neural network. There are different weight values of 

all the connections that allow the inputs to be transmitted between cells within the 

artificial neural network. Thus, weights affect each entry of each processor 

element. Weights can be variable or fixed. 

Activation function 

The output value is obtained by using an activation formula summing the 

weighted inputs. In most cases the output of the weighted input values from the 

activation process is between -1 and 1 or between 0 and 1. The activation 

formulas used in most studies are shown in the following chart (Bigus, 1996). The 

sample activation functions are given in the following chart. 

 

Activation function Mathematical Definition 

Lineer 𝑓(𝑥) = 𝑥 

Lojistik Sigmoid 
𝑓(𝑥) =

1

1 + 𝑒𝑥𝑝(−𝑥)
 

Hiperolik Tanjant 𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) 
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Gaussion 
𝑓(𝑥) = exp (−

𝑥2

2𝜕2
) 

 

Output 

Outputs are final process elements. The output is determined by the activation 

function. Each neuron sends its output as an input to another neuron. There is only 

one output value from a neuron. Artificial neural network output, solution of the 

problem. For example, loan appraisal, credit appraisal; positive or negative. Outputs 

such as input in artificial neural networks are composed of numerical values. +1 is 

positive, 0 is negative. It is the calculation of the objective output value of artificial 

neural networks. 

3.3.2 Artificial Neural Networks Structure and Model 

Artificial Neural Networks have the following features: 

 Feedforward Neural Networks 

 Backpropagation Neural Networks 

 Multilayer Perceptron 

Feedforward Neural Networks-In a Feedforward Neural Networks, the processor 

elements (PE) are generally divided into layers. The cells in each layer are fed only in 

the cells of the previous layer. In the forward 40-feed ANN, the cells are arranged in 

layers and the outputs of the cells are input as weights over the next layer. The entry 

layer conveys the information from outside the cells in the intermediate layer without 

any change. Information is processed in the middle and output layer to determine the 

network output. Signals are transmitted from the input layer to the output layer 

through one-way connections. When the PEs establish a connection from one layer to 

another layer, there are no connections within the same layer. Examples of advanced 

networking include Multi Layer Perceptron (MLP) and Linear Vector Quantization 

(LVQ) networks (Alavala, 2002).  

Feedback Neural Networks - There are dynamic memories of this kind of neural 

networks, and one output reflects both that input and the previous input. Therefore, 

they are used especially in forecasting applications. These networks have been quite 
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successful in predicting various types of problems. As an example of these networks; 

Hopfield, Self Organizing Map (SOM), Elman and Jordan networks (Alavala, 2002). 

Multilayer Perceptron- Multilayer sensor artificial neural networks are one of the 

most used neural network models in engineering applications.Many layered sensors 

(perceptron model, consisting of one input, one or more intermediate and one output 

layer).All the processing elements in a layer depend on all the processing elements in 

a top layer.The information flow is forward and there is no feedback.For this reason, 

it is called as a feedforward neural network model. 

The following function has been used to train the Neural Network: 

𝑛𝑛𝑒𝑡(𝑓𝑜𝑟𝑚𝑢𝑙𝑎, 𝑑𝑎𝑡𝑎, 𝑠𝑖𝑧𝑒, 𝑚𝑎𝑥𝑖𝑡, 𝑑𝑒𝑐𝑎𝑦, 𝑙𝑖𝑛𝑜𝑢𝑡, 𝑡𝑟𝑎𝑐𝑒) (11) 

formula- A formula of the form class : 𝑥1 + 𝑥2  + ... 

data- The data frame to be taken first of the variables specified in the formula 

size- number of units in the hidden layer.  

maxit- maximum number of iterations.  

decay- parameter  for weight decay.  

linout- switch for linear output units.  

trace- switch for tracing optimization.  

3.4  Scoring Model with Support Vector Machine and Artificial Neural Network 

3.4.1 Scoring with SVM - Vanilladot Kernel Model 

We use the ksvm function and the kernel parameter Vanilladot function in the study. 

We apply this model on the test data. 

With the first once predict function, we get a score for the test data, then we look at 

how well these scores match our target data with the prediction function capability. 

Then the performance evaluation of the model is done. The performance evaluation is 

calculated according to the output values. 
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Figure 27. SVM - Vanilladot Kernel Model ROC Curve 

The ROC curve (A Receiver Operating Characteristic Curve) shows the 

performances of the two cluster classifiers at the possible rung intervals. Ideal 

classifiers are collected on the left and top of the graph under the points where the 

curve has a value of 1.0. Random classifiers are successful at around 0.5 (classifiers 

in the area below 0.5 can be developed). 

ROC curve classifiers are recommended for benchmarking, not just the arbitrarily 

chosen decision step, but the performance in all possible decision steps. The ROC 

curve is used to select the optimum step decision. This step (equal to the wrong 

classification ratio in both classes) can be used automatically in the step confidence 

setting. 

In SVM-VanillaDot Kernel model, the following results were observed. 
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Classification  

Observation Prediction  

 Good Bad Rate 

Good 183 38 82% 

Bad 27 52 65% 

Average Rate 70% 30% 78% 

Table 22. Outcome from classification made with SVM-VanillaDot Kernel model 

As we have seen from the classification chart, the number of well-estimated 

customers (183) is really good, 82% and the number of poorly estimated customers 

actually good is 38. In reality, the ratio of badly estimated customers (52) is 65%, and 

in reality, if it is bad, the number of customers estimated to be good is 27. According 

to the SVM-Vanilladot Kernel model, the prediction success is 78% for good and bad 

customers. 

In the model, the support vector number is 399 and the training error is 0.225714 

And finally, the performance of the model was evaluated by three important Model 

Evaluation Error Criteria.  

Model Evaluation Error 

Metrics  

Performance Metrics 

AUROC (AUC – ROC) 81.50 

KS (Kolmogorov Smirnov) 46.82 

Gini (Gini Coefficient) 63.02 

Table 23. Outcome from the evaluation of SVM-VanillaDot Kernel model with 

Model Evaluation Error Criteria 

3.4.2 Scoring with SVM - Gaussian RBF  Model 
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We use the Support Vector Machine classification method to examine a second 

scoring model. The same KSVM function was used to set up our model, but unlike 

the Vanilladot model, RBFDot (Gaussian RBF) was chosen as the kernel parameter. 

As with the VanillaDot model, new functions are estimated for customers with 

forecasting functions. 

Now let's look at the ROC Curve of this model. 

 

Figure 28. SVM - Gaussian RBF Model ROC Curve 

The predicted maximum value (1.93) was the minimum value (-1.61) as seen from 

the ROC curve. 
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SVM- Gaussian RBF Kernel model shows the results of classifications realized in the 

following chart. 

 

Classification  

Observation Prediction  

 Good Bad Rate 

Good 199 60 76% 

Bad 11 30 73% 

Average Rate 70% 30% 76% 

Table 24. Outcome from classification made with SVM- Gaussian RBF Kernel 

model 

The above table shows that the number of well-estimated customers is 199 and the 

rate is 76%. The number of customers is 30 and the ratio is 73%. The number of 

customers who are really bad and who are good at the estimate is 11, Our model's 

prediction success rate is 76%. 

In the SVM-Gaussian model, support vector number 457 and training error 0.2 were 

observed. 

Performance evaluation of the Scoring Model was measured as follows. 

Model Evaluation 

Error Metrics 
Performance Metrics 

AUROC (AUC – ROC) 72.89 

KS (Kolmogorov Smirnov) 38.42 

Gini (Gini Coefficient) 46.02 

 



58 
 

Table 25. Outcome from the evaluation of SVM- Gaussian RBF Kernel model with 

Model Evaluation Error Criteria 

3.4.3 Scoring with Artificial Neural Networks Model 

Neural Networks, NeuralNetTools, e1071 libraries are used in modeling of Artificial 

Neural Networks with R programming language. 

First, the Train and Test data are normalized by the normalize function. 

Normalize<- function (x)  

Return( (x-min (x)) / (max(x)-min(x))) 

 

The model uses a multi-layer sensor network structure, that is, it has a feedforward 

structure consisting of three layers of input, neural network middle and output layers. 

The model of the network is as follows:

 

Figure 29.ANN model architecture 

As you can see from the picture, 24 input variables are included in the neural 

network, these inputs are passed to the next layer and the number of inputs in this 
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intermediate layer is reduced to 20.And the output layer, which is our last layer, 

consists of 1 variable.The connection weights of the nerve cells are 521.The nnet 

function is selected for training of neural networks. 

And the parameters of this function are given in the appropriate input Table 26. 

Parametre Value 

formula V25 ~ V1+V2+V3+…+V24 

data train_nn  (normalize olunmuş 

train veriler) 

size 20 

maxit 10000 

decay 0.01 

linout F 

trace F 

Table 26. Parameter inputs for the ANN training function 

The result table of the Artificial Neural Network model configured for classification 

in scoring model: 

Classification  

Observation Prediction  

 Good Bad Rate 

Good 162 56 54% 

Bad 46 36 12% 

Average Rate 69% 31% 66% 

Table 27. Outcome from classification made with ANN model 
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The number of well-anticipated customers is 162 and the ratio is 54%. The number of 

malicious customers is 36 and the ratio is 12%. The estimated number of clients 

coming out badly is calculated as 56. And the predictive success of the model is 66% 

-dir. 

The performance curve and values of the model are shown below.

 

Figure 30. ANN Model ROC Curve 

Model Evaluation 

Error Metrics 

Performance Metrics 

AUROC (AUC – ROC) 74.60 

KS (Kolmogorov 

Smirnov) 

43.61 

Gini (Gini Coefficient) 49.30 

 Table 28. Outcome from the evaluation of ANN model with Model Evaluation Error 

Criteria 
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CONCLUSION 

The size and importance of the banking sector are closely monitored by governments 

and supervisory agencies. The most important risk that affects the banking sector is 

the concept of credit risk. Credit risk can be described as the risk that arises if the 

credited creditor is not paid. The banks try to make sure that the customers they give 

credit are well known and that they can repay the loans they give. But nowadays the 

number of people who use credit from banks reaches to millions, making trusting and 

customer-based lending process very difficult. Techniques called credit scoring 

techniques and measuring whether or not to give credit to customers using customer 

information are now widely used between banks today.  

Credit scoring is a technique that uses the customer information to decide whether to 

give credit to customers who apply for credit. With credit scoring methods, it should 

be possible to lower the percentage of credit customers who will face difficulties in 

repayment when choosing lenders to receive higher rates of success and fail to pay 

back loans. Using statistical and non-statistical methods, the customers pass through 

the credit scoring and a score is formed in the bank's hands with the 2 customer 

information they hold. 

Some banks in Azerbaijan now use scoring models. In particular, scoring models play 

an indispensable role in providing consumer loans. Because the information required 

to give consumer loans in Azerbaijan is almost transparent and the scoring model 

makes the analysis more accurate and gives more realistic results. There are problems 

with business loans. It is difficult to assess the financial account deficiency in some 

Azerbaijani businesses. However, if banks invest in this direction, scoring models can 

be created for such businesses. Right now, the lack of competition in the credit 

market is creating wider income sources for banks, and even a decision made by a 

bad credit scoring model is better than the credit decisions made by some credit 

analysts at the bank. Within a few years, banks will have to pay more attention to 

credit risks - because the banks that do not manage the risks will be the least 

profitable and the closest banks to the bankruptcy. 

Data analysis in the day, that is to say, the examination of the data into meaningful 

information is seen as the key to success for many sectors. Credit scoring is one of 

the newest applications used in the banking sector in our country for this purpose. As 
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credit scoring can be used for many purposes in banking applications, only 

application scoring is covered in this study. Models have been prepared to estimate 

whether customers applying for loans are at risk and whether they apply. With these 

techniques, customers are classified as good-bad. 

In this study, the data of credit customers of a bank were analyzed by some credit 

scoring techniques. Support Vector Machine and Artificial Neural Network were 

used in non-statistical techniques. 

The Support Vector Machine algorithm uses the ksvm function, and the function has 

two different functions as kernel parameters: Vanilladot Kernel and Gaussian RBF 

Kernel. In the SVM Vanilladot Kernel model, 399 support vectors were used and 

training error was 0.225714,in the SVM Gaussian RBF Kernel model, 457 support 

vectors are used and the training error is equal to 0.2. 

As the Artificial Neural Network, multilayer feed-forward network is preferred, and 

the connection weights of the neural networks are specified as 521. The first inputs 

are 21 variables, 20 of which are passed to the middle layer and 1 output (bad or 

good) is obtained. 

The goal of the study is to compare some of the techniques that can be used for credit 

scoring by applying the same example. 

The first applied SVM is the Vanilladot Kernel Model. The model showed 78% 

accuracy in determining the good and bad customers. The performance indicators 

AUROC = 72.89, KS = 38.42, Gini = 46.02. 

Secondly SVM - Gaussian RBF Kernel Model was applied. Modeling give bad 

results in evaluating performance, but the accuracy of prediction indicators is 76%. 

The final implementation technique is Artificial Neural Networks Model. The 

predictor of the model is 66%, performance values are AUROC = 74.60, KS = 43.61, 

Gini = 49.30. 

It is the model SVM - Vanilladot Kernel, which has the best performance estimation 

among the models for this study and which has the best performance measures at the 

same time. The SVM - Vanilladot kernel is the SVM - Gaussian RBF kernel and 

ANN, respectively, which make good estimation after. 
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Order of the good customers with the highest classification accuracy is; SVM - 

Gaussian RBF kernel, SVM - Vanilladot Kernel, ANN. 

Model ranking with the worst customers with the highest classification success; SVM 

- VanillaDot Kernel, ANN and SVM - Gaussian RBF kernel. 

If we sort by performance evaluation: SVM - VanillaDot Kernel, YSA and SVM - 

Gaussian RBF kernel. 
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