




A Unifi ed Approach to 

Measuring Poverty and 

Inequality



Health Equity and Financial Protection: Streamlined Analysis with ADePT 
Software (2011) by Adam Wagstaff, Marcel Bilger, Zurab Sajaia, and 
Michael Lokshin 

Assessing Sector Performance and Inequality in Education: Streamlined 
Analysis with ADePT Software (2011) by Emilio Porta, Gustavo Arcia, 
Kevin Macdonald, Sergiy Radyakin, and Michael Lokshin

ADePT User Guide (forthcoming) by Michael Lokshin, Zurab Sajaia, and 
Sergiy Radyakin

For more information about Streamlined Analysis with ADePT software 
and publications, visit www.worldbank.org/adept.

OTHER TITLES IN THE ADePT SERIES

www.worldbank.org/adept


A Unifi ed Approach to 
Measuring Poverty and 
Inequality

Theory and Practice

James Foster
Suman Seth
Michael Lokshin
Zurab Sajaia

STREAMLINED ANALYSIS WITH ADePT SOFTWARE



© 2013 International Bank for Reconstruction and Development / The World Bank
1818 H Street NW
Washington, DC 20433
Telephone: 202-473-1000
Internet: www.worldbank.org

Some rights reserved

1 2 3 4 16 15 14 13 

This work is a product of the staff of The World Bank with external contributions. Note that The World Bank does not necessarily own 
each component of the content included in the work. The World Bank therefore does not warrant that the use of the content contained in 
the work will not infringe on the rights of third parties. The risk of claims resulting from such infringement rests solely with you.

The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board 
of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this 
work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the 
part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.

Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The 
World Bank, all of which are specifically reserved.

Rights and Permissions

This work is available under the Creative Commons Attribution 3.0 Unported license (CC BY 3.0) http://creativecommons.org/licenses/
by/3.0. Under the Creative Commons Attribution license, you are free to copy, distribute, transmit, and adapt this work, including for 
commercial purposes, under the following conditions:

Attribution—Please cite the work as follows: Foster, James, Suman Seth, Michael Lokshin, and Zurab Sajaia. 2013. A Unified Approach to 
Measuring Poverty and Inequality: Theory and Practice. Washington, DC: World Bank. doi: 10.1596/978-0-8213-8461-9 License: Creative 
Commons Attribution CC BY 3.0

Translations—If you create a translation of this work, please add the following disclaimer along with the attribution: This translation was 
not created by The World Bank and should not be considered an official World Bank translation. The World Bank shall not be liable for any content 
or error in this translation.

All queries on rights and licenses should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, 
DC 20433, USA; fax: 202-522-2625; e-mail: pubrights@worldbank.org.

ISBN (paper): 978-0-8213-8461-9
ISBN (electronic): 978-0-8213-9864-7
DOI: 10.1596/978-0-8213-8461-9

Cover photo: Scott Wallace/World Bank (girl and child)
Background image: iStockphoto.com/Olga Altunina
Cover design: Kim Vilov 

Library of Congress Cataloging-in-Publication Data
Foster, James E. (James Eric), 1955–
Measuring poverty and inequality : theory and practice / by James Foster, Suman Seth, Michael Lokshin, Zurab Sajaia.
  pages cm
 Includes bibliographical references and index.
 ISBN 978-0-8213-8461-9 — ISBN 978-0-8213-9864-7 (electronic)
 1. Poverty. 2. Equality. I. Title. 
 HC79.P6F67 2013
 339.4'6—dc23
 2012050221

www.worldbank.org
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
www.iStockphoto.com/Olga


v

Foreword .................................................................................................... xi

Preface ....................................................................................................... xv

Chapter 1

Introduction ................................................................................................ 1

The Income Variable ..........................................................................................4
The Data ..............................................................................................................4
Income Standards and Size .................................................................................5
Inequality Measures and Spread .......................................................................13
Poverty Measures and the Base of the Distribution .........................................26
Note ...................................................................................................................44
References ..........................................................................................................44

Chapter 2

Income Standards, Inequality, and Poverty  ......................................... 45

Basic Concepts ..................................................................................................49
Income Standards ..............................................................................................54
Inequality Measures ...........................................................................................81
Poverty Measures .............................................................................................105
Exercises ..........................................................................................................144
Notes ................................................................................................................149
References ........................................................................................................151

Contents



vi

Contents

Chapter 3

How to Interpret ADePT Results  ......................................................... 155

Analysis at the National Level and Rural/Urban Decomposition .................157
Analysis at the Subnational Level ..................................................................170
Poverty Analysis across Other Population Subgroups ....................................183
Sensitivity Analyses ........................................................................................199
Dominance Analyses .......................................................................................207
Advanced Analysis ..........................................................................................216
Note .................................................................................................................223
Reference .........................................................................................................223

Chapter 4

Frontiers of Poverty Measurement ...................................................... 225

Ultra-Poverty ...................................................................................................225
Hybrid Poverty Lines.......................................................................................226
Categorical and Ordinal Variables .................................................................228
Chronic Poverty ..............................................................................................229
Multidimensional Poverty ...............................................................................230
Multidimensional Standards ...........................................................................234
Inequality of Opportunity ...............................................................................238
Polarization ......................................................................................................240
References ........................................................................................................241

Chapter 5

Getting Started with ADePT ................................................................. 245

Conventions Used in This Chapter ...............................................................246
Installing ADePT ............................................................................................246
Launching ADePT ..........................................................................................247
Overview of the Analysis Procedure...............................................................248
Specify Datasets ...............................................................................................249
Map Variables ..................................................................................................252
Select Tables and Graphs ...............................................................................254
Generate the Report .......................................................................................257
Examine the Output ........................................................................................258
Working with Variables ..................................................................................258
Setting Parameters ..........................................................................................264
Working with Projects ....................................................................................264
Adding Standard Errors or Frequencies to Outputs .......................................265



vii

Contents

Applying If-Conditions to Outputs ................................................................266
Generating Custom Tables .............................................................................268

Appendix ................................................................................................. 271

Income Standards and Inequality ...................................................................271
Censored Income Standards and Poverty Measures .......................................273
Elasticity of Watts Index, SST Index, and CHUC Index to 

Per Capita Consumption Expenditure .........................................................275
Sensitivity of Watts Index, SST Index, and CHUC Index to Poverty Line ..... 277
Decomposition of the Gini Coefficient ..........................................................278
Decomposition of Generalized Entropy Measures ..........................................280
Dynamic Decomposition of Inequality Using the Second Theil Measure ....282
Decomposition of Generalized Entropy Measure by Income Source .............284
Quantile Function ...........................................................................................286
Generalized Lorenz Curve  ..............................................................................288
General Mean Curve.......................................................................................289
Generalized Lorenz Growth Curve .................................................................290
General Mean Growth Curve .........................................................................291
References ........................................................................................................292

Index ........................................................................................................ 293

Figures

 2.1: Probability Density Function ..................................................................51
 2.2: Cumulative Distribution Function .........................................................52
 2.3: Quantile Function ...................................................................................53
 2.4: Quantile Function and the Quantile Incomes .......................................59
 2.5: Quantile Function and the Partial Means ..............................................62
 2.6: Generalized Means and Parameter a......................................................66
 2.7:  First-Order Stochastic Dominance Using Quantile Functions and 

Cumulative Distribution Functions ........................................................71
 2.8: Quantile Function and Generalized Lorenz Curve ................................72
 2.9: Generalized Lorenz Curve .......................................................................73
2.10: Growth Incidence Curves .......................................................................77
2.11: Growth Rate of Lower Partial Mean Income .........................................78
2.12: General Mean Growth Curves ...............................................................80
2.13: Lorenz Curve .........................................................................................102
2.14: Poverty Incidence Curve and Headcount Ratio ..................................136
2.15: Poverty Deficit Curve and the Poverty Gap Measure ..........................137



viii

Contents

2.16: Poverty Severity Curve and the Squared Gap Measure .......................139
 3.1: Probability Density Function of Urban Georgia ..................................157
 3.2: Age-Gender Poverty Pyramid ...............................................................198
 3.3: Poverty Incidence Curves in Urban Georgia, 2003 and 2006 .............208
 3.4: Poverty Deficit Curves in Urban Georgia, 2003 and 2006 ..................209
 3.5: Poverty Severity Curves in Rural Georgia, 2003 and 2006 .................211
 3.6: Growth Incidence Curve of Georgia between 2003 and 2006 ............212
 3.7: Lorenz Curves of Urban Georgia, 2003 and 2006 ................................214
 3.8:  Standardized General Mean Curves of Georgia, 2003 and 2006 .........216
  A.1:  The Quantile Functions of Urban Per Capita Expenditure, 

Georgia ..................................................................................................287
  A.2:  Generalized Lorenz Curve of Urban Per Capita Expenditure, 

Georgia ..................................................................................................288
  A.3:  Generalized Mean Curve of Urban Per Capita Expenditure, 

Georgia ..................................................................................................290
  A.4:  Generalized Lorenz Growth Curve for Urban Per Capita 

Expenditure, Georgia ............................................................................291
  A.5:  General Mean Growth Curve of Urban Per Capita Expenditure, 

Georgia ..................................................................................................292

Tables

 3.1:  Mean and Median Per Capita Consumption Expenditure, 
Growth, and the Gini Coefficient ........................................................158

 3.2: Overall Poverty  ....................................................................................160
 3.3: Distribution of Poor in Urban and Rural Areas ...................................162
 3.4: Composition of FGT Family of Indices by Geography ........................164
 3.5:  Quantile PCEs and Quantile Ratios of Per Capita Consumption 

Expenditure ...........................................................................................166
 3.6: Partial Means and Partial Mean Ratios ................................................168
 3.7: Distribution of Population across Quintiles .........................................169
 3.8:  Mean and Median Per Capita Income, Growth, and the Gini 

Coefficient across Subnational Regions ...............................................171
 3.9: Headcount Ratio by Subnational Regions, 2003 and 2006 .................172
3.10: Poverty Gap Measure by Subnational Regions ....................................174
3.11: Squared Gap Measure by Subnational Regions ....................................175
3.12:  Quantile PCE and Quantile Ratio of Per Capita Consumption 

Expenditure, 2003 .................................................................................177



ix

Contents

3.13:  Partial Means and Partial Mean Ratios for Subnational 
Regions, 2003 ........................................................................................178

3.14:  Distribution of Population across Quintiles by Subnational 
Region, 2003 .........................................................................................180

3.15:  Subnational Decomposition of Headcount Ratio, Changes between 
2003 and 2006 .......................................................................................181

3.16:  Mean and Median Per Capita Consumption Expenditure, 
Growth, and Gini Coefficient, by Household Characteristics .............184

3.17: Headcount Ratio by Household Head’s Characteristics ......................185
3.18:  Distribution of Population across Quintiles by Household Head’s 

Characteristics, 2003 .............................................................................187
3.19: Headcount Ratio by Employment Category .........................................189
3.20: Headcount Ratio by Education Level ...................................................191
3.21: Headcount Ratio by Demographic Composition .................................192
3.22: Headcount Ratio by Landownership ....................................................194
3.23: Headcount Ratio by Age Groups ..........................................................196
3.24:  Elasticity of FGT Poverty Indices to Per Capita Consumption 

Expenditure ...........................................................................................199
3.25:  Sensitivity of Poverty Measures to the Choice of Poverty 

Line, 2003 ..............................................................................................202
3.26: Other Poverty Measures ........................................................................203
3.27:  Atkinson Measures and Generalized Entropy Measures by 

Geographic Regions, 2003 ....................................................................205
3.28: Consumption Regressions .....................................................................217
3.29: Changes in the Probability of Being in Poverty ...................................220
3.30:  Growth and Redistribution Decomposition of Poverty Changes, 

Headcount Ratio ...................................................................................222
A.1: General Means and the Sen Mean ........................................................272
A.2: Censored Income Standards ..................................................................273
A.3:  Elasticity of Watts Index, SST Index, and CHUC Index to 

Per Capita Consumption Expenditure...................................................275
A.4:  Sensitivity of Watts Index, SST Index, and CHUC Index to the 

Choice of Poverty Line, 2003 ................................................................277
A.5: Breakdown of Gini Coefficient by Geography ......................................279
A.6: Decomposition of Generalized Entropy Measures by Geography .........280
A.7:  Dynamic Decomposition of Inequality Using the Second 

Theil Measure ........................................................................................283
A.8: Decomposition of Generalized Entropy Measure by Income Source ........284





xi

Foreword

This book is an introduction to the theory and practice of measuring 
poverty and inequality, as well as a user’s guide for readers wanting to ana-
lyze income or consumption distribution for any standard household data-
set using the ADePT program—a free download from the World Bank’s 
website. 

In the prosaic world of official publications, A Unified Approach to 
Measuring Poverty and Inequality: Theory and Practice is sure to stand out. It 
is written with a flair and fluency that is rare. For readers with little interest 
in the underlying philosophical debates and a desire simply to use ADePT 
software for computations, this book is, of course, a must. But even for some-
one with no interest in actually computing numbers but, instead, wanting 
to learn the basic theory of poverty and inequality measurement, with its 
bewildering plurality of measures and axioms and complex philosophical 
debates in the background, this book is an excellent read.  

But, of course, the full book is designed for analysts wishing to do hands-
on work, converting raw data into meaningful indices and unearthing regu-
larities in large and often chaotic statistical information. The presentation 
is comprehensive, with all relevant concepts defined and explained. On 
completing this book, the country expert will be in a position to generate 
the analyses needed for a Poverty Reduction Strategy Paper. Researchers 
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can construct macrodata series suitable for empirical analyses. Students can 
 replicate and check the robustness of published results. 

Several recent initiatives have lowered the cost of accessing household 
datasets. The goal of this book, then, is to reduce the cost of analyzing data 
and sharing findings with interested parties.

This book has two unique aspects. First, the theoretical discussion is 
based on a highly accessible, unified treatment of inequality and poverty 
in terms of income standards or basic indicators of the overall size of the 
income distribution. Examples include the mean, median, and other tradi-
tional ways of summarizing a distribution with one or several representative 
indicators. The literature on the measurement of inequality has proliferated 
since the 1960s. This book provides an excellent overview of that extensive 
literature. 

Most poverty measures are built on two pillars. First, the “poverty line” 
delineates the income levels that define a poor person, and second, various 
measures capture the depths of the incomes of those below the poverty line. 
The approach here considers income standards as the basic measurement 
building blocks and uses them to construct inequality and poverty measures. 
This unified approach provides advantages in interpreting and contrasting 
the measures and in understanding the way measures vary over time and 
space.

Second, the theoretical presentation is complemented by empirical 
examples that ground the discussion, and it provides a practical guide to the 
inequality and poverty modules of the ADePT software developed at the 
World Bank. By immediately applying the measurement tools, the reader 
develops a deeper understanding of what is being measured. A battery of 
exercises in chapter 2 also aids the learning process.

The ADePT software enables users to analyze microdata—from sources 
such as household surveys—and generate print-ready, standardized tables 
and charts. It can also be used to simulate the effect of economic shocks, 
farm subsidies, cash transfers, and other policy instruments on poverty, 
inequality, and labor. The software automates the analysis, helps minimize 
human error, and encourages development of new methods of economic 
analysis.

For each run, ADePT produces one output file—containing your selec-
tion of tables and graphs, an optional original data summary, and errors and 
notifications—in Microsoft Excel® format. Tables of standard errors and 
frequencies can be added to a report, if desired.

Foreword
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Foreword

These two components—a unifying framework for measurement and the 
immediate application of measures facilitated by ADePT software—make 
this book a unique source for cutting-edge, practical income distribution 
analysis.

The book is bound to empower those already engaged in the analysis of 
poverty and inequality to do deeper research and plumb greater depths in 
searching for regularity in larger and larger datasets. But I am also hopeful 
that it will draw new researchers into this important field of inquiry. This 
book should also be of help in enriching the discussion and analysis relating 
to the World Bank’s recent effort to define new targets and indicators for 
promoting work on eradicating poverty and enhancing shared prosperity. 

The work on this project was facilitated by the proximity of two key 
institutions, the World Bank and the George Washington University. But 
as anyone who has contemplated the world knows, proximity does not nec-
essarily lead to cooperation. It is a tribute to the authors that they made use 
of this natural advantage and, through their shared willingness to support 
collaborative research across institutional boundaries, managed to produce 
this very useful monograph. My expectation is that this will be the first of 
many such collaborations.

Kaushik Basu
Senior Vice President and Chief Economist

The World Bank
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Chapter 1

What is poverty? At its most general level, poverty is the absence of accept-
able choices across a broad range of important life decisions—a severe lack of 
freedom to be or to do what one wants. The inevitable outcome of poverty 
is insuffi ciency and deprivation across many of the facets of a fulfi lling life:

• Inadequate resources to buy the basic necessities of life
• Frequent bouts of illness and an early death
• Literacy and education levels that undermine adequate functioning 

and limit one’s comprehension of the world and oneself
• Living conditions that imperil physical and mental health
• Jobs that are at best unfulfi lling and at worst dangerous
• A pronounced absence of dignity, a lack of respect from others
• Exclusion from community affairs. 

The presence of poverty commonly leads groups to undertake activities 
and policies designed to reduce poverty—responses that take many forms and 
that are seen at many levels. A family in India helps pay for the children of 
its housekeeper or aiya. Buddhists, Confucians, Christians, and Muslims work 
together in Jakarta, Indonesia, to deliver alms to the poor during the fasting 
month. The governments of Mexico and Brazil implement PROGRESA 
(Programa de Educación, Salud y Alimentación, now called Oportunidades) 
and Bolsa Família, conditional cash transfer programs to help the poorest 
families invest in their children’s human capital and to break the cycle of pov-
erty. A nongovernmental organization from Bangladesh offers  microfi nance 
loans and education to poor people in Uganda. 

Introduction

1
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At the United Nations Millennium Forum in 2000, 193 countries agreed 
on the Millennium Development Goals, which, among other targets, aim 
to reduce the proportion of people living on $1.25 a day by half within 
15 years. Following the Group of 8 (G-8) Summit in Gleneagles, Scotland, 
in 2005, the World Bank, the International Monetary Fund, and the African 
Development Bank agreed to a plan of debt relief for the poorest countries.

What reasons underlie efforts to alleviate poverty? Individuals often con-
sider alleviating poverty a personal responsibility that arises from religious 
or philosophical convictions. Many see poverty as the outcome of an unfair 
system that privileges some and constrains opportunities for others—a fun-
damental injustice that can also lead to social confl ict and violence if not 
addressed. Others view poverty as a denial of universal rights and human 
dignity that requires collective action at a global level.

Political leaders often portray poverty as the enemy of social stability 
and good governance. Economists focus on the waste and ineffi ciency of 
allowing a portion of the population to fall signifi cantly below potential. 
Many countries include poverty alleviation as an essential component of 
their programs for sustainable growth and development. Business leaders are 
reevaluating the “bottom of the pyramid” as a substantial untapped market 
that can be bolstered through efforts to address poverty.

Measurement is an important tool for the many efforts that are address-
ing poverty. By identifying who the poor are and where they are located, 
poverty measurements can help direct resources and focus efforts more effec-
tively. The measurements create a picture of the magnitude of the problem 
and the way it varies over space and time. Measurements can help identify 
programs that work well in addressing poverty. Civil society groups can use 
information on poverty as evidence of unaddressed needs and missing ser-
vices. Governments can be held accountable for their policies. Analysts can 
explore the underlying relationships between poverty and other economic 
and social variables to obtain a deeper understanding of the phenomenon.

How can poverty be measured? The process has three main steps:

1. Choose the space in which poverty will be assessed. The traditional 
space has been income, consumption, or some other welfare indicator 
measured in monetary units. This book will focus on the traditional 
space (although attention is turning to other dimensions, such as 
opportunities and capabilities).
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2. Identify the poor. This step involves selecting a poverty line 
that indicates the minimum acceptable level of income or con-
sumption.

3. Aggregate the data into an overall poverty measure. Headcount 
ratio is the most basic measure. It simply calculates the share of 
the population that is poor. But following the work of Amartya 
Sen, other aggregation methods designed to evaluate the depth 
and severity of poverty have become part of the poverty analyst’s 
standard toolkit.1

Applying and interpreting poverty measures require understanding the 
methods used to assess two other aspects of income distribution: its spread 
(as evaluated by an inequality measure like the Gini coeffi cient) and its 
size (as gauged by an “income standard” like the mean or median income). 
There are several links between income inequality, poverty, and income 
standards. For instance, inequality and poverty often move together— 
particularly when growth in the distribution is small and its size is relatively 
unchanged.

Other links exist for individual poverty measures. To gauge the depth 
of poverty, a poverty measure can assess the size of the income distribution 
among the poor—or a poor income standard. Other measures incorporate a 
special concern for the poorest of the poor and are sensitive to the income 
distribution among the poor. This sensitivity takes the form of including a 
measure of inequality among the poor within the measure of poverty. Thus, 
to measure and to understand the many dimensions of income poverty, 
one must have a clear understanding of income standards and inequality 
measures.

This chapter is a conceptual introduction to poverty measurement and 
the related distributional analysis tools. It begins with a brief discussion 
of the variable and data to be used in poverty assessment. It then discusses 
the various income standards commonly used in distributional analysis. 
Inequality measures are then introduced, and their meanings in income 
standards are presented. The fi nal part of this introduction combines those 
elements to obtain the main tools for evaluating poverty.

The second chapter complements this introduction by providing a 
detailed outline and more formal analysis of the concepts introduced here, 
and follows the composition of this chapter closely. The third chapter and 
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the appendix includes tables and fi gures that may be useful in understanding 
some of the concepts and examples in the fi rst two chapters.

The Income Variable

Our discussion begins with the variable income, which may also represent 
consumption expenditure or some other single dimensional outcome vari-
able. Data are typically collected at the household level. So to construct an 
income variable at the individual level, one must make certain assumptions 
about its allocation within the household. Using these assumptions, house-
hold data are converted into individual data that indicate the equivalent 
income level an individual commands, thereby taking account of household 
structure and other characteristics.

One simplifi cation is to assume that overall income is spread evenly 
across each person in the household. However, many other equivalence scales 
can be used. This adjustment enables comparisons to be made symmetri-
cally across people irrespective of household or other characteristics. This 
simplifi cation justifi es the assumption of symmetry invoked when evaluating 
income distributions—whereby switching the (equivalent) income levels 
of two people leaves the evaluation unchanged. Additionally, it is assumed 
that the resulting variable can be measured with a cardinal scale that allows 
comparison of income differences across people.

The Data

Income distribution data can be represented in a variety of ways. The 
simplest form is a vector of incomes, one for each person in the specifi ed 
population. This format naturally arises when the data are derived from 
a population census. The population distribution may be proxied by an 
unweighted sample, which yields a vector of incomes, each of which rep-
resents an equal share of the population. It can also be represented by a 
weighted sample, which differentiates across observations in the vector in a 
prescribed way. For clarity, we will focus on the equal-weighted case here.

Of course, a sample carries less information than does a full census, but 
the extent of the loss can be gauged and accounted for via statistical analysis. 
One further assumption must be made at this point: the evaluation method is 
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invariant to the population size, in that a replication of the vector (having, 
say, k copies of each observation for every original observation) is evaluated in 
the same way as the original sample vector. This population invariance assump-
tion ensures that the method can be applied directly to a sample vector when 
attempting to evaluate a population. More generally, the method depends on 
a distribution function, which normalizes the population size to one.

The second way of representing an income distribution is with a cumu-
lative distribution function (cdf), in which each level of income indicates 
the percentage of the population having that income level or lower. A 
cdf automatically treats incomes symmetrically or anonymously (in that it 
ignores who has what income) and is invariant with respect to the popula-
tion size. It is straightforward to construct the cdf for a particular vector of 
incomes as a step function that jumps up by 1/N for each observation in the 
vector, where N is the number of observations. For large enough samples, 
the income distribution can be approximated by a continuous distribution 
having a density function whose integral up to an income level is the value 
of the cdf at that income level.

Whereas a cdf is a standard representation, one that is even more intui-
tive in the present context is the quantile function. The quantile function 
gives the minimum income necessary to capture a given percentage p of 
the population, so that, for example, the quantile at p = 12.5 percent is 
the income level above which 87.5 percent of the population lies. For the 
case of a strictly increasing and continuous cdf, the quantile function is the 
inverse of the cdf found by rotating the axes. If the cdf has fl at portions or 
jumps up discontinuously, then certain alterations to the rotated function 
must be made to obtain the quantile function. Another version of the quan-
tile function is Pen’s Parade, which displays the distribution as an hour-long 
parade of incomes from lowest to highest.

Income Standards and Size

Given an income distribution, three separate but related aspects are of inter-
est: the distribution’s size, the distribution’s spread, and the distribution’s 
base. We will discuss the size issue here. Subsequent sections deal with the 
spread and base concepts.

Distribution size is most often indicated by the mean or per capita income. 
For the vector representation, the mean is obtained by dividing total income 
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by the total number of people in the distribution. The mean can also be 
viewed as the average height (or, in mathematical terms, the integral) of 
the quantile function. It is the income level that all people would achieve if 
they were given an equal share of overall resources.

Another size indicator, median income, is the income at the midway point 
of the quantile function, with half the incomes below and half above. Most 
empirical income distributions are skewed so that the mean (which includes 
the largest incomes in the averaging process) exceeds the median income 
(which is unaffected by the values of the largest incomes). Still another 
measure of size is given by the mean income of the lowest fi fth of the popula-
tion, which focuses exclusively on the lower incomes in a distribution. Each 
of these indicators is an example of an income standard, which reduces the 
overall income distribution to a single income level indicating some aspect 
of the distribution’s size.

What Is an Income Standard?

To understand what a measure or index means, explicitly stating a set of 
properties that it should satisfy is helpful. In the case of an income standard, 
there are several requirements that go beyond the basic symmetry and popu-
lation invariance discussed above:

• Normalization states that if all incomes happen to be the same, then 
the income standard must be that commonly held level of income—a 
natural property indeed.

• Linear homogeneity requires that if all incomes are scaled up or down 
by a common factor, then the income standard must rise or fall by 
that same factor.

• Weak monotonicity requires the income standard to rise, or at least not 
fall, if any income rises and no other income changes.

These basic requirements ensure that the income standard measures 
the size of the income distribution as a “representative” income level that 
responds “in the right way” when incomes change (for example, these 
requirements rule out envy effects). It is easy to see that the size indicators 
discussed in the previous section—mean, median, and mean of the lowest 
fi fth—conform to these general requirements.
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Common Examples

Four types of income standards are in common use:

• First are the quantile incomes, such as the income at the 10th per-
centile, the income at the 90th percentile, and the median. Each is 
informative about a specifi c point in the distribution but ignores the 
values of the remaining points.

• Next are the (relative) partial means obtained by fi nding the mean of 
the incomes below a specifi c percentile cutoff (the lower partial means) 
or above the cutoff (the upper partial means), such as the mean of the 
lowest 20 percent and the mean of the highest 10 percent. Each of 
these income standards indicates the size of distribution by focusing 
on one or the other side of a given percentile and by  measuring the 
average income of this range while ignoring the rest. As the cutoff 
varies between 0 percent and 100 percent, the lower partial mean 
varies between the lowest income and the mean income, whereas the 
upper partial mean varies between the mean income and the highest 
income.

 By focusing on a specifi c income or a range of incomes, the quantile 
incomes and the partial means ignore income changes outside that 
range. The remaining two forms of income standard, by contrast, are 
monotonic so that the increase in income causes the income standard 
to strictly rise.

• The general means take into account all incomes in the distribution, 
but emphasize lower or higher incomes depending on the value of 
parameter a (that can be any real number). When a is nonzero, the 
general mean is found by raising all incomes to the power a, then 
by averaging, and fi nally by taking the result to the power 1/a. This 
process of transforming incomes and then untransforming the aver-
age ensures that the income standard is, in fact, measured by income 
(or, in income space, as we might say).

 In the remaining case of a = 0, the general mean is defi ned to be 
the geometric mean. It is obtained by raising all incomes to the power 
1/N, then taking the product. For a < 1, incomes are effectively trans-
formed by a concave function, thus placing greater emphasis on lower 
incomes. For a > 1, the transformation is convex, and the general 
mean emphasizes higher incomes.
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 As a varies across all possible values, the general mean rises from 
 minimum income (as a approaches −∞), to the harmonic mean 
(a = −1),  the geometric mean (a = 0), the mean (a = 1), the Euclidean 
mean (a = 2), up to the maximum income (as a approaches ∞). 
General means with a < 0 are only defi ned for positive incomes.

• The fi nal income standard is a step in the direction of a “maximin” 
approach, which evaluates a situation by the condition of the least 
advantaged person. The usual mean can be reinterpreted as the 
expected value of a single income drawn randomly from the popula-
tion. Suppose that instead of a single income, we were to draw two 
incomes randomly from the population (with replacement). If we 
then evaluated the pair by the lower of the two incomes, this would 
lead to the Sen mean, defi ned as the expectation of the minimum of 
two randomly drawn incomes.

Because we are using the minimum of the two, this number can be no 
higher than the mean and is generally lower. Consequently, the Sen mean 
also emphasizes lower incomes but in a different way to the general means 
with a < 1, the lower partial means, or the quantile incomes below the 
median.

Calculating the Sen mean for an income vector is straightforward. 
Create an N × N matrix that has a cell for every possible pair of incomes, 
and place the lower value of the two incomes in the cell. Add up all the 
entries and divide by the number of entries (N2) to obtain their mean, 
which is the expected value of the lower income. This mean has close ties 
to the well-known Gini coeffi cient measure of inequality.

Welfare

The general means for a < 1 and the Sen mean are also commonly inter-
preted as measures of welfare. The key additional property that allows this 
interpretation is the transfer principle, which requires an income transfer 
from one person to another who is richer (or equally rich) to lower the 
income standard. In other words, a regressive transfer that does not change 
the mean income should lower the income standard.

One way to justify this property begins with a utilitarian symmetric 
welfare function that views welfare derived from an income distribution 
to be the average level of (indirect) utility in society, where it is assumed 
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that everyone’s utility function is identical and strictly increasing. In this 
context, the intuitive assumption of diminishing marginal utility (each 
additional dollar leads to a higher level, but a lower increment, of utility) 
yields the transfer principle, because the loss to the giver is greater than the 
gain to the richer receiver.

This form of welfare function was considered by Atkinson (1970), who 
then defi ned a helpful transformation of the welfare function called the 
equally distributed equivalent income (ede). The ede is that income level which, 
if received by all people, would yield the same welfare level as an original 
income distribution. The particular ede he focused on was, in fact, the gen-
eral mean for a < 1. Sen suggested going beyond the utilitarian form. One 
key nonutilitarian example is the Sen mean, which can be viewed as both 
an ede and a general welfare function and also satisfi es the transfer principle.

Applications

Income standards are used to assess a population’s prosperity, the way it 
compares to other populations, and the way it progresses through time. The 
most common examples are country-level assessments of mean or per capita 
income and its associated growth rate. This is a mainstay of the growth lit-
erature, and many interesting economic questions about the determinants of 
growth and its effect on other variables of interest have been addressed. In 
the recent example of The Growth Report: Strategies for Sustained Growth and 
Inclusive Development (Commission on Growth and Development 2008), 
countries with high and sustained levels of growth in the mean income were 
evaluated to see if the factors that made this possible could be identifi ed. 

Imagine undertaking a similar study with a different income standard 
to focus on one part of the income distribution or, perhaps, even exam-
ining growth in a different underlying variable. Some studies use the 
median income, arguing that it corresponds more naturally to the middle 
of the income distribution (see, for example, the report by the Commission 
on the Measurement of Economic and Social Progress [2009], also known as 
the Sarkozy Report). Other authors have used the mean of the lowest fi fth of 
the population, or a general mean (with a < 0) as a low-income standard, to 
examine how growth in one income standard (the mean) relates to growth 
in the incomes of the poor. Because each income standard measures the 
distribution’s size in a distinct way, examining several at once can clarify the 
quality of growth—including whether it is shared or pro-poor growth.
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Subgroup Consistency

In certain empirical applications, there is a natural concern for certain iden-
tifi able subgroups of the population as well as for the overall population. For 
example, one might be interested in the achievements of the various states 
or subregions of a country to understand the spatial dimensions of growth. 
When population subgroups are tracked alongside the overall population 
value, there is a risk that the income standard could indicate contradictory 
or confusing trends.

A natural consistency property for an income standard might be that if 
subgroup population sizes are fi xed but incomes vary, then when the income 
standard rises in one subgroup and does not fall in the rest, the overall 
population income standard must rise. This property is known as subgroup 
consistency; and using a measure that satisfi es it avoids inconsistencies aris-
ing from this sort of multilevel analyses. In fact, several income standards 
discussed above do not survive this test and, hence, may need to be avoided 
when undertaking regional evaluations or other forms of subgroup analyses.

The mean of the lowest 20 percent is subject to this critique because a 
given policy could succeed in raising the mean of the lowest 20 percent in 
every region of a given country; yet the mean of the lowest 20 percent in 
the overall population could fall. The same is true of the Sen mean or the 
median. In contrast, every general mean satisfi es the consistency require-
ment. In fact, it can be shown that the general means are the only income 
standards that are subgroup consistent while satisfying some additional basic 
properties.

Moreover, each of the general means has a simple formula that links 
regional levels of the income standard to the overall level. If one were 
to go further and specify an additive aggregation formula across subgroup 
standards—a requirement that might be called additive decomposability—the 
only general mean that would survive is the mean itself. The overall mean 
is just the population-weighted sum of subgroup means.

Dominance and Unanimity

One motivation for examining several income standards at the same time is 
robustness: Do conclusions about the direction of change in the distribution 
size using one income standard (say, the mean) hold for others (say, the 
nearby generalized means)? A second reason might be focus or an identifi ed 
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concern with different parts of the distribution: Has rapid growth at the top 
(say, the 90th percentile income) been matched by growth at the middle 
(say, the median) or the bottom (say, the 10th percentile income)?

We can answer questions of this sort by plotting an entire class of income 
standards against percentiles of income distribution. We can then use the 
curve to determine if a given comparison is unambiguous (one curve is 
above the other) or if it is contingent (the curves cross).

A fi rst curve is given by the quantile function itself, which simultane-
ously depicts incomes from lowest to highest. As income standards, quan-
tiles are somewhat partial and insensitive—yet when they all agree that 
one distribution is larger than another, this ensures that every other income 
standard must follow their collective judgment.

The quantile function represents fi rst-order stochastic dominance, which 
also ensures higher welfare according to every utilitarian welfare function 
with identical, increasing utility functions. Thus, on the one hand, the 
robustness implied by an unambiguous comparison of quantile functions 
extends to all income standards and all symmetric welfare functions for 
which “more is better.” On the other hand, if some quantiles rise and others 
fall, then the resulting curves will cross and the fi nal judgment is contingent 
on which income standard is selected. In this case, the quantile function can 
be helpful in identifying winning and losing portions of the distribution.

A second curve of this sort is given by the generalized Lorenz curve, which 
graphs the area under the quantile function up to each percent p of the 
population. It can be shown that the height of the generalized Lorenz curve 
at any p is the lower partial mean times p itself. For example, if the lowest 
income of a four-person vector were 280, then the generalized Lorenz curve 
value (ordinate) at p = 25 percent would be 70.

A comparison of generalized Lorenz curves conveys information on 
lower partial means, with a higher generalized Lorenz curve indicating 
agreement among all lower partial means. As income standards, the lower 
partial means are insensitive to certain increments and income transfers. 
Yet when all these income standards are in agreement, it follows that every 
monotonic income standard satisfying the transfer principle would abide by 
their judgment.

Indeed, the generalized Lorenz curve represents second-order stochas-
tic dominance, which signals higher welfare according to every utilitarian 
welfare function with identical and increasing utility function exhibiting 
diminishing marginal utility (Atkinson’s general class of welfare functions). 
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However, if generalized Lorenz curves cross, then the fi nal judgment is 
contingent on which monotonic income standard satisfying the transfer 
principle is employed.

Notice that when quantile functions can rank two distributions, gen-
eralized Lorenz curves must rank them in the same way, because a higher 
quantile function ensures that the area beneath it is also greater. However, 
even when quantile functions cross, generalized Lorenz curves may be 
able to rank the two distributions. We will use these two curves and their 
stochastic dominance rankings later in discussing inequality and poverty 
measurement.

A fi nal curve depicts the general mean levels as the parameter a var-
ies. Given the properties of the general means, this curve is increasing in 
a and tends to the minimum income for very low a and rises through the 
harmonic, geometric, arithmetic, and Euclidean means, tending toward the 
maximum income as a becomes very large. A higher quantile function will 
raise the general mean curve. A higher generalized Lorenz curve will raise 
the general mean curve for a < 1 or the general means that favor the low 
incomes. The curve is useful for determining whether a given comparison of 
general means is robust, and if not, which of the income standards are higher 
or lower. It will also be particularly relevant to discussions of inequality in 
later sections.

Growth Curves

Some analyses go beyond the question of which distribution is larger to con-
sider the question of how much larger in percentage terms is one distribution 
than another. This question is especially salient when the two distributions 
are associated with the same population at two points in time. Then the 
next question becomes at what percentage rate did the income standard 
grow. Such growth is most often defi ned by income per capita, or the mean 
income. However, the defi ning properties of an income standard ensure that 
its rate of growth is a meaningful number that can be compared with the 
growth rates of other income standards, either for robustness purposes or for 
an understanding of the quality of growth.

A growth curve depicts the rate of growth across an entire class of income 
standards, where the standards are ordered from lowest to highest. Each of 
the dominance curves described above suggests an associated growth curve. 
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For the quantile function, the resulting growth curve is called the growth 
incidence curve. The height of the curve at p = 50 percent gives the growth 
rate of the median income. Varying p allows us to examine whether this 
growth rate is robust to the choice of income standard or whether the lower 
income standards grew at a different rate than the rest.

The generalized Lorenz growth curve indicates how the lower partial means 
are changing over time, so that the height of this curve at p = 20 percent is 
the rate at which the mean income of the lowest 20 percent of the popula-
tion changed over time. Finally, the general means growth curve plots the 
rate of growth of each general mean against the parameter a. When a = 1, 
the height of the curve is the usual growth rate of the mean income; a = 0 
yields the rate of growth for the geometric mean, and so forth. As we will 
see below, each of these growth curves can be of help in understanding the 
link between growth and the evolution of inequality over time.

Inequality Measures and Spread

The second aspect of the distribution—spread—is evaluated using a numeri-
cal inequality measure, which assigns each distribution a number that 
indicates its level of inequality. The Gini coeffi cient is the most commonly 
used measure of inequality. It measures the average or expected difference 
between pairs of incomes in the distribution, relative to the distribution size, 
and also is linked to the well-known Lorenz curve (discussed below). The 
Kuznets ratio measures inequality as the share of the income going to the top 
fi fth divided by the income share of the bottom two-fi fths of the population. 
Finally, the 90/10 ratio is the income at the 90th percentile divided by the 
10th percentile income. It is often used by labor economists as a measure of 
earnings inequality. These are just a few of the many inequality measures 
used to evaluate income distribution.

What Is an Inequality Measure?

There are two main ways to understand what an income inequality measure 
actually gauges. The fi rst way is through the properties it satisfi es. The 
second makes use of a fundamental link between inequality measures and 
income standards. We begin with the fi rst approach.
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There are four basic properties for inequality measures:

• The fi rst two are symmetry and population invariance properties, which 
are analogous to those defi ned for income standards. They ensure that 
inequality depends entirely on income distribution and not on names 
or numbers of income recipients.

• The third is scale invariance (or homogeneity of degree zero), which 
requires the inequality measure to be unchanged if all incomes are 
scaled up or down by a common factor. This ensures that the inequal-
ity being measured is a purely relative concept and is independent of 
the distribution size. In contrast, doubling all incomes will double 
distribution size as measured by any income standard, thereby refl ect-
ing its respective property of linear homogeneity.

• The fi nal property is the weak transfer principle, which in this context 
requires income transfer from one person to another who is richer 
(or equally rich) to raise inequality or leave it unchanged. In other 
words, a regressive transfer cannot decrease inequality. This is an 
intuitive property for inequality measures. It is often presented in a 
stronger form, known as the transfer principle, which requires a regres-
sive transfer to (strictly) increase inequality.

The Gini coeffi cient and the Kuznets ratio satisfy all four basic properties 
for inequality measures. The 90/10 ratio satisfi es the fi rst three but violates the 
weak transfer principle: a regressive transfer between people at the 5th percen-
tile and the 10th percentile can raise the 10th percentile income, thus lowering 
inequality as measured by the 90/10 ratio. Although this result does not rule 
out the use of the intuitive 90/10 ratio as an inequality measure, it does suggest 
that conclusions obtained with this measure should be scrutinized.

The four basic properties defi ne the general requirements for inequality 
measures. Additional properties help to discern between acceptable mea-
sures. For example, decomposability and subgroup consistency (discussed in a 
later section) are helpful in certain applications. Transfer sensitivity ensures 
that an inequality measure is more sensitive to changes in the income dis-
tribution at the lower end of the distribution.

A second way of understanding inequality measures relies on an intui-
tive link between inequality measures and pairs of income standards. The 
basic structure is perhaps easiest to see in the extreme case where there are 
only two people and, hence, only two incomes. Letting a denote the smaller 
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income of the two, and b denote the larger income, it is natural to measure 
inequality by the relative distance between a and b, such as I = (b − a)/b, 
or some other increasing function of the ratio b/a. Indeed, scale invariance 
and the weak transfer principle essentially require this form for the measure.

Suppose that instead of evaluating the inequality between two people, we 
want to measure the inequality between two equal-sized groups. A natural 
way of proceeding is to represent each group’s income distribution using an 
income standard. This yields a pair of representative incomes—one for each 
group—that can then be compared. Where a denotes the smaller of these 
two incomes and b the larger, it is natural to measure inequality between the 
two groups as I = (b − a)/b, or some other increasing function of the ratio 
b/a. For example, if the distributions are the earnings of men and women and 
the income standard is the mean, then b/a would be the ratio of the aver-
age income for men to the average income for women—a common indica-
tor of inequality between the two groups. As will be discussed below, this 
“between-group” approach is useful in decompositions of inequality by popu-
lation subgroup and also in the measurement of inequality of opportunities.

The general idea that inequality depends on two income standards is also 
relevant when evaluating the overall inequality in a population’s distribu-
tion of income. But instead of applying the same income standard to two 
distributions, we now apply two income standards to the same distribution. 
One of the income standards (the upper standard) places greater weight 
on higher incomes, and the second (the lower standard) emphasizes lower 
incomes; so for any given income distribution, the lower-income standard’s 
value is never larger than the upper-income standard’s value.

This is true, for example, when the lower standard is the geometric mean 
and the upper is the arithmetic mean or, alternatively, when the lower is 
the 10th percentile income and the upper is the 90th percentile income. 
Inequality is then seen as the extent to which the two income standards are 
spread apart: where a denotes the lower-income standard and b the upper-
income standard, overall inequality is I = (b − a)/b, or some other increasing 
function of the ratio b/a.

Common Examples

Virtually all inequality measures in common use are based on twin income 
standards. This is easily seen in the case of the 90/10 ratio, and generalizes to 
any quantile ratio b/a, where a corresponds to the income at a percentile p of 
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the distribution and b is the income at a higher percentile q of the distribu-
tion. The quantile incomes are relatively insensitive income standards, and 
hence they yield inequality measures that are somewhat crude and that dis-
agree with the weak transfer property that is traditionally regarded as a basic 
property of inequality measures. Nonetheless, they succeed at conveying 
tangible information about the distribution—namely, the extent to which 
two quantile incomes differ from one another—and can be informative, if 
crude, measures of inequality.

The Kuznets ratio has as its twin income standards the mean of those 
from 40 percent downward and the mean of those from 80 percent upward, 
respectively. This can be generalized to any ratio of two standards of this form 
by varying the cutoffs. The resulting measure, which we call the partial mean 
ratio, is given by b/a, where a is the lower partial mean at p and b is the upper 
partial mean at q. The case where p = 10 percent and q = 90 percent is often 
called the decile ratio. Another related measure is the income share of the top 
1 percent, which is a multiple of the partial mean ratio with p = 100 percent 
and q = 99 percent. Although each partial mean ratio satisfi es four basic 
properties of an inequality measure, the component income standards are 
still rather crude and focus on only a limited range of incomes. Those falling 
outside the range are ignored entirely, while the income distribution within 
the range is also not considered. The resulting measure is thus insensitive to 
certain transfers. As before, though, the twin standards and their ratio convey 
tangible and easily understood information about the income distribution.

The Gini coeffi cient is defi ned as the expected (absolute) differ-
ence between two randomly drawn incomes divided by twice the mean. 
Calculating the Gini coeffi cient is therefore straightforward:

1. Create an N × N matrix having a cell for every possible pair of 
incomes, and place the absolute value of their difference in the cell.

2. Add all the entries and divide by the number of entries (N2) to 
obtain the expected value of the absolute difference between two 
randomly drawn incomes.

3. Divide by two times the mean income of the distribution to obtain 
the Gini coeffi cient. It is a natural indicator of how “spread out” 
incomes are from one another.

The Gini coeffi cient has as its twin income standards the mean and the 
Sen mean and can be written as I = (b  − a)/b, where b is the mean and a is 
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the Sen mean. The expected (absolute) difference between two incomes 
can be written as (a′ − a), where a′  is the expectation of their maximum and 
a is the expectation of their minimum. Because the mean b  can be written 
as (a′ + a)/2, the difference (b  − a) is half of the expected absolute difference 
between incomes, which confi rms that (b  − a)/b is an equivalent defi nition 
of the Gini coeffi cient. In other words, the Gini coeffi cient is the extent to 
which the Sen mean falls below the mean as a percentage of the mean.

Atkinson’s class of inequality measures also takes the form I = (b − a)/b, 
where the upper-income standard b is also the mean, but now the lower-
income standard a is a general mean with parameter a < 1. This income 
standard focuses on lower incomes by raising each income to the a power, 
averaging across all the transformed incomes, then converting back to 
income space by raising the result to the power 1/a. A lower value of the 
parameter a yields an income standard that is more sensitive to lower 
incomes and is lower in value. This will be refl ected in a higher value for 
(b  − a)/b, so the percentage loss from the mean is seen to be higher.

The fi nal example is the family of generalized entropy measures, whose 
defi nition and properties vary with a parameter a. There are three distinct 
ranges for the parameter: a lower range where a < 1, an upper range where 
a > 1, and a limiting case where a = 1.

When a < 1, the generalized entropy measures evaluate inequality in 
the same way as the Atkinson class of inequality measures (and, in fact, are 
monotonic transformations). For example, when a = 0, the measure is the 
mean log deviation or Theil’s second measure given by ln(b/a), where b is the 
arithmetic mean and a is the geometric mean. Atkinson’s version is (b − a)/b.

Over the second range where a > 1, the general mean places greater 
weight on higher incomes and yields a representative income that is typi-
cally higher than the mean. If all incomes were equal, the general mean 
and the mean would be equal. However, when incomes are unequal, the 
general mean will rise above the mean. The extent to which this occurs 
is used by the measure to evaluate inequality. For example, the inequality 
measure obtained when a = 2 is (half) the squared coeffi cient of variation, that 
is, one-half of the variance over the squared mean. The general mean in this 
case is the Euclidean mean, which fi rst squares all incomes, then averages 
the transformed incomes, and fi nally returns to income space by taking the 
square root. The Euclidean mean and the mean of the two-income distribu-
tion (4, 4) are both 4. Altering the distribution to (1, 7) raises the Euclidean 
mean to 5 but leaves its mean at 4.
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The fi nal case where a = 1 leads to Theil’s fi rst measure, which is one of 
the few inequality measures without a natural twin standards representation, 
but is, in fact, a limit of such measures.

Inequality and Welfare

The Gini coeffi cient and Atkinson’s family share a social welfare interpreta-
tion. Both are expressible as I = (b − a)/b, where b is the mean income of 
the distribution and a is an income standard that can be viewed as a welfare 
function (satisfying the weak transfer principle). Note that the distribution 
where everyone has the mean has a level of welfare that is highest among all 
distributions with the same total income, and its measured level of welfare 
is just the mean itself (by the normalization property of income standards).

The mean b is the maximum value that the welfare function can take 
over all income distributions of the same total income. When incomes are 
all equal, a = b  and inequality is zero. When the actual welfare level a falls 
below the maximum welfare level b , the percentage welfare loss I = (b  − a)/b 
is used as a measure of inequality. This is the welfare interpretation of both 
the Gini coeffi cient and the Atkinson class.

The simple structure of these measures allows us to express the welfare 
function by the mean income and the inequality measure. A quick rear-
rangement leads to a = b(1 − I), which can be reinterpreted as the welfare 
function a viewed as an inequality-adjusted mean. If there is no inequality 
in the distribution, then (1 − I) = 1 and a = b. If the inequality level is 
I > 0, then the welfare level is obtained by discounting the mean income 
by (1 – I) < 1. For example, if we take I to be the Gini coeffi cient, the Sen 
mean (or Sen welfare function) can be obtained by multiplying the mean by 
(1 − I). Similarly, if we take I to be the Atkinson measure with parameter 
a = 0, then the welfare function is the geometric mean, and it can be 
obtained by multiplying the mean by (1 − I).

Applications

Inequality measures are used to assess the extent to which incomes are 
spread apart in a country or region and the way this level changes over time 
and space. Of particular interest is the interplay between a population’s aver-
age prosperity, as represented by the mean income, and the income distribu-
tion, as represented by an inequality measure. The positive achievement of 



19

Chapter 1: Introduction

a high per capita income can be viewed less favorably if inequality is high, 
too. The combined effect on welfare can be evaluated using an inequality-
adjusted mean.

The Kuznets hypothesis postulates that growth in per capita income ini-
tially comes at a cost of a higher level of inequality, but eventually inequal-
ity falls with growth. The resulting Kuznets curve, which depicts per capita 
income on the horizontal axis and inequality on the vertical axis, has the 
shape of an inverted U. If the hypothesis were true, then a rapidly grow-
ing developing country could have only moderate welfare improvements, 
whereas a moderately growing developed country could experience rapid 
improvements in welfare, all because of the changing levels of inequality.

An alternative view takes the initial level of inequality as one of the 
determinants of income growth. For example, greater inequality might lead 
to a higher average savings rate if the richer groups have a greater propen-
sity to save, and this can positively infl uence long-term growth. Conversely, 
high inequality might create political pressure to raise the marginal tax rate 
on the rich, which could diminish incentives to invest and grow. These 
applications of inequality measures view inequality as a valuable macro 
indicator of the health of a country’s economy that infl uences and is affected 
by other macro variables.

Other applications try to assess the origins of inequality in the micro 
economy. Could inequality in earned incomes be due to (a) a high return 
to education, (b) a decline in union power, (c) increased competition from 
abroad, (d) discrimination, or (e) demographic changes such as increased 
female labor force participation? Mincer (1974) equations can help trace 
earnings inequality to the underlying characteristics of the labor force, 
including the level and distribution of human capital. Oaxaca decomposi-
tions (1973) test for the presence of discrimination by sex, race, or other 
characteristics and have been adapted to evaluate the contribution of demo-
graphic changes to observed earnings inequality.

Depending on the policy question, it may make sense to move from 
an overall inequality measure (that evaluates the spread across the entire 
distribution) to a group-based inequality measure (that compares the mean 
or other income standard across several groups). The latter, more limited, 
notion of inequality can often have greater signifi cance, particularly if 
the underlying groups are easy to understand and have social or political 
salience. Examples include racial, sex, and ethnic inequality, or the inequal-
ity between urban and rural areas.
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The techniques for evaluating between-group inequality involve smoothing 
incomes within each subgroup to the subgroup mean (or other income stan-
dard) and then applying an inequality measure to the resulting smoothed 
distribution. Because the inequality within groups is suppressed, all that is 
left is between-group inequality.

Similar techniques have recently been employed to evaluate the inequal-
ity of opportunity in a given country. This exercise begins by identifying 
circumstances or the characteristics of a person that are not under the direct 
control of that person and arguably should not be systematically linked 
to higher or lower levels of income. The population is then divided into 
subgroups of people sharing the same circumstances and the distribution is 
smoothed to suppress inequalities within subgroups. The inequality of the 
smoothed distribution then measures how much inequality is present across 
subgroups and, hence, how much is associated with circumstances. It can 
be viewed as a measure of the inequality of opportunity (given the posited 
circumstances).

The overall inequality in a country could be very high. But if the three 
main ethnic groups have more or less the same average levels of income, 
inequality of opportunity across the ethnic groups may not be such an 
important issue—much of the inequality arises from variations within eth-
nic groups. If the mean incomes vary greatly across ethnic groups so that the 
between-group inequality level is also quite high, then a concern for social 
stability may lead policy makers to address the high level of inequality of 
opportunity.

Analogous discussions might be made for other indicators besides 
income. For instance, if we are evaluating the distribution of health, then 
the way that health varies across subgroups defi ned by an indicator of socio-
economic status (SES)—such as occupation, income, education, or education 
of the parents—may be more salient than the overall distribution of health. 
The strength of the gradient or positive relationship between health and SES 
variables is often viewed as a key indicator of the inequity of health and is the 
target of policies to affect this particularly objectionable portion of health 
inequalities.

Different inequality measures have properties that make them well 
suited for certain applications. Decomposability is one such property dis-
cussed below. A second is transfer sensitivity, which ensures that a measure 
is especially sensitive to inequalities at the lower end of the distribution 
(in that a given transfer of income will have a greater effect the lower the 
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incomes of the giver and the receiver). Transfer sensitive measures include 
the Atkinson family of measures, Theil’s two measures, and the “lower half” 
of the generalized entropy measures with a < 2.

Note that the coeffi cient of variation (a monotonic transformation of 
the generalized entropy measure with a = 2) is transfer neutral in that a 
given transfer has the same equalizing effect up and down the distribution: 
a one-unit transfer of income between two rich people has the same effect 
on inequality as does a one-unit transfer of income between two poor people 
the same initial income distance apart. The upper half of the generalized 
entropy measures with a > 2 focuses on inequality among upper incomes.

The Gini coeffi cient is often considered to be most sensitive to changes 
involving incomes at the middle, but this is not entirely accurate. The effect 
of a given-sized transfer on the Gini coeffi cient depends on the number of 
people between giver and receiver, not on their respective income levels. 
Because, empirically, there tend to be more observations bunched together 
in the middle of the distribution, the effect of a transfer near the middle 
tends to be larger.

Subgroup Consistency and Decomposability

Although the variance is not itself a measure of relative inequality (it vio-
lates scale invariance and focuses on absolute differences), the analysis of 
variance (ANOVA) provides a natural model for decomposition of inequal-
ity measures into a within-group and a between-group term. The motivating 
question here is given a collection of population subgroups, how much of 
the overall inequality can be attributed to inequality within the subgroups, 
and how much can be attributed to inequality across the subgroups.

Answers to this type of question become feasible when an inequality mea-
sure is additively decomposable, in which case the within-group inequality term 
is expressible as a weighted sum of the inequality levels within the groups, the 
between-group term is the inequality measure applied to the smoothed distri-
bution, and the overall inequality level is just the sum of the within-group and 
between-group terms. The contributions of within-group and between-group 
inequality (within-group inequality divided by total inequality and between-
group inequality divided by total inequality, respectively) will sum to one.

Decomposition analysis can help clarify the structure of income inequal-
ity across a population. It can identify regions or sectors of the economy 
that disproportionally contribute to inequality. And when the subgroups are 
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defi ned with reference to an underlying variable such as schooling, the anal-
ysis can help identify the extent to which the variable explains inequality.

To analyze changes in inequality over time, one can separate the effect 
of changes in population sizes across subgroups (for example, arising from 
demographic factors) from the fundamental shifts in subgroup income dis-
tributions. This can be combined with regression analysis to model income 
changes and to pinpoint the variables that appear to be driving inequality.

The generalized entropy measures are the only inequality measures sat-
isfying the usual form of additive decomposability, with the Theil measures 
(a = 0 and a = 1) and half the squared coeffi cient of variation (a = 2) being 
most commonly used in empirical evaluations. The second Theil measure, 
also called the mean log deviation, has a particularly simple decomposition 
in which the within-group term is a population-share weighted average of 
subgroup inequality levels. This streamlined weighting structure can greatly 
simplify interpretation and application of decomposition analyses.

The allied property of subgroup consistency is helpful in ensuring 
that regional changes in inequality are appropriately refl ected in overall 
inequality. Suppose there is no change in the population sizes and mean 
income levels of the subgroups. If inequality rose in one subgroup and was 
unchanged or rose in each of the other subgroups, it would be natural to 
expect that inequality overall would rise. For additively decomposable mea-
sures, this rise in inequality is assured: because the smoothed distribution is 
unchanged, the between-group term is unaffected. Because the weights on 
subgroup inequality levels are fi xed (when subgroup means and population 
sizes do not change), the within-group term must rise.

Subgroup consistency is a more lenient requirement, because it does not 
specify the functional form that links subgroup inequality levels and overall 
inequality. Consequently, on the one hand we fi nd that the Atkinson mea-
sures (which are transformations of the generalized entropy measures) are all 
subgroup consistent without being additively decomposable. On the other 
hand, the Gini coeffi cient is not subgroup consistent.

The problem with the Gini coeffi cient arises when the income ranges 
of the subgroup distributions overlap. In that case, the effect of a given dis-
tributional change on subgroup inequality can be opposite to its effect on 
overall inequality. The Gini coeffi cient can be broken into a within-group 
term, a between-group term, and an overlap term—and it is the overlap 
term that can override the within-group effect to generate subgroup incon-
sistencies.
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Dominance and Unanimity

One alternative to numerical inequality measures for making inequality 
comparisons is the so-called Lorenz curve and its associated criterion of 
Lorenz dominance. The Lorenz curve graphs the share of income received 
by the lowest p percent of the population as p varies from 0 percent to 
100  percent. A completely equal distribution yields a Lorenz curve where 
the lowest p percent receives p percent of the overall income, or the 
45 degree line. Inequality results in a Lorenz curve that falls below this line 
in  accordance with the extent and location of the inequality. When one 
compares two distributions, a higher Lorenz curve is associated with lower 
inequality. This is the case of Lorenz dominance in which one distribution 
is unambiguously less unequal than another. Alternatively, if the two Lorenz 
curves cross, no unambiguous determination can be made.

The Lorenz curve is a useful tool for locating pockets of inequality along 
the distribution. For example, if a portion of the curve is straight, then there 
is no inequality over that slice of the population. If it is very curved, then 
there is signifi cant inequality over the relevant population range. It also can 
help determine if a given inequality comparison is robust to the choice of 
inequality measure.

Indeed, when the Lorenz curve of one distribution dominates the Lorenz 
curve of another distribution, it follows that every inequality measure sat-
isfying the four basic properties (symmetry, replication invariance, scale 
invariance, and the weak transfer principle) will not go against this judg-
ment, whereas the subsets of measures satisfying the transfer principle are in 
strict agreement with the Lorenz judgment (that the fi rst has less inequality 
than the second). So these unambiguous judgments are also unanimous 
judgments across wide classes of inequality measures.

The Lorenz curve is also the generalized Lorenz curve divided by the mean. 
At p = 0 percent, both curves have the value 0 percent; at p = 100 percent, 
the Lorenz curve has the value 100 percent, whereas the generalized Lorenz 
curve takes the mean as its value. At any percentage of the population p,  
the generalized Lorenz curve is p times the associated lower partial mean at p, 
and the Lorenz curve is p times the lower partial mean over the mean.

If one recalls the link between second-order stochastic dominance and 
the generalized Lorenz curve, it follows that when the means of the two dis-
tributions under comparison are the same, a distribution has greater equality 
according to Lorenz dominance exactly when it has higher welfare for the 
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general class of welfare functions considered by Atkinson. This is a very use-
ful result called Atkinson’s Theorem, which provides an interesting welfare 
basis for (fi xed mean) Lorenz comparisons.

There is a useful link between the points along the Lorenz curve and a 
simple class of inequality measures. Consider the partial mean ratios obtained 
when p is variable and q is fi xed at 100 percent. With q = 100 percent, the 
upper partial mean is the mean itself, and the partial mean ratio becomes a 
comparison between a lower partial mean (for example, ap) and the overall 
mean b.

Now consider the Lorenz curve evaluated at the pth percentile. The verti-
cal distance between the Lorenz curve and the 45-degree line of perfect equal-
ity is simply p times the inequality measure Ip = (b  – ap)/b associated wi th the 
partial mean ratio b/ap. Consequently, Lorenz dominance—which ensures 
that one of the vertical distances is larger and the rest are no smaller—is 
equivalent to the requirement that Ip is larger for some p and no smaller for 
every remaining p. The Lorenz curve can thus be viewed as the dominance 
curve associated with Ip or, equivalently, the associated partial mean ratios.

Although these measures are crude—evaluating inequality by comparing 
the mean of the lowest p of the population to the overall mean—they col-
lectively imply Lorenz dominance and, hence, agreement for the entire set 
of inequality measures satisfying the four basic properties.

Each of the three curves generated by a class of income standards—the 
quantile curve, the generalized Lorenz curve, and the general means curve—
provides a natural way of depicting a related twin-standard inequality mea-
sure. Identify the two income standards a and b of the measure, and draw a 
line segment connecting the associated points along the curve.

Note that the lower standard a is to the left and the higher standard b is 
to the right. The relative slope of this line (or the slope relative to the value of 
either a or b) is a proxy for the associated inequality level, with a higher rela-
tive slope implying a higher inequality level. For example, the relative slope 
of the line connecting the 10th and the 90th percentile incomes along the 
quantile curve represents the extent of inequality according to the 90/10 ratio.

Along the generalized Lorenz curve, the relative slope of the line from
p = 20 percent to q = 100 percent is linked to the associated partial mean 
ratio discussed previously. Along the general mean curve, the relative slope 
of the line from the geometric mean (a = 0) to the mean (a = 1)  corresponds 
to Theil’s second measure, or the mean log deviation.
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A similar discussion applies to all the generalized entropy measures, apart 
from Theil’s fi rst measure. It is interesting to note that although Theil’s fi rst 
measure is not a twin-standard measure, it is represented as the relative slope 
of the general mean curve at a = 1. In the extreme case where all incomes are 
the same, the quantile and general means curves will be entirely fl at, because 
all the income standards are the same and correspond to the income level of 
everyone. The generalized Lorenz curve is a straight line from 0 to the mean, 
and the inequality measure (b − a)/ b takes on the value 0 in this case.

Growth and Inequality

The twin-standard view of inequality offers fresh insights on the relation-
ship between growth and inequality. For example, use the Gini coeffi cient, 
with its underlying income standards of the Sen mean a and the (arithme-
tic) mean b, to evaluate the distribution of income at two points in time. If 
inequality as measured by the Gini coeffi cient has risen, then this is equiva-
lent to saying that b grew more between the two periods than a. But the 
growth rate of b is precisely the usual income growth rate.

Consequently, to evaluate whether the change in the income distribu-
tion from one period to the next has increased or decreased the Gini coeffi -
cient, one need only calculate the growth rate of the Sen mean and compare 
it to the usual growth rate. If the growth rate of the Sen mean is lower than 
the usual growth rate, then the Gini coeffi cient rises. If the Sen growth rate 
is larger than the usual growth rate, then the Gini coeffi cient falls.

An analogous discussion holds for Theil’s second measure, except that 
now growth in the geometric mean is compared to the usual growth rate. 
In both cases, the mean is the higher income standard, and the same would 
be true for the generalized entropy measures below the fi rst Theil measure 
(or the Atkinson measures) and for the partial mean ratios underlying the 
Lorenz curve.

In contrast, for the upper half of the generalized entropy measures, the 
mean is the lower income standard a whereas the general mean is the higher 
income standard b, so the growth criterion for inequality is reversed. For 
example, the income standards of the squared coeffi cient of variation are the 
mean income and the Euclidean mean. If the Euclidean mean growth rate 
exceeds the usual growth rate, then the inequality level, as measured by the 
squared coeffi cient of variation, rises.
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The growth curves described above can be useful in understanding 
the attributes of growth and the effect on inequality. Each depicts growth 
rates for a class of income standards, starting with standards favoring lower 
incomes to the left and with standards favoring higher incomes to the right. 
In the proportional growth case where all incomes rise by the same percent-
age, the growth curves will be constant at that percentage level. If higher 
incomes tend to be rising more rapidly, then the growth curve will have a 
positive slope, thereby refl ecting higher growth rates among the income 
standards that emphasize higher incomes. If lower incomes are growing 
more, then the growth curve will have a negative slope. The latter case 
might be viewed as one form of pro-poor or inclusive growth.

Each growth curve has implications for the inequality measures associ-
ated with its constituent income standards. The growth incidence curve 
reveals changes in inequality as measured by the quantile ratios (such as the 
90/10 ratio). The generalized Lorenz growth curve provides information on 
inequality as measured by its partial mean ratios. And the general means 
growth curve reveals how inequality changes for virtually all generalized 
entropy measures and for the Atkinson measures.

Poverty Measures and the Base of the Distribution

The fi nal aspect examined here is the base or the bottom of the income 
distribution and the main topic of this book: poverty. Evaluation of poverty 
begins with an identifi cation step in which the people considered poor are 
specifi ed and continues with an aggregation step in which the data of the 
poor are combined to obtain a numerical measure. These two steps make up 
a methodology for measuring poverty in an income distribution.

The identifi cation step is usually accomplished by selecting a level of 
income, called the poverty line, below which a person in a given distribution 
is considered poor. In its most general formulation, a poverty line is specifi ed 
for every possible income distribution, so that the set of poor people in a pop-
ulation depends on the prevailing living conditions. Finding a proper func-
tional relation between poverty line and income distribution is, of course, 
a challenging problem, and one that is subject to much controversy. 
Most evaluations of poverty have settled on two very simple approaches: 
(a) an absolute approach that takes the poverty line to be a constant and 
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(b) a relative approach that takes the poverty line to be a constant fraction 
of an income standard.

Absolute Poverty Line

An absolute poverty line is a fi xed cutoff that does not change as the distribu-
tion being evaluated changes. Examples include the following:

• The $1.25-per-day standard of the World Bank that is used to com-
pare poverty across many poor and middle-income countries over 
time

• The domestic poverty lines in most developing countries that are 
used to compare poverty within the country over time

• The nearly $15-per-day standard in the United States (per person 
in a family of four in 2009 dollars) that has been used for almost 
50 years.

An absolute poverty line is frequently used for evaluating poverty within 
a country over short-to-moderate spans of time or across two countries when 
they have roughly similar levels of development. The approach may be 
harder to justify over longer periods of time or in a comparison of countries 
with very different levels of development.

Absolute poverty lines are often held constant over many periods, 
then updated to refl ect changing living standards. After updating of lines, 
comparisons are typically not made across the two standards. Instead, each 
distribution is evaluated at the new, updated poverty line. The U.S. poverty 
line has remained fi xed (in real terms) since 1965; the nominal poverty 
line is adjusted for infl ation. A 1995 National Academy of Sciences recom-
mendation to update the line to refl ect current living standards has yet to 
be implemented. The World Bank’s main poverty standard was updated in 
2005, and all income distributions back to 1981 were reevaluated at the 
new line.

Absolute poverty lines are by far the most commonly used approach for 
identifying the poor over time and space and are universally used in low- 
and middle-income countries. They allow transparent comparisons where 
the changes in measured poverty can be attributed purely to changes in the 
distribution rather than to a moving poverty cutoff.
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However, there are some practical challenges associated with the con-
struction of absolute poverty lines:

• Several competing methods are available for deriving an absolute 
poverty line from a reference set of observations, each of which can 
generate a different poverty income cutoff.

• The reference set of observations must be selected, and this reference 
set, too, can infl uence the cutoff.

• To a certain extent, then, the choice of absolute poverty line is arbi-
trary. This arbitrary quality tempers the interpretation of results but 
can be partially addressed with the help of variable line robustness 
techniques discussed below. 

• There is the related question of how frequently to update an absolute 
poverty line. But here the trade-offs are clear: it must be fi xed long 
enough to be able to discern the underlying changes in poverty, and 
it must be updated often enough so that the standard is reasonably 
consistent with prevailing circumstances. 

Relative Poverty Line

A relative poverty line is an explicit function of the income distribution—
namely, a constant fraction of some income standard. One example is the 
European Union’s country-level poverty lines, which are set at 60 percent 
of a country’s median (disposable) income. The nature of a relative poverty 
line dictates that the cutoff below which one is considered to be poor varies 
proportionally with its income standard. Indeed, a level of income that is 
above the poverty line in one distribution may lie below the poverty line of 
a second distribution having a higher income standard.

Relative poverty lines are most often used in countries with higher 
incomes, where there is less concern about achieving a minimum absolute 
level of living and greater interest in inclusion or relative achievements. 
Unlike absolute poverty lines, the endogenous determination of relative lines 
also automatically updates the standard over time and space. However, this 
determination is done by making a very strong assumption on the functional 
form of the link between poverty line and income standard and by choosing 
an income standard and a specifi c fractional cutoff. Those components are 
often selected without a great deal of scrutiny or exploration of alternatives.
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Moreover, with a relative line, the analysis of a change in poverty over 
time (or space) is less transparent. There are now two sources of change: 
(a) the direct impact of the change in the distribution and (b) the indi-
rect impact through the change in the underlying income standard and, 
hence, the poverty standard. This second component is quite important, yet 
depends on the assumed functional form of the relative poverty line.

The elasticity of a relative poverty line with respect to its income 
standard is 1. If the income standard rises by 1 percent, then the relative 
poverty line will rise by 1 percent. In contrast, with an absolute poverty 
line, there is no change in the poverty standard when there is a 1 percent 
increase in the same income standard; the elasticity is 0 for an absolute 
poverty line.

Intermediate poverty lines exist—hybrid or weak relative poverty lines. 
They offer a poverty line that is a function of the income distribution, but 
with fi xed (or weakly rising) elasticity between 0 and 1. The intermediate 
poverty lines are a topic of continuing research.

No matter which of these approaches to setting a poverty line is chosen, 
the outcome for a given distribution is a specifi c income cutoff and a subset 
of the population identifi ed as being poor. For simplicity and because of the 
greater prevalence of absolute lines, we will assume that a fi xed poverty line 
is given. The next step is to determine how to aggregate the data to obtain 
an overall picture of poverty.

What Is a Poverty Measure?

A poverty measure is a way of combining information on income 
 distribution— especially incomes of the poor—to obtain a number that 
represents the poverty level in the distribution given the poverty line. The 
most common measures are counting measures, which evaluate poverty by 
numbers of people. The best-known counting measure is the headcount 
ratio, defi ned as the percentage of the total population that is poor.

An easy way of expressing a counting measure is to construct the depri-
vation vector, which replaces each poor income with 1 and every nonpoor 
income with 0. The headcount ratio is simply the mean of the deprivation 
vector or distribution. The headcount ratio is linked to the cumulative dis-
tribution function, which for continuous distributions is simply the graph of 
the headcount ratio as the poverty line is varied.
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Other measures evaluate poverty by the average gap or depth of poverty:

• The normalized gap vector is constructed by replacing income of each 
poor individual with the normalized gap (or the gap between the pov-
erty line and the income expressed as a share of the poverty line) and 
income of every nonpoor individual with 0. The poverty gap measure 
is the mean of the normalized gap vector. It is sensitive to both the 
prevalence of poverty in a society and the extent to which the poor 
fall below the poverty line.

• Another measure is based on the squared gap vector, which uses 
the square of the normalized gap for each poor person. The squar-
ing process emphasizes the larger gaps relative to the smaller gaps. 
The squared gap or Foster-Greer-Thorbecke (FGT) measure index is 
the mean of the squared gap vector. It is sensitive to the prevalence 
of the poor, the extent to which their incomes fall below the poverty 
line, and the distribution of their incomes or shortfalls.

All of those measures are members of a parametric family of indices: the 
FGT family of poverty indices is derived by taking the mean of an a-gap 
vector, which is obtained by raising each positive entry in the normalized 
gap vector by a power of a ≥ 0. 

There are two main ways of interpreting what a poverty measure is actu-
ally measuring. One way is by examining the properties that the measure 
satisfi es. The other makes use of income standards in interpreting the mea-
sure. We begin with the axiomatic approach.

Poverty Measure Properties

There are six basic properties for poverty measures:

• The fi rst two are the symmetry and population invariance properties given 
above for income standards and inequality measures. They are impor-
tant for ensuring that the measure is based on the anonymous distribu-
tion and not on the income recipients’ names or the population size.

• The third basic property is the focus axiom, which requires the pov-
erty measure to ignore changes in the distribution involving nonpoor 
incomes. This approach ensures that the measure focuses on poor 
incomes in evaluating poverty.
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• The fourth property is scale invariance, which requires the poverty 
measure to be unchanged if all incomes and the poverty line are 
scaled up or down by the same factor. This approach makes sure that 
the measure is independent of the unit of measurement of income.

The fi rst four properties are invariance properties, which indicate how 
various changes in the distribution should not be taken into account by the 
measure. The next two properties are dominance properties that require the 
measure to be consistent with certain basic changes in the distribution.

• The fi fth property is weak monotonicity, which requires poverty to 
rise or be unchanged if the income of a poor person falls—in other 
words, a decrement in a poor income cannot decrease poverty. Weak 
monotonicity is a central property of a poverty measure and is often 
presented in a stronger form, known as monotonicity, which requires 
an increment in a poor income to (strictly) decrease poverty.

• The fi nal property considers the effect of a transfer on poverty. The 
weak transfer property requires poverty to fall or be unchanged as a 
result of a progressive transfer (from richer to poorer) between two poor 
people. This property also has a stronger version, known as the transfer 
principle, which requires poverty to (strictly) increase as a result of a 
regressive transfer (from poorer to richer) between two poor people.

Notice that both the monotonicity axiom and the transfer principle 
allow the number of poor to be altered in the process, whereas the weaker 
versions do not.

The headcount ratio, the poverty gap measure, and the FGT index satisfy 
all six basic axioms. The headcount ratio satisfi es weak monotonicity and 
the weak transfer principle (because it is unaffected by the distributional 
changes specifi ed in the two properties), but it violates the two stronger 
versions. The poverty gap measure satisfi es the monotonicity axiom, but it 
violates the transfer principle (because it is unaffected by a small regressive 
transfer). The FGT index satisfi es both stronger axioms.

Some additional properties can also be helpful in evaluating poverty 
measures. Transfer sensitivity requires a decrement in the income of a poor 
person, when combined with an equal-sized increment in the income of a 
richer poor person, to raise poverty. It ensures that a given-sized transfer has 
a larger poverty-reducing effect at lower poor incomes. Decomposability and 
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subgroup consistency have proved to be very important for regional evalua-
tions of poverty and for targeting. They are discussed below.

Income Standards

Another way of understanding poverty measures makes use of our previous 
insights from income standards. Like inequality measures, most poverty 
measures are based on a comparison of two income levels. In this case, how-
ever, one of them is the fi xed poverty line z, whereas the other is an income 
standard applied to a modifi ed distribution that focuses on the poor.

Two forms of modifi cation are employed, leading to two general forms 
of poverty measures. The fi rst makes use of a censoring process that ignores 
the portion of any income lying above the poverty line z. The censored 
distribution x* for a given distribution x replaces all incomes above z with 
z itself. Applying an income standard to the censored distribution yields a 
poor income standard, which refl ects the size of the censored distribution and 
is clearly bounded above by z (the maximum value achieved when no one 
is poor).

Many poverty measures take the form P = (b − a)/b, or some monotonic 
transformation, where a is some poor income standard and b is the poverty 
line z. P measures poverty as the shortfall of the poor income standard from 
the poverty line as a percentage of the poverty line. For example, if a were 
the mean censored income m(x*), then the resulting poverty measure would 
be (z − m(x*))/z, which is another way of expressing the poverty gap. Below 
we will see other poverty measures that share this general structure but 
employ different income standards.

The second form of modifi cation changes the focus from incomes to 
income gaps. The gap distribution g* is found by replacing the income x*

i in 
x* with the income gap z − x*

i. The gap will be 0 for anyone who is nonpoor, 
and it increases in size as the income of a poor person falls further below z.

Applying an income standard to the gap distribution yields a gap stan-
dard, which measures the overall departure of incomes in x* from z. Many 
poverty measures take the form P = a/b, or some monotonic transformation, 
where a is some gap standard and b is the poverty line z. P measures poverty 
using a gap standard taken as a percentage of the poverty line. For example, 
if a were the mean gap m(g*), then the resulting poverty measure would be 
m(g*)/z, which is another way of defi ning the poverty gap. Below we will 
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discuss several other poverty measures that share this structure but use dif-
ferent income standards in constructing the gap standard.

Common Examples

The fi rst general form of poverty measures uses an income standard applied 
to the censored distribution. An income standard that puts progressively 
greater weight on lower incomes will yield a poverty measure that is sensi-
tive to the distribution of income among the poor. The Sen-Shorrocks-Thon 
(SST) index is given by (b − a)/b, where a is the Sen mean applied to x*and 
b is the poverty line. This measure inherits its characteristics from the Sen 
mean: it satisfi es all six basic properties and monotonicity and the transfer 
property. Increments and progressive transfers among the poor are refl ected 
in a strictly higher poor income standard a, and hence a lower poverty level.

The next measure is based on another income standard that emphasizes 
lower incomes. The Watts index is defi ned as ln(b/a), where a is the geomet-
ric mean applied to the censored distribution and b is the poverty line z. It 
likewise satisfi es the six basic axioms and the strict forms of monotonicity 
and the transfer principle. Additionally, the geometric mean has the prop-
erty that a given-sized transfer among the poor has a greater effect at lower 
income levels, so the poverty measure satisfi es transfer sensitivity.

The Watts index can be expanded to an entire class of measures, each 
of which uses a general mean to evaluate the censored distribution. The 
Clark-Hemming-Ulph-Chakravarty (CHUC) family of indices compares the 
poor income standard a = ma(x*) for a ≤ 1 and the poverty line b = z. There 
are two forms of the measure: the original form (b − a)/b and a decompos-
able form obtained by a simple transformation. The measure becomes the 
poverty gap at a = 1 and the Watts index (or a transformation) at a = 0. 
The properties of the general means ensure that the CHUC measures satisfy 
all six basic properties for poverty measures, for monotonicity, and for a < 1 
the transfer principle as well as transfer sensitivity.

The second general form of poverty measures uses an income stan-
dard applied to the gap distribution. The key family of measures has a 
traditional decomposable version and an alternative version that is only 
subgroup consistent.

The FGT family of decomposable poverty indices was defi ned above 
as the mean of the a-gap distribution and includes the headcount ratio for 
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a = 0, the poverty gap measure for a =1, and the FGT or squared gap mea-
sure for a = 2. Alternatively, we can transform each of the measures in the 
range a > 0 by raising it to the power 1/a. This yields a subgroup-consistent 
measure that compares a gap standard a = ma(g*) to the poverty line b = z 
via the formula P = a/b.

The properties for the FGT measures in this range follow from the prop-
erties of the associated general means. The fi rst fi ve properties and mono-
tonicity are immediately satisfi ed for all a > 0. For the transfer principles, 
note that the general means with a < 1 emphasize the smaller entries, those 
with a > 1 emphasize the larger entries, and a = 1 ignores the distribution 
altogether. Thus, the FGT measures satisfy the weak transfer principle for 
a ≥ 1 and the transfer principle for a > 1. In an analogous way, the FGT 
index for a = 2 is transfer neutral in that a given-sized progressive transfer 
among the poor has the same effect at lower incomes, whereas the FGT 
measures with a > 2 satisfy transfer sensitivity.

The above discussion excludes the case a = 0, which corresponds to 
the headcount ratio. The simple structure of this poverty measure does not 
admit an interpretation of an income standard applied to the censored or 
gap distribution. Instead, a second censoring must be applied to obtain a 
distribution in which all nonpoor incomes are replaced by z and all poor 
incomes are replaced by 0. Let x** denote the resulting doubly censored dis-
tribution. The headcount ratio can be represented as (b − a)/b, where a = 
μ(x**) and b = z. In other words, it is the poverty gap of the doubly censored 
distribution that converts nonpoor incomes to z and poor incomes to 0.

The fi rst censoring ensures that the measure focuses on incomes of the 
poor. The second censoring forces the headcount ratio to ignore the actual 
income levels of poor people and violate monotonicity. The headcount 
ratio suppresses information that is relevant to poverty (the actual incomes 
of the poor) in order to capture one key aspect of poverty (the prevalence 
of poverty). Replacing x** with x* in this representation would recover this 
information and yield the poverty gap measure.

Poverty, Inequality, and Welfare

Poverty measures satisfying the transfer principle are called distribution sensi-
tive because they account for the inequality of poor incomes in ways that 
the headcount ratio or the poverty gap cannot. In fact, each of the above 
distribution-sensitive poverty indices is built on a specifi c income or gap 
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standard that is closely linked to an inequality measure. For the SST index, 
it is the Gini coeffi cient. For the CHUC indices, the Atkinson measures are 
used. For the Watts index, the mean log deviation is the inequality measure. 
In each case, the inequality measure is applied to the censored distribution 
x* with greater censored inequality being refl ected in a higher level of poverty 
(for a given poverty gap level).

The FGT measures (for a > 1) use generalized entropy measures applied 
to the gap distribution g* with greater gap inequality leading to a higher 
level of poverty (for a given level of the poverty gap). The focused inequal-
ity measures underlying these distribution-sensitive poverty indices ignore 
variations in incomes above the poverty line. Trends in focused inequality 
may well be very different from trends in overall inequality.

Certain income standards can be viewed as welfare functions, and this 
link can provide yet another lens for interpreting poverty measures. The Sen 
mean underlying the SST index and the general means for a ≤ 1 that are 
behind the CHUC indices can be interpreted as welfare functions. In each 
case, the welfare function is applied to the censored distribution to obtain 
the poor income standard a, which is now seen to be a censored welfare func-
tion that takes into account the incomes of the poor and only part of the 
incomes of the nonpoor (up to the poverty line).

For these measures, poverty and censored welfare are inversely related. 
Every increase in poverty is seen as a decrease in censored welfare. Of 
course, the trends in censored welfare may be very different from the trends 
in overall welfare, as the latter take into account the actual incomes of the 
nonpoor. We will see below another link between welfare and poverty when 
we consider poverty comparisons over a range of lines.

Applications

A poverty methodology can be used to identify the poor (through its 
identifi cation step) and to evaluate the extent of poverty (through the 
aggregation step). The fi rst step by itself allows many interesting analyses 
to be conducted, given appropriately rich data. Consider, for example, the 
following questions:

• Who are the poor and how do they differ from the nonpoor? A range 
of characteristics can be examined—including location, household 
size, ethnicity, education indicators, health indicators, housing, and 
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ownership of certain assets—to see what it means to be poor. This is 
part of a countrywide poverty profi le that relies purely on the identi-
fi cation step.

• What drives the dynamics of poverty? If panel data are available, one 
can explore the factors that seem to be forcing people into poverty 
or allowing them to escape. Even if two periods of data are not part 
of a panel (and hence not linked at the personal level), one can 
investigate how other general factors, such as food prices or economic 
conditions, affect the likelihood of being in poverty.

• Is a given poverty program reaching its intended recipients? The leakage 
or coverage of poverty programs can be evaluated to gauge the likeli-
hood that a recipient is not poor or that a poor person is a nonrecipient.

• What affects and is affected by the condition of being poor? In some 
studies, the deprivation vector, or indicator function for poverty, is a 
key outcome variable. In other studies, it is an important dependent 
variable.

The aggregation step goes beyond a simple identifi cation of the poor 
and provides a quantitative measure of the extent of poverty for any given 
population group. A poverty measure can be used to monitor poverty in 
a country over time and space. Poverty profi les evaluate the structure of 
poverty in a country by considering how poverty varies across an array of 
population subgroups.

Other applications include using a poverty measure as a basis for targeting 
social programs or for assessing their poverty impact. It is often thought that 
chronic poverty is qualitatively different from transient poverty. Panel data 
can allow the two to be evaluated in order to discern whether the poverty in 
a given region tends to be of one form or the other. Some people currently 
not in poverty may, nonetheless, be vulnerable to becoming poor. Poverty 
measures can be adapted to create measures of vulnerability to poverty.

Optimal taxation exercises use a welfare function as the objective func-
tion with which to evaluate the competing objectives of a larger pie versus a 
more equitable distribution. For many policy exercises, it may make sense to 
focus on the poor by using a censored welfare function or a poverty measure: 
Are food subsidies more effective in improving poverty than income trans-
fers? This and other questions can be addressed in theory or practice once a 
poverty measure has been chosen. The choice of poverty measure will affect 
the answers obtained.
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Subgroup Consistency and Decomposability

Many programs designed to address the needs of the poor are implemented 
at the local level. Suppose we are evaluating such a program in a country 
with two equal-sized regions. We fi nd that poverty has fallen signifi cantly 
in each region, yet when poverty is measured at the country level, it has 
increased. This possibility could present signifi cant challenges to the analyst 
and could prove rather diffi cult to explain to policy makers. It turns out that 
the inconsistency between regional and national poverty outcomes may be 
due entirely to the way poverty is measured.

To ensure that this possibility does not arise, one can require the poverty 
measure to satisfy subgroup consistency. This property requires that if poverty 
falls in one subgroup and is unchanged in another and both have fi xed popu-
lation sizes, then the overall poverty level must likewise fall. The SST index 
is not subgroup consistent because of its use of the Sen mean. The FGT and 
CHUC measures, which depend on general means, are subgroup consistent 
and thus would not be subject to the regional-national dilemma.

Subgroup consistency requires overall poverty to move in the same 
direction as an unambiguous change in subgroup poverty levels. A stronger 
property provides an explicit formula that makes the link between overall 
and subgroup poverty. A poverty measure is said to be (additively) decompos-
able if overall poverty is a population-share weighted average of subgroup 
poverty levels. Unlike the case of inequality measures, there is no between-
group term in this decomposition. The reason is that the standard against 
which subgroup poverty is evaluated is a fi xed poverty line. In contrast, an 
inequality measure typically evaluates subgroup inequality relative to sub-
group means, then takes the variation of subgroup means into account as 
another source of inequality.

Additively decomposable poverty measures transparently link subgroup 
poverty to overall poverty. This approach can be particularly useful in 
generating a coherent poverty profi le in which a broad array of population 
subgroups and their poverty levels can be broken down or reassembled as 
needed. Consider these questions:

• Is a given change in overall poverty caused by changes in subgroup 
poverty levels, by population shifts across subgroups, or by a combina-
tion of the two effects? A counterfactual approach, which  constructs 
an artifi cial intermediate distribution to separate the two, can help 
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quantify the relative impacts of demographic changes and the 
 changes in subgroup poverty on the overall poverty level.

• What share of overall poverty can be attributed to a particular popu-
lation group? We can defi ne a subgroup’s contribution to overall pov-
erty to be the population share of a subgroup times the poverty level 
of the subgroup divided by the overall poverty level. Some subgroups 
with low levels of poverty may have large contributions as a result of 
their population sizes. Others may have smaller population shares, 
but still have large contribution shares because subgroup poverty 
levels are high.

For decomposable poverty measures, subgroup contributions must sum 
to one.

Dominance and Unanimity

The above discussion assumes that it is possible to select a correct poverty 
line to separate the poor from the nonpoor. Yet it is clear that any cutoff 
selected is bound to be arbitrary and that alternative poverty lines could be 
chosen with equal justifi cation. Conclusions obtained at the original pov-
erty line may be reversed at some other reasonable standard. They also could 
be robust to a change in the poverty line.

To help discern which of these possibilities is true—a reversal or una-
nimity for all poverty lines—we can construct a poverty (value) curve which 
graphs the poverty measure as a function of the poverty line over the rel-
evant range of poverty lines. If the original comparison continues to hold 
at all poverty lines in the range, then the comparison is robust. This gives 
rise to a (variable line) poverty ordering, which ranks one distribution as hav-
ing less poverty than another when its poverty curve is not above (and is 
somewhere below) the poverty curve of the other distribution. The range of 
poverty lines usually begins at 0 and ends at some highest value z*, although 
it is instructive to consider the case where there is no upper bound. Our 
discussion begins with the latter case.

Although the general approach can be used with any poverty measure, 
it is standard to focus on the three main measures from the FGT family: the 
headcount ratio, the poverty gap measure, and the FGT squared gap mea-
sure. The headcount ratio for a given poverty line is the share of the popu-
lation having incomes below the poverty line. Consequently, the poverty 
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curve for the headcount ratio traces the cumulative distribution function 
associated with the distribution (except that it takes its limits from the left 
rather than the right when it has jumps), so the poverty ordering is fi rst-
order stochastic dominance.

If one recalls the above discussion of stochastic dominance, this poverty 
ordering is equivalent to having a higher quantile function and also to 
having greater welfare according to every utilitarian welfare function with 
identical, increasing utility functions. The poverty curve associated with the 
headcount ratio is often called the poverty incidence curve.

The poverty curve for the poverty gap measure is closely linked to the 
area beneath (or the integral of) the poverty incidence curve (or the cdf), 
which is another way of representing second-order stochastic dominance. 
Hence, the poverty ordering for the poverty gap measure is simply second-
order stochastic dominance. By the previous discussion, this means that the 
poverty ordering can also be represented by the generalized Lorenz curve, 
with a higher generalized Lorenz curve indicating unambiguously lower (or 
no higher) poverty according to the poverty gap measure.

In addition, there is a useful welfare interpretation of this poverty order-
ing: it indicates higher welfare according to every utilitarian welfare func-
tion with identical and increasing utility function exhibiting diminishing 
marginal utility (Atkinson’s general class of welfare functions). The curve 
found by plotting the area beneath the poverty incidence curve for each 
income level z is often called the poverty defi cit curve.

The FGT index has a poverty curve that is closely linked with the area 
beneath the poverty defi cit curve (or the double integral of the cdf), and 
hence its poverty ordering is linked to a refi nement of second-order stochas-
tic dominance called third-order stochastic dominance. This poverty ordering 
also has a welfare interpretation: higher welfare according to every utilitar-
ian welfare function with identical and increasing utility function exhibit-
ing diminishing and convex marginal utility.

The fi nal condition on the convexity of marginal utility ensures that 
the welfare function is more sensitive to transfers at the lower end of the 
distribution—a welfare version of the transfer sensitivity axiom. The curve 
found by plotting the area beneath the poverty defi cit curve for each income 
level z is often called the poverty severity curve.

Notice that the poverty orderings for the three FGT measures are nested 
in that if the headcount ratio’s ordering ranks two distributions, then the 
poverty gap’s ordering also ranks the distributions in the same way (but not 
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vice versa). Further, the poverty gap’s ordering implies (but is not implied 
by) the FGT index’s ordering. Because the poverty defi cit curve is found by 
taking the area under the poverty incidence curve, a higher poverty inci-
dence curve leads to a higher poverty defi cit curve. The same is true for the 
poverty defi cit and poverty severity curves. 

The poverty orderings of the Watts and CHUC indices can also be eas-
ily constructed and lead to another nested set starting with second-order 
dominance for the poverty gap measure. The poverty ordering for the Watts 
index, for example, is simply generalized Lorenz (or second-order stochastic) 
dominance applied to the distributions of log incomes. Each CHUC poverty 
ordering likewise applies generalized Lorenz dominance to distributions of 
transformed incomes (see Foster and Jin 1998).

Placing an upper limit z* on the range of poverty lines is equivalent 
to comparing poverty curves (or the poverty incidence, defi cit, or severity 
curves) over this limited range or to using censored distributions associated 
with z*. For example, the limited range poverty ordering for the poverty gap 
is equivalent to comparing the generalized Lorenz curves of the censored 
distributions or to comparing censored welfare levels across all utilitarian 
welfare functions with identical and increasing utility functions that have 
diminishing marginal utility.

In the above example, we varied the poverty line while holding the 
poverty measure fi xed. We can also vary the poverty measure for a given 
poverty line to examine robustness to the choice of measure. For example, 
using a fi ve-dimensional vector, one can depict the poverty levels of the 
FGT measures for a = 0, 1, and 2; the Watts index; and the SST index. 
Vector dominance would then be interpreted as a variable measure poverty 
ordering that ranks distributions when all fi ve measures unanimously agree.

An analogous approach using poverty curves can be employed when 
using poverty measures indexed by a parameter. Consider a poverty curve 
that depicts the CHUC indices (z − ma(x*))/z for a ≤ 1 and the FGT indices 
ma(g*))/z for a ≥ 1. We are using the income standard version of each mea-
sure (rather than the decomposable version) because of its nice interpreta-
tion as a normalized average gap. The poverty measure at a = 1 is the usual 
poverty gap measure. As a rises, the FGT values progressively rise because 
the measures with higher a use a general mean that focuses on the higher 
gaps in the gap vector g*.

The extent to which poverty rises as a > 1 rises depends on the gen-
eralized entropy inequality in g* for a. To the left, the CHUC values 
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 progressively rise as the measures with lower a use a general mean that 
focuses on lower incomes in the censored vector x*. The extent to which 
poverty rises as a < 1 falls depends on the generalized entropy inequality in x* 
for a. A higher curve would then be interpreted as the variable measure pov-
erty ordering that ranks distributions when all these poverty measures agree.

The above approaches to varying the poverty line and the poverty mea-
sure can be combined to examine the robustness of comparisons to changing 
both simultaneously. Interestingly, though, in certain cases it is enough to 
examine a variable line poverty ordering. For example, if two distributions 
can be ranked by the poverty ordering of the headcount ratio, then they will 
also be ranked in the same way by the poverty ordering associated with any 
given poverty measure satisfying the basic axioms and monotonicity. This is 
also true for certain limited range poverty orderings.

Even in cases lacking a clear ranking for the relevant set of poverty lines 
(or measures), a poverty curve can be very useful in identifying ranges of 
poverty lines (and measures) where the ranking is unchanged and where the 
ranking reverses. This general methodology for checking the robustness of 
poverty comparisons is quite powerful.

Growth and Poverty

It is sometimes helpful to determine how fast poverty is falling or rising 
over time and to explore the extent to which the growth rate of poverty is 
robust to a change in the poverty line or measure. Associated with each of 
the above poverty curves is a poverty growth curve that gives the growth rate 
of poverty for each poverty line or measure. For example, the variable line 
poverty growth curves for the three standard FGT measures are the same 
as the growth curves of the poverty incidence, defi cit, and severity curves.

Negative rates of growth throughout would indicate that poverty has 
fallen, and this conclusion is robust to changing the poverty line. If growth 
rates are similar across an entire range of poverty lines, then this suggests the 
percentage change in poverty is robust to changing the poverty line. Note, 
though, that poverty measures like the CHUC  and the FGT measures have 
two versions—the decomposable version and the income standard version, 
which are monotonic but not direct (proportional) transformations of one 
another. Although the two versions will always agree on whether poverty 
has risen or fallen (for a given poverty line), the growth rates will, in general, 
be different.
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We have seen above how the trend in inequality can be evaluated by 
comparing the growth rates of the two income standards underlying the 
inequality measure. The trend in poverty can likewise be evaluated by com-
paring the growth rate of the poverty line to the growth rate of the poor 
income standard (or gap standard) associated with the poverty measure. An 
absolute poverty line has a growth rate of zero, so poverty will decrease over 
time when the poor income standard has a positive growth rate (or the gap 
standard has a negative growth rate). If a relative poverty line is used, the 
growth rate in the poverty line is the same as the growth rate in the income 
standard underlying the relative poverty line.

Relative poverty will thus decrease over time when the overall income 
standard grows more slowly than the poor income standard, or more quickly 
than the gap standard. For example, suppose the relative poverty line is half 
the mean income and the poverty measure is the poverty gap. Then poverty 
will decrease over time if the mean income grows more slowly than the 
mean censored income. Alternatively, relative poverty will decrease if the 
mean income grows faster than the mean gap.

By plotting the growth rates for a range of income standards or gap stan-
dards and comparing them to the economywide growth rate, one can make 
robust comparisons of relative poverty. An analogous exercise is possible for 
the hybrid or weakly relative poverty lines whose elasticity with respect to the 
underlying income standard (called the income elasticity of the poverty line) falls 
between 0 (as with absolute lines) and 1 (as with relative lines). The growth 
rates of the poor income standards or gap standards are compared to the overall 
growth rate of the economy times the income elasticity of the poverty line to 
determine whether poverty of this form unambiguously decreases or increases.

A key question related to growth and poverty is whether general eco-
nomic growth translates into elevated incomes for the poor. Is growth 
“shared” among all strata of society or are the poor excluded from growth? 
To address this question, various approaches to evaluating shared or pro-
poor growth have been advanced.

A fi rst approach compares the growth in the mean income to the growth 
in a lower or higher income standard. If the growth rate of a lower income 
standard exceeds the general growth rate so that the growth elasticity of the 
low-income standard is greater than one, then this rate is seen as evidence of 
pro-poor growth. If the growth rate for a high-income standard is lower than 
the general growth rate—so that the growth elasticity of the high-income 
standard is less than one—then this is also evidence of pro-poor growth.
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If one uses the twin-standards interpretation of inequality, then this 
approach is equivalent to requiring an associated inequality measure to fall. Let 
a and b be the two income standards, with a ≤ b, where one of the two is the 
mean, and let I be an inequality measure based on these twin standards (so that 
I is a monotonic transformation of b/a). Growth is pro-poor if a grows  faster 
than b, which is equivalent to a falling ratio b/a and, hence, to a decrease in 
the associated inequality measure I. For example, one might describe growth as 
pro-poor if the Sen mean grew faster than the mean, and hence the Gini coef-
fi cient decreased. Or we could note that the Euclidean mean grew slower than 
the mean, and hence the coeffi cient of variation declined. This is basically the 
inequality-based approach to pro-poor growth we have discussed above.

A second poverty-based approach compares the actual change in poverty 
to the level that might be expected along a counterfactual growth path. 
Suppose that the distribution of income changes from x to x′ and that this 
leads to a change in measured poverty from P to P′. Construct a counter-
factual income distribution x″ that has the same mean as x′ and the same 
relative distribution as x, and let P″ be its level of poverty. The growth 
from x to x′ is then said to be pro-poor if the resulting change in poverty 
P′ − P exceeds the counterfactual change P″ − P; in other words, the rate of 
poverty reduction from actual growth is faster than the counterfactual rate 
from perfectly balanced growth. Of course, the relevance of this conclusion 
depends on the choice of counterfactual distribution and its assumption that 
the relative income distribution should not change. 

A related technique is often used to analyze the extent to which a given 
change in poverty is primarily due to changes in the mean (the growth effect) 
or changes in the relative distribution (the distribution effect). As before, let 
x″ be the counterfactual distribution having the same relative distribution 
as the initial distribution x and the same mean as the fi nal distribution x′. 
The overall difference in poverty P′ − P can be expressed as the sum of the 
growth effect P″− P and the distribution effect P′ − P″. 

This breakdown fi rst scales up the distribution x to the mean income of 
x′ to explore how the uniform growth in all incomes alters poverty. Then 
it redistributes the income to obtain x′, and explores how the distributional 
change alters poverty. Other breakdowns are possible using a different coun-
terfactual distribution or, indeed, a different order of events (redistribute 
fi rst, then grow). However, this version has the advantage of being easy to 
interpret and can be expressed as the sum of two component terms without 
a troublesome residual term.
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Note

1.  The third step may have two substeps, depending on the type of poverty 
measure selected: (a) evaluation of individual poverty and (b) selection 
of a method to aggregate individual poverty to obtain overall poverty.

References

Atkinson, A. B. 1970. “On the Measurement of Inequality.” Journal of 
Economic Theory 2 (1970): 244–63.

Commission on Growth and Development. 2008. The Growth Report: 
Strategies for Sustained Growth and Inclusive Development. Washington, 
DC: World Bank and International Bank for Reconstruction and 
Development.

Commission on the Measurement of Economic and Social Progress. 2009. 
“Report by the Commission on the Measurement of Economic and 
Social Progress.” Commission on the Measurement of Economic and 
Social Progress, Paris. http://www.stiglitz-sen-fi toussi.fr/en/index.htm.

Foster, J. E., and Y. Jin. 1998. “Poverty Orderings for the Dalton Utility-
Gap Measures.” In The Distribution of Welfare and Household Production: 
International Perspectives, edited by S. Jenkins, A. Kapteyn, and B. van 
Praag, 268–85. New York: Cambridge University Press. 

Mincer, J. 1974. Schooling, Experience, and Earnings. New York: Columbia 
University Press.

Oaxaca, R. 1973. “Male-Female Wage Differentials in Urban Labor 
Markets.” International Economic Review 14 (3): 693–709.

http://www.stiglitz-sen-fitoussi.fr/en/index.htm


Chapter 2

This chapter complements the introductory chapter by providing a detailed 
discussion and more formal analysis of the concepts involved in measuring 
income standards, inequality, and poverty. This chapter follows closely the 
introduction’s organization. It is divided into four sections. The fi rst sec-
tion introduces notations and basic concepts that will be used throughout 
the rest of this chapter. The second and third sections discuss tools and 
instruments related to income standards and inequality measures. The 
fourth section uses the tools from the second and third sections to construct 
poverty measures.

According to Sen’s seminal work (1976a), evaluating poverty within a 
society (which may be a country or other geographic region) involves two 
steps: 

1. Identifi cation, in which individuals are identifi ed as poor or nonpoor
2. Aggregation, in which data about the poor are combined to evaluate 

poverty within the society. 

However, to identify individuals as poor or nonpoor, we need to select a 
space on which their welfare level is to be assessed. The welfare indicator is the 
variable for assessing an individual’s welfare level. Thus, evaluating poverty 
within a society involves three steps: 

Income Standards, Inequality, 

and Poverty 

45
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1. Space selection, which is described below
2. Identifi cation, in which individuals with welfare levels below the 

threshold are classifi ed as poor and individuals with welfare levels 
above the threshold are classifi ed as nonpoor

3. Aggregation, our focus, which requires choosing an appropriate aggre-
gation method to measure the poverty level in a society.

In this book, we defi ne the space for evaluating poverty as money metric 
and single dimensional. The welfare indicator is either consumption expen-
diture or income:

• An individual’s consumption is the destruction of goods and services 
through use by that individual. Consumption expenditure is the overall 
consumption of goods and services valued at current prices, regardless 
of whether an actual transaction has taken place.

• An individual’s income, in contrast, is the maximum possible expen-
diture the individual is able to spend on consumption of goods and 
services, without depleting the assets held.

Whether it is income or consumption expenditure, welfare indica-
tors are constructed by aggregating various components. For example, an 
individual’s consumption expenditure is constructed by aggregating the 
commodities and services consumed by the individual using the prices paid. 
Consumption expenditure as a welfare indicator is more commonly used for 
assessing developing countries in Asia and Africa (Deaton and Zaidi 2002). 
In contrast, using income as a welfare indicator is common when assessing 
Latin American countries. 

Although both income and consumption expenditure are used as wel-
fare indicators, consumption expenditure has certain advantages. Income 
data, for example, may not lead to an accurate assessment of welfare when 
incomes fl uctuate signifi cantly. Furthermore, in developing countries, 
income data may be diffi cult to collect, and data accuracy is diffi cult to ver-
ify because most of the population may be employed in the informal sector.

To work around these problems, many developing countries collect 
consumer expenditure survey data, which include detailed information 
on goods and services consumed by individuals. Then they use the market 
prices to compute the overall consumption expenditure. The surveys ask 
about food consumption for several items over a specifi c reference period, 
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which may be a month or any longer period of time. If the reference period 
is short (for example, one month), seasonality concerns may be overcome, 
but a shorter reference period may also lead to more noise in the expenditure 
data. Noise can be avoided by using a longer reference period, but diffi culties 
in recollection may bias expenditures downward.1

A person may consume many private and public goods from the long 
list of commodities in a consumer expenditure survey. For a private good, 
total expenditure is the amount of commodity consumed times that com-
modity’s price. Consumption expenditure for two individuals having the 
same consumption patterns and requirements, therefore, should be twice the 
consumption expenditure for either of the two.

This straightforward expenditure computation may not be possible when 
the consumed commodities are, instead, public goods. Given that public 
goods are nonrival and nonexcludable, the same amount of public goods 
may be consumed by multiple individuals without additional cost. Multiple 
individuals living together and sharing public goods enjoy economies of scale. 
Examples of public goods include a radio, a water pump, bulk purchase dis-
counts of food items, and food preparation effi ciencies (which may lower the 
cost of fuel and time).

Although the goal is to construct a money-metric wealth indicator for 
each person, fulfi lling that goal may not be straightforward. Most of the 
time, data for commodities and services consumed are collected at the 
household level. A household typically consists of members with different 
characteristics, such as age, sex, and employment status. Usually, an individ-
ual’s welfare indicator is calculated by dividing total household expenditures 
by the number of people residing in that household. The result is called the 
per capita expenditure.

Analyzing poverty on the basis of per capita expenditure, however, 
ignores the fact that different individuals may have different needs. 
The cost per person to reach a certain welfare level may be lower in 
large households, because large households enjoy certain economies of 
scale. For example, a child may not need the same share of income as 
an adult member, or the food consumption expenditure may not be the 
same across men and women within a household. The minimum income 
needed to meet the subsistence needs of a household with four adults 
may be much more than the subsistence income needed for a household 
with two adults and two children. This intrahousehold allocation can be 
adjusted using an equivalence scale tool.
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There are various types of equivalence scales and economies of scale. 
Also, there are different ways of determining these scales, such as evalu-
ating nutritional needs and behavioral needs. Differences in nutritional 
needs are derived from various health studies. Data on behavioral needs are 
obtained from econometric estimates that are based on observed commodity 
allocations.

However, the observed allocation is suspect because what is observed 
may not necessarily be what is actually needed. For example, if female chil-
dren are observed to consume less, does this mean that they need less, or are 
they just discriminated against? There is no straightforward answer to this 
question, unfortunately, because it is beyond the scope of most consumer 
expenditure surveys.

Two adult equivalence (AE) scales are more commonly used than oth-
ers. The fi rst is used by the Organisation for Economic Co-operation and 
Development (OECD), which we denote by AEOECD. It is defi ned as

 AEOECD = 1 + 0.7(NA − 1) + 0.5NC , (2.1)

where NA is the number of adults in the household, and NC is the number 
of children in the household.

This scale actually serves as both an equivalence scale and an economy 
of scale. Note that when there is only one adult member in the household, 
AEOECD = 1. For a household with two adult members, AEOECD = 1.7 
(AEOECD = 2 is incorrect because two adults sharing the same household 
are assumed to enjoy economy of scale). For instance, if the actual total 
income of a two-member household is Rs 17,000, then the per capita real 
income of the household is equivalent to Rs 17,000/1.7 = Rs 10,000 and not 
Rs 8,500, as it would be in the per capita case. This is an example of adjust-
ing for economy of scale. For a single parent household with two children, 
however, the actual total income of Rs 17,000 is equivalent to a per capita 
real income of Rs 8,500 because AEOECD = 1 + 2 × 0.5 = 2.

The second adult equivalent scale is used by the Living Standards 
Measurement Study (LSMS), which we denote by AELSMS. It is defi ned as

 AELSMS = (NA + ϱNC)ϑ, (2.2)

where NA is the number of adults in the household, and NC is the number 
of children in the household.

In this scale, parameter ϱ measures the cost of a child compared to an 
adult. Parameter ϑ captures the effect of economy of scale. Both parameters 
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are positive but not larger than one. When ϱ = 1, then the cost of a child 
is equal to the cost of an adult. The lower the value of ϱ, the lower the cost 
of each child compared to an adult. Similarly, when ϑ = 1, no economy of 
scale is assumed. The lower the value of ϑ, the larger the economy of scale 
is assumed to be.

For example, suppose there are fi ve members in a household: three adults 
and two children. If a child is assumed to be half as costly as an adult, then 
ϱ = 0.5 and ϑ = 0.5. Then AELSMS = (3 + 0.5 × 2)0.5 = 2. Therefore, if the 
actual total income of the household is Rs 20,000, then the real per capita 
income of the household is equivalent to Rs 10,000. However, if no econ-
omy of scale is assumed and each child is considered as equally expensive as 
an adult, then the household’s per capita income is only Rs 4,000.

In the subsequent analysis in this chapter, we assume that we are using 
a dataset having all the information required for constructing a welfare 
indicator either at the individual level or at the household level. The 
dataset may cover the entire population or may just be a collection of 
samples from the population. There are other important issues one should 
take into account regarding a dataset (such as its survey design, sample 
coverage, sample variability, and so on), which are not covered in this 
chapter.2

To keep explanations and mathematical formulas simple, we make two 
fundamental assumptions. First, we use income as the welfare indicator 
and assume that information on income is available for every person in our 
dataset. Second, we assume that every household contains only one adult 
member. As a result of the second assumption, we do not need to make 
any adjustment for the economy of scale and equivalent scale because each 
member is an adult and lives in a single-member household. However, the 
tools and techniques introduced in this chapter can be easily extended to 
situations when the welfare indicator is consumption expenditure and more 
than one person lives in a household.

Basic Concepts

Suppose our reference society X consists of N people, where the income of 
person n is denoted by xn for all n = 1,2,…,N. Thus, the income distribution 
data for society X has N incomes. For the sake of simplicity, we assume these 
incomes are ordered so that x1 ≤ x2 ≤ … ≤ xN.
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There are two different ways to represent an income distribution:

• The simplest income distribution is a vector of incomes. We denote 
the society’s vector of incomes as X = (x1,x2,…,xN).

• The second way is to represent the income distribution in terms of 
a cumulative distribution function (cdf) in which x is designated an 
income distribution. We denote the average, or mean, of all elements 
in x by x̄ = (x1 + … + xN)/N. For a large enough sample, the cdf may 
be approximated by a density function.

Another, more intuitive, presentation of the cdf is the quantile function, 
which is more suitable to our needs. Before moving into the discussion on 
measurement, we will discuss these three concepts and examine their signifi -
cance in describing various aspects of an income distribution.

Density Function

An income distribution’s density function reports the percentage of the popu-
lation that falls within an income range. Suppose incomes in distribution x 
range from $100 to $100,000, and we want to know what percentage of the 
population earns income between $10,000 and $20,000. The answer can 
be easily obtained by calculating the area underneath the density function 
between $10,000 and $20,000.

Notice that the total area underneath the density function between $100 
and $100,000 is 100 percent because incomes of the entire population fall 
within this range. Thus, the density function is a frequency distribution that 
is normalized by the total population in the distribution.

Figure 2.1 depicts the probability density function of income distributi on 
x. Recall that the minimum and maximum incomes in distribution x are x1 
and xN, respectively. The horizontal axis reports the income and the verti-
cal axis reports the density. We denote the density function of distribution 
x by fx, which is a bell-shaped curve in fi gure 2.1. The total area between x1 
and xN underneath the density function fx is 100 percent. The share of the 
population with incomes between b' and b'' is the shaded area.

Two interesting statistics may be found in fi gure 2.1 :

• The median is the income in the distribution that divides the entire 
population into two equal shares. In the fi gure, xM is the median of 
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distribution x. Hence, 50 percent of the area underneath fx lies to the 
right of xM, and the remaining 50 percent lies to the left of xM.

• The mode is the income in the distribution that corresponds to the 
largest density (locally). In fi gure 2.1, the distribution’s mode is 
denoted by xMo.

Commonly, income distributions have one mode, but there can 
be distributions with more than one mode. A density with two modes 
is called bimodal and that with many modes is called multimodal. 
When there is more than one mode, a society is understood to be 
polarized in different groups according to their achievements. A 
polarized society may produce social tensions among different groups, 
which increases the chance of social unrest. These issues are discussed 
in more detail in chapter 3.

In addition, a density function can be a useful tool for understanding the 
skewness of an income distribution. Skewness is a measure of asymmetry in 
the distribution of incomes. It arises when most incomes lie on any one side 
of the mean of the distribution. If more observations are located to the left 
of the distribution’s mean, then the distribution is positively skewed. If more 
observations lie to the right of the mean, then the distribution is negatively 

Figure 2.1: Probability Density Function

D
e
n

s
it

y

Income

x1 xMo

fx

xNxM b ′ b ″



52

A Unifi ed Approach to Measuring Poverty and Inequality

skewed. If there is an equal number of observations on both sides of the 
mean, then there is no skewness, and the distribution is symmetric around 
the mean. Income distributions are usually positively skewed.

Cumulative Distribution Function

A cdf, or cumulative distribution function, denotes the proportion of the 
population whose income falls below a given level. A cdf may be easily 
obtained from a density function and vice versa. For every income reported 
on the horizontal axis of fi gure 2.1, a distribution function reports the area 
to the left of the income underneath fx. Because the total area underneath fx 
is 100 percent, the highest value that a distribution function can take is 100 
percent. We denote the distribution function of x by Fx, and Fx(b) denotes 
the percentage of the population whose income is no greater than b.

For example, if the number of people in society X having incomes less 
than b is q, then Fx(b) = 100 × q/N. For any two incomes b' and b", Fx(b') 
≤ Fx(b") when b' ≤ b" because having income less than b' must also imply 
having income less than b". Therefore, a distribution function should not 
decrease as income increases.

As seen in fi gure 2.2, the horizontal axis denotes income and the verti-
cal axis denotes the value of the cumulative distribution function. For xN, 
which is the largest income in distribution x, the value of the distribution 
function is Fx(xN) = 100 percent because no one in distribution x has an 
income above xN.

Figure 2.2: Cumulative Distribution Function
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At median bM, the distribution function’s value is Fx(bM) = 50 percent, 
which implies that half the population has an income less than bM. In fi gure 
2.1, the share of the population with income ranging between b' and b" is 
represented by the shaded area, which, in fi gure 2.2, is denoted by the dif-
ference Fx(b") − Fx(b'). A distribution function provides another important 
statistic: the mean of the distribution. In fi gure 2.2, the shaded area to the 
left of Fx is the mean x̄ of distribution x.

Quantile Function

A quantile function is the inverse of  a cdf. Recall that a distribution function 
shows the percentage of the population whose income falls below a given 
level of income. The quantile function, however, reports the level of income 
below which incomes of a given percentage of the population fall.

We denote the quantile function of distribution x by Qx and by con-
struction Qx = Fx

–1, where Fx
–1 is the inverse of the cdf Fx. For example, the 

level of income below which incomes of 25 percent of the population lie is 
Qx(25). If 25 percent of Georgia’s population has income below GEL 2,000, 
then QGEO (25) = GEL 2,000.

Figure 2.3 describes the quantile function corresponding to distribution 
x. The horizontal axis denotes the population share, or the percentage of 

Figure 2.3: Quantile Function
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population. The vertical axis denotes the corresponding value of a quantile 
function in terms of income. Of course, no one in the society can have any 
income above Qx (100). Half of the population has an income less than the 
median bM, so Qx (50) = bM. The shaded area underneath the quantile func-
tion is the mean x̄ of the distribution x. 

Having introduced these basic concepts, we discuss income standards in 
the next section.

Income Standards

An income standard gauges the size of a distribution by summarizing the 
entire distribution in a single income level. Some income standards can be 
viewed as stylized measures of a society’s overall level of well-being. Others 
focus more narrowly on one part of the distribution or have no general wel-
fare interpretation. We begin this section by introducing common proper-
ties that an income standard should satisfy. We denote any income standard 
by W and use subscripts to indicate specifi c measures or indices.

Desirable Properties

An income standard can satisfy several basic properties. We refer to the fi rst 
two properties—symmetry and population invariance—as invariance properties 
because they describe changes in the distribution that leave the income 
standard unaltered. The second pair of properties—weak monotonicity and 
the weak transfer principle—are called dominance properties because they 
require the income standard to rise (or not fall) when the income distribution 
changes in a particular way. Finally, normalization and linear homogeneity are 
calibration properties that ensure the income standard is measured by income. 
The additional property of subgroup consistency is not a part of the basic prop-
erties, but it is desirable when evaluating income standards of subpopulations. 

Symmetry requires that switching two people’s incomes leaves the 
income standard evaluation unchanged. In other words, a person should 
not be given priority on the basis of his or her identity when calculating a 
society’s income standard. Thus, symmetry is also known as anonymity. In 
technical terms, symmetry requires the income standard of distribution x to 
be equal to the income standard of distribution x', if x' is obtained from x by 
a permutation of incomes.
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What is a permutation of income? An example will explain. Consider 
the three-person income vector x = ($10k, $20k, $30k) so that the fi rst, 
second, and the third person receive incomes $10k, $20k, and $30k, respec-
tively. If the incomes of the fi rst and second persons are switched, then the 
new income vector becomes x' = ($20k, $10k, $30k). This new vector x' is 
said to be obtained from vector x' by a permutation of incomes. The sym-
metry property thus can be stated as follows:

Symmetry: If distribution x' is obtained from distribution x by a per-
mutation of incomes, then W(x') = W(x).

The second property is population invariance. This property requires that 
the income standard not depend on population size. That is, a replication of 
an income vector results in the same income standard as the original sample 
vector. Consider the income vector of society X to be x = ($10k, $20k, $30k). 
Now suppose three more people join the society with the same income 
distribution. The new income vector of society X is x' = ($10k, $10k, $20k, 
$20k, $30k, $30k). Society X now has more overall income, but population 
invariance requires that the income standard of society X remain unaltered.

What is the implication of population invariance? It allows us to 
 compare income standards across countries and across time with varying 
population sizes. Furthermore, when combined with symmetry, population 
invariance allows the income standard to depend only on information found 
in a distribution function, which does not include the population size and 
the identities of income receivers.

Population Invariance: If vector x' is obtained by replicating vector x 
at least once, then W(x') = W(x).

The third property requires that if the income of any person in a society 
increases, then the income standard should register an increase, or at least 
should not fall. Implicitly, this property assumes that increasing someone’s 
income is not harmful to the entire society.

There are two versions of this property. One is weak monotonicity, which 
requires that the income standard not fall because of an increase in any-
one’s income. The other version is monotonicity, the stronger version, which 
requires that the income standard register an increase if anyone’s income in 
the society increases.
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For vectors x and x', the notation x' > x implies that at least one element 
in x' is strictly greater than that in x, and all other elements in x' are no less 
than the corresponding elements in x. For example, if x' = ($20k, $10k, $30k) 
and x = ($25k, $10k, $30k), then x' > x. However, if x' = ($20k, $10k, $30k) 
and x = ($25k, $10k, $25k), then x' � x because the income of the third 
person is lower in x than that in x'.

Weak Monotonicity: If distribution x' is obtained from distribution x 
such that x' > x, then W(x') ≥ W(x).

Monotonicity: If distribution x' is obtained from distribution x such 
that x' > x, then W(x') > W(x).

Some income standards are occasionally interpreted as social welfare mea-
sures. The fourth property, known as the transfer principle, is the key property that 
enables this interpretation. A regressive transfer occurs when income is transferred 
from a poorer person to a richer person. The transfer principle requires that a 
regressive transfer between two people in a society should lower the income 
standard. Conversely, a progressive transfer occurs when income is transferred 
from a richer person to a poorer person. The transfer principle requires that a 
progressive transfer between two people raise the income standard.

Here is a formal defi nition of these two kinds of transfers using vector x. 
We have already assumed that incomes in x are ordered so that x1 ≤ x2 ≤ … ≤ 
xN. Let income d  be transferred from person n to person m, where n < m and 
0 < d < (xm − xn)/2. Denote the post-transfer income vector by x', where all 
incomes except those for people n and m are the same as in x, but xn' = xn − d 
and xm' = xm + d. Then x' is said to be obtained from x by a regressive transfer.

Now, let income d > 0 be transferred from person m to person n. Denote 
the post-transfer income vector by x", where all incomes except those for 
people n and m are the same as in x, but xn" = xn + d  and xm" = xm − d such 
that xm" > xn. Then x" is said to be obtained from x by a progressive transfer.

Consider the following example. Let the two income vectors of society 
X at two different points in time be x = ($10k, $20k, $30k) and x' = ($15k, 
$20k, $25k), where x' has been obtained from x by transferring $5k from the 
third person to the fi rst person. This is a progressive transfer. 

Below is the formal statement of the transfer principle property. This 
principle is also known as the Pigou-Dalton transfer principle after the 
English economists Arthur Cecil Pigou and Hugh Dalton.3
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Transfer Principle: If distribution x' is obtained from distribution x by 
a regressive transfer, then W(x') < W(x). If distribution x" is obtained 
from distribution x by a progressive transfer, then W(x") > W(x).

One justifi cation of the transfer principle invokes a utilitarian form of 
welfare function that takes welfare to be the average level of (indirect) util-
ity in society and assumes that all utility functions are identical and strictly 
increasing (see Atkinson 1970). In this context, the intuitive assumption of 
diminishing marginal utility yields the transfer principle. Diminishing marginal 
utility requires that the loss to the poorer giver is greater than the gain to 
the richer receiver because of a regressive transfer. Hence, overall welfare 
falls, or, equivalently, the gain to the poorer receiver is greater than the loss 
to the richer giver because of a progressive transfer—hence, welfare rises.

The fi fth property is normalization. This property requires that if incomes 
are the same across all people in a society, then the income standard should 
be represented by that commonly held income. This property is intuitive. 
For example, let the income vector of a three-person society be ($20k, $20k, 
$20k). Then the income standard should be $20k.

Normalization: For the income distribution, x = (b, b, …, b), W(x) = b.

The sixth property is linear homogeneity. This property requires that if 
an income distribution is obtained from another income distribution by 
changing the incomes by some proportion, then the income standard should 
also change by the same proportion. For example, if everyone’s income in 
a society doubles, then the society’s income standard doubles. If everyone’s 
income is halved, then the society’s income standard is halved.

Linear Homogeneity: If distribution x' is obtained from distribution x 
such that x' = cx where c > 0, then W(x') = cW(x).

Subgroup consistency is the fi nal property presented here. In some empiri-
cal applications, there is a natural concern for certain identifi able popula-
tion subgroups as well as for the overall population. We might be interested, 
for instance, in the performances of various states or subregions of a country 
to understand how the overall improvement in income standard is distrib-
uted across those regions.
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When population subgroups are tracked alongside the overall population 
value, there is a risk that the income standard could indicate contradictory 
or confusing trends. For example, it may be possible that the income stan-
dards of some regions within a country improve while the income standards 
of the rest of the country remain the same, but the income standard of the 
country as a whole deteriorates. This type of result may cause confusion 
because following the regional performances, one would expect the coun-
try’s overall performance to improve.

Thus, a natural consistency property for an income standard might be 
that if subgroup population sizes are fi xed but incomes are varying, when the 
income standard rises in one subgroup and does not fall in the rest, the over-
all population income standard must rise. This property, known as subgroup 
consistency, avoids inconsistencies arising from multilevel analyses of this sort.

As an example, suppose the income vector x with population size N is 
divided into two subgroup vectors x' with population size N' and x" with 
population size N" such that N' + N" = N. Let a new vector y be obtained 
from x with the same population size N and its corresponding two subgroups 
be y' with population size N' and y" with population size N". The subgroup 
consistency property can be stated as follows:4

Subgroup Consistency: Given that the overall population size and 
the subgroup population sizes remain unchanged, if W(y') > W(x') 
and W(y") ≥ W(x"), then W(y) > W(x).

Having discussed the properties of the income standards, we now discuss 
the commonly used income standards. We outline these income standards 
and analyze their usefulness in terms of the properties they satisfy.

Commonly Used Income Standards

Four kinds of income standards are in common use: quantile incomes, 
partial means, general means, and means based on the maximin approach. 
(Among the maximin means, we discuss only the Sen mean in this book.) 
We now describe each kind in greater detail.

Quantile Income

Quantile incomes provide information about a specifi c point on the distri-
bution. They can be directly calculated from a quantile function or a cdf. 
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The quantile income at the pth percentile is the income below which the 
incomes of p percent of the population fall. For the income distribution x 
with N people, the quantile income at the pth percentile is the income that 
is larger than the incomes of the poorest pN/100 people.

We denote the quantile income at the pth percentile of distribu-
tion x by WQI (x; p). For example, if p = 50 percent, then the quantile 
income at the pth percentile of distribution x is denoted by WQI (x; 50). 
If WQI (x; 50) = $200, then it should be read as 50 percent of the population 
in society X earns less than $200. Similarly, if WQI (x; 90) = $1,000, then 
90 percent of its population earns less than $1,000.

Commonly reported quantile incomes used when gauging societies’ 
standard of living are the quantile incomes at the 10th percentile, 20th per-
centile, 50th percentile, 80th percentile, and 90th percentile. A close look 
at the quantile income at the 50th percentile reveals that this is the income 
below which half of the population of a distribution lies. Therefore, the 
quantile at the pth percentile income is just the median of a distribution. For 
a particular income distribution where each and every person earns equal 
income, the quantile incomes at all percentiles are equal to each other, 
ensuring that the quantile incomes satisfy the normalization property.

A quantile function is the most helpful tool for visualizing quantile 
incomes. Figure 2.4 shows the quantile function for income distribution x.  

Figure 2.4: Quantile Function and the Quantile Incomes 
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As in fi gure 2.3, the horizontal axis in fi gure 2.4 denotes the population share 
in percentage, which lies between 0 and 100. The left-hand vertical axis 
denotes the corresponding value of a quantile function Qx and the right-hand 
vertical axis reports the quantile incomes.

By defi nition, the quantile income for a certain percentile is the value of 
the quantile function at that percentile, so WQI (x; p) = Qx(p). In the fi gure, 
WQI (x; 50) = bM is the median of distribution x. Likewise, WQI (x; 25) and 
WQI (x; 75) are the fi rst and the third quartiles of distribution x. The well-
known 10th and 90th percentiles of distribution x are WQI (x; 10) = Qx(10) 
and WQI (x; 90) = Qx(90), respectively. Given that a cdf is an inverse of a 
quantile function, quantile incomes can also be graphically portrayed and 
calculated using a cdf.

What properties do quantile incomes satisfy? It is straightforward to verify 
that any quantile income satisfi es symmetry, normalization, population invari-
ance, linear homogeneity, and weak monotonicity. However, no quantile income 
satisfi es the other dominance properties: monotonicity, transfer principle, 
and subgroup consistency. Quantile incomes do not satisfy monotonicity 
because a person’s income may increase, but as long as it does not surpass a 
certain quantile, that quantile income remains unaltered. Similarly, quantile 
incomes do not satisfy the transfer principle because they do not change to a 
transfer that takes place at a nonrelevant part of the distribution.

The income standards are not subgroup consistent because the quantile 
incomes of the subregions may increase, but the overall quantile income may 
fall. Consider the following example. Suppose the income vector of society 
X is x = ($10k, $20k, $30k, $50k, $60k, $80k) and the income vector of two 
subgroups is x' = ($10k, $20k, $30k) and x" = ($50k, $60k, $80k). The 67th 
quantile of the three distributions is WQI (x'; 67) = $20k, WQI (x"; 67) = $60k, 
and WQI (x; 67) = $50k. Now, suppose the subgroup income vectors over time 
become y' = ($10k, $20k, $30k) and y" = ($45k, $65k, $80k). Apparently, the 
quantile income at the 67th percentile of the fi rst group does not change, but 
that of the second does. In fact, WQI (x'; 67) = WQI (y'; 67) but WQI (y"; 67) > 
WQI (x"; 67). What happens to the quantile income at the 67th percentile 
of the overall distribution? It turns out that WQI (y; 67) = 45 < WQI (x; 67).

Partial Mean

The next set of commonly used means is the partial means. There are two 
types of partial means: lower partial means and upper partial means. A lower 
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partial mean is obtained by fi nding the mean of the incomes below a specifi c 
percentile cutoff. An upper partial mean is obtained by fi nding the mean of 
incomes above a specifi c percentile cutoff. Lower partial means are more 
commonly used than upper partial means.

The lower partial mean of the pth percentile is the average or mean 
income of the bottom p percent of the population. The upper partial mean 
of the pth percentile, in contrast, is the average or mean income of the 
top (1 – p) percent of the population. We denote the lower partial mean 
and upper partial mean of distribution x for percentile p by WLPM(x; p) and 
WUPM(x; p), respectively. For example, if p = 50 percent, then the lower par-
tial mean of the pth percentile of distribution x is denoted by WLPM(x; 50).

If WLPM(x; 50) = $100 and WUPM(x; 50) = $10,000, then together they 
should be read as the mean income of the bottom 50 percent of the population 
is $100, and the mean income of the top 50 percent of the population is $10,000 
(see example 2.1). 

Example 2.1: Consider the income vector x = ($2k, $4k, $8k, $10k). 
The lower partial mean of the 50th percentile of the distribution is 
($2k + $4k)/2 = $3k, and that of the 75th percentile of the distribution 
is ($2k + $4k + $8k)/3 = $4.7k. In contrast, the upper partial mean 
of the 50th percentile of the distribution is ($8k + $10k)/2 = $9k and 
that of the 75th percentile of the distribution is $10k.

The following is a graphical description of how partial means can 
be calculated using quantile function Qx. The vertical axis of fi gure 2.5 
denotes income, and the horizontal axis denotes population share. There 
are two percentiles, p' and p", for describing the lower and upper partial 
means. The lower partial mean of the p' percentile population is the 
shaded area underneath the quantile function Qx to the left of p' divided 
by p'. The lower partial mean is the average income of all people in society 
X whose income is less than Qx(p'). Similarly, the upper partial mean of 
the p" percentile population is the shaded area underneath the quantile 
function Qx to the right of p" divided by (100 – p"). This upper partial 
mean is the average income of all people in society X whose income is 
larger than Qx(p").

Like the quantile incomes, any partial mean satisfi es symmetry, normal-
ization, population invariance, linear homogeneity, and weak monotonicity, but 
no partial mean satisfi es monotonicity, transfer principle, and subgroup 
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consistency. Like the quantile incomes, one can easily show using a simple 
example that partial means do not satisfy subgroup consistency.

Quantile incomes and partial means are crude income standards because 
they do not depend on the entire income distribution. Yet they are highly 
informative and easy to understand. Especially when income data are miss-
ing for certain parts of the income distribution, these crude income stan-
dards are useful tools for understanding a society’s performance.

In contrast, when rich datasets are available, a study based on quan-
tile incomes and partial means may be limited because they do not refl ect 
changes in every part of the distribution. For example, if the income 
of a person below the median increases—but not by enough to surpass 
the median income—then the distribution median does not refl ect any 
change.

The following income standards are designed to consider the entire 
distribution. These income standards will, in most cases, refl ect a change in 
any part of the distribution.

General Mean

General me  ans are a family of normative income standards. Standards in this 
family are normative because the formulation of each measure depends on 

Figure 2.5: Quantile Function  and the Partial Means
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a parameter denoted by a, which can take any value between − ∞ and + ∞.  
Unlike the quantile means and the partial means, general means take into 
account the entire income distribution, but emphasize lower or higher incomes 
depending on the value of a. Parameter a is familiar in the literature as the 
order of general means.

For income distribution x, we denote the general mean of order a by 
WGM(x; a). It is defi ned as

W x

x x x
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Although a may take any value between − ∞ and + ∞, four means in this 
family are more well known than others: arithmetic mean, geometric mean, 
harmonic mean, and Euclidean mean.

• For a = 1, WGM is known as the arithmetic mean (denoted by WA) 
or the average x̄ of all elements in x and can be written as5

 
W

x x
NAW N( )x .=

+ +x +1 2xx L
 (2.4)

• For a = 0, WGM becomes the geometric mean (denoted by WG) of all 
elements in distribution x and can be expressed as

 WG(x) = (x1 × x2 × ... × xN)1/N. (2.5)

 If we take a natural logarithm on both sides of equation (2.5), we fi nd
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 WL(x) is the average of the logarithm of all incomes in distribution 
x. The logarithm of incomes is frequently used for various analyses by 
labor economists.

• For a = –1, WGM becomes the harmonic mean (WH) of distribution 
x and can be expressed as
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• Finally, another well-known mean is the Euclidean mean (WE), 
obtained when a = 2. The Euclidean mean formula is
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Example 2.2 shows the results of calculating these means for a given 
income vector.

Example 2.2: Consider the income vector x = ($2k, $4k, $8k, $10k).

• The arithmetic mean of x is ($2k + $4k + $8k + $10k)/4 = $6k.
•  The geometric mean of x is ($2k × $4k × $8k × $10k)1/4 

= $5.03k.
•  The harmonic mean of x is [($2k−1 + $4k−1 + $8k−1 + 

$10k−1)/4]−1 = $4.10k.
•  The Euclidean mean of x is [($2k2 + $4k2 + $8k2 + $10k2)/4]1/2

 = $6.78k.

Having been introduced to the family, one can now understand the 
properties of general means and the way they depend on parameter a.  All 
means in this family satisfy symmetry, normalization, population invariance, 
linear homogeneity, monotonicity, and subgroup consistency. Furthermore, for 
a  < 1, general means satisfy the transfer principle. Thus, the general means 
satisfy all the dominance properties introduced earlier. One reason is that, 
unlike the quantile means and the partial means, general means consider all 
incomes in the distribution.

It is straightforward to show that general means satisfy symmetry, nor-
malization, population invariance, linear homogeneity, and monotonicity. 
That general means satisfy subgroup consistency may be verifi ed as follows: 
if vector x is divided into subgroup vectors x' and x", then the general mean 
of x can be expressed as

 WGM(x; a) = WGM((WGM(x'; a), WGM(x"; a)); a). (2.9)

In other words, the general mean of x is the general mean of the general 
means of x' and x". Then the monotonicity property ensures that subgroup 
consistency is satisfi ed.
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Another interesting property of WGM is its monotonic relationship with 
parameter a, which requires that the value of WGM increase as a rises and 
decrease as a falls. A lower a gives more emphasis to lower values within a 
distribution and thus causes WGM to fall. Conversely, a higher a gives more 
emphasis to higher values within a distribution, causing the value of WGM 
to rise. Technically speaking, WGM(x; a) < WGM(x; a ') for any a < a '. We 
refer to this property of general means as increasingness to a. It follows from 
this property that WE(x) ≥ WA(x) ≥ WG(x) ≥ WH(x).

There is an exception, however, when the values of general means do 
not change as a changes, and this happens when a distribution is degener-
ate. A society’s income distribution is degenerate if all people in that society 
have equal incomes. For a degenerate income distribution, all general means 
are equal; that is, WGM(x; a) = WGM(x; a ') for all a ≠ a '. Invariance of 
general means to degenerate distribution is another way of ensuring that 
they satisfy the normalization property.

Given that a ranges from − ∞ to + ∞, what is the range of WGM? Unlike 
the value of a, however, WGM is not unbounded. Rather, it has a lower bound 
and an upper bound. When a decreases and approaches − ∞, WGM(x; a) con-
verges to the minimum element in x. The society’s income standard in this 
case is nothing, but the poorest person’s income is x1. In contrast, when a 
increases and approaches + ∞, WGM(x; a) converges toward the maximum 
element in x, and the society’s income standard equals the income of the 
richest person, xN. Notice, however, that unlike the other general means, 
these two extreme income standards—WGM(x; − ∞) and WGM(x; + ∞) —are 
not sensitive to the entire distribution. That is, if any element in x other than 
x1 and xN changes, these two income standards do not refl ect that change.

Figure 2.6 describes the relationship between the family of  generalized 
means and parameter a. As already discussed, the general mean is the 
 arithmetic mean at a  = 1, the geometric mean at a  = 0, the harmonic 
mean at a  = −1, and the Euclidean mean at a  = 2. Values of general means 
increase with parameter a. They are bounded below by x1  = min{x} and are 
bounded above by xN  = max{x}.

One feature we should note carefully is that the general means are 
undefi ned for a  < 0 when there is at least one nonpositive element in an 
income vector. For example, if an element of x is 0, then for a  = −1, we 
have (0)−1  =  1/0. Therefore, one requirement for any measure in this family 
with a  < 0 is that all elements in x be strictly positive.
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General Means as Welfare Measures

The transfer principle ensures that the general means may be interpreted as 
social welfare measures. Actually, the general means for a  < 1 are commonly 
interpreted as measures of social welfare. This form of welfare function was 
considered by Atkinson (1970), who then defi ned a helpful transforma-
tion of the function called the equally distributed equivalent income (ede). 
The utility function that Atkinson assumed to obtain his particular ede was 

U x xn n( ) ( )= 1 1

a
a  for a  < 1 and a ≠ 0 and U(xn) = ln xn for a = 0 for all n. 

The ede represents the level of income xaede, which, if received by all people 
in a society, yields the same welfare level as that of the original income dis-
tribution. Thus, like the general mean itself, the value of ede depends on the 
parameter a, and for vector x, the ede of order a is EDE(x; a) = WGM(x; a). 

Sen Mean

The usual mean can be reinterpreted as the expected value of a single income 
drawn randomly from the population. Now, suppose that instead of a single 
income, we were to draw two incomes randomly from the population (with 
replacement). If we then evaluated the pair in terms of the lower of the two 
incomes, this would lead to the Sen mean, which is defi ned as the expecta-
tion of the minimum of two randomly drawn incomes.6 These two random 
incomes are drawn with replacement, which means that these two incomes 
may belong to the same person in a society. If every income in distribution x 

Figure 2.6: Generalized Means and Parameter `
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is compared with every other income in x with replacement, then there are 
N2 possible comparisons. Thus, the Sen mean can be defi ned as
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Because we are using the minimum of the two incomes, this number can be 
no higher than the mean, and is generally lower. The Sen mean also empha-
sizes the lower incomes but in a way that differs from the general means with 
α < 1, the lower partial means, or the quantile incomes below the median.

There is a straightforward way of calculating the Sen mean for an income 
vector—by creating an N × N matrix that has a cell for every possible pair of 
incomes and placing the lower value of the two incomes in the cell. Adding 
all the entries and dividing by the number of entries (N2) to obtain their 
mean provides the Sen mean. Consider example 2.3 to better understand 
this way of calculating the Sen mean. 

Example 2.3: Consider the income vector x = ($2k, $4k, $8k, $10k).
First, we construct the following matrix:

x $2k $4k $8k $10k

$2k $2k $2k $2k $2k

$4k $2k $4k $4k $4k

$8k $2k $4k $8k $8k

$10k $2k $4k $8k $10k

Each cell in this 4 × 4 matrix is the minimum of the top row and 
the left column, both of which represent the ordered income vector x.
The Sen mean is the average of all elements in the matrix. Thus,

W x k k k k kS( ) ( $ $ $ $ ) $ . .= × + × + × + × =1
4

7 2 5 4 3 8 1 10 4 252

The Sen mean of x is lower than the arithmetic mean of x, 
which is $6k.

There is another interesting way of understanding the Sen mean—the 
weighted average of all elements of an income distribution—where the 
weight on each element depends on the rank of the corresponding element. 
Recall that we assumed x1 ≤ x2 ≤ … ≤ xN for distribution x so that the Nth 
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person has the highest income and the fi rst person has the lowest income. 
Thus, element xN receives the highest rank and element x1 receives the low-
est rank. The Sen mean attaches the highest weight to the lowest income, 
the second-highest weight to the second-lowest income, and the lowest 
weight to the highest income.

For distribution x, the Sen mean can be expressed as WS(x) = a1x1 + … + 
aNxN, where aN = (2(N − n) + 1)/N2 for all n. Thus, the weight attached 
to the highest income xN is aN = 1/N2; the weight attached to the second-
highest income xN–1 is aN–1 = 3/N2; and the weight attached to the lowest 
income x1 is a1 = (2N − 1)/N2. The weight attached to the richest income 
in the example above ($10k) is 1/16, whereas the weight attached to the 
poorest income ($2k) is 7/16. Notice that the weights sum to one, that is,
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Thus, the Sen mean can also be expressed as
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The Sen mean satisfi es symmetry, normalization, population invariance, lin-
ear homogeneity, monotonicity, and the transfer principle. It does not, however, 
satisfy subgroup consistency, which means it is possible that the Sen mean 
of one region increases while the Sen mean for the other regions remains 
the same and the overall Sen mean falls.

This failure to satisfy subgroup consistency can be shown using a simple 
example. Suppose the income vector of society X is x = ($4k, $5k, $6k, $7k, 
$14k, $16k) and the income vectors of two subregions are x' = ($4k, $5k, 
$7k) and x" = ($6k, $14k, $16k). The Sen means of these three income 
vectors are WS(x) = $6.22k, WS(x') = $4.67k, and WS(x") = $9.78k. Now, 
suppose the income vector of society X changes to y = ($3.4k, $6.1k, 
$6k, $6.5k, $14k, $16k) so that the income vector of the fi rst subgroup 
changes to y' = ($3.4k, $6.1k, $6.5k), whereas that of the other subgroup 
remains unaltered such that y" = x". Note that the overall mean income 
and the mean income of both groups remain unchanged. The Sen means 
of the three income vectors become WS(y) = $6.24k, WS(y') = $4.64k, and 
WS(y") = $9.78k. Clearly, the Sen mean of the fi rst subgroup decreases 
while that of the second subgroup remains the same; yet the overall Sen 
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mean goes up. This feature of the Sen mean is inherited by the inequality 
and poverty measures that are based on the Sen mean—the famous Gini 
coeffi cient and the Sen-Shorrocks-Thon index of poverty.

Finally, unlike Atkinson, Sen suggested going beyond the utilitarian 
form. His key nonutilitarian example, the Sen mean, can be viewed as both 
an ede and a general welfare function, because it satisfi es the transfer prin-
ciple. If we denote the Sen ede as EDES(x), then EDES(x) = WS(x).

During our subsequent discussion in this chapter, we will see that these 
fi ve means (arithmetic, geometric, harmonic, Euclidean, and Sen) and their 
various functional forms are often used in the measurement of welfare, 
inequality, and poverty.

Dominance and Unanimity

An income standard provides a point estimate of the evaluation of a certain 
income distribution. We might ask one obvious question: Does the direc-
tion of comparison between distributions in a given point in time, or even 
across time, using one income standard continue to hold for other income 
standards? Let us clarify this concern with a few examples.

Consider two income vectors x = ($4k, $5k, $6k, $7k, $14k, $16k) and 
y = ($3k, $5k, $6k, $9k, $14k, $16k). If we use arithmetic mean WA as an 
income standard, then WA(x) = 8.7 and WA(y) = 8.8. Clearly, distribution 
y has higher mean income than distribution x. What if we, instead, use the 
Sen mean? We get WS(x) = 6.22 and WS(y) = 6.19. Thus, according to the 
Sen mean, distribution x has higher welfare than distribution y.

How do the geometric mean and the Euclidean mean of these two 
vectors compare? According to the geometric mean, distribution x has 
higher welfare than distribution y because WG(x) = 7.57 and WG(y) = 7.52. 
According to the Euclidean mean, distribution y has higher welfare than 
distribution x because WE(x) = 9.81 and WE(y) = 10.02. What we see from 
these comparisons is that different income standards rank two distributions 
differently.

Are there situations when the various income standards agree with each 
other? This question leads to a discussion of dominance and unanimity. If 
there is a situation where we fi nd a dominance relation holding between 
two distributions, then there is no need to use different income standards to 
evaluate that situation because all income standards would agree. If there is 
no unanimous relation, then certain curves may help in understanding the 
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source of ambiguity. Thus, conducting a dominance analysis that is based on 
these curves should be the fi rst step in welfare comparison.

A second important motivation for dominance analysis might be focus, 
or an identifi ed concern with different parts of the distribution. Has the 
rapid growth for the higher-income group been matched by growth of the 
middle-income group or the lower-income group? We spend some time in 
this subsection fi nding answers to these questions by plotting entire classes 
of income standards using the various curves to be defi ned next. If one curve 
always remains above another curve, then all income standards in that class 
agree in ranking—for example, two income distributions. However, if the 
curves cross, then situations may arise in which different income standards 
in the same class disagree with each other.

A fi rst such curve is the quantile function itself, which simultaneously 
depicts incomes from lowest to highest. When all income quantiles are 
the same, then one income distribution always lies above another income 
distribution. When two distributions never cross, the situation is known as 
fi rst-order stochastic dominance (FSD). An income distribution x fi rst order 
stochastically dominates another distribution y, denoted by x FSD y, if and 
only if (a) no portion of x’s quantile function lies below y’s quantile func-
tion and (b) at least some part of x’s quantile function lies above y’s quantile 
function. Let us denote quantile function using the notations introduced 
earlier. So x’s quantile function is denoted by Qx and that of y is denoted by 
Qy. Then, the defi nition of FSD is as follows:

First-Order Stochastic Dominance: Distribution x fi rst order stochasti-
cally dominates another distribution y if and only if Qx(p) ≥ Qy(p) for 
all p in the range [0,100] and Qx(p) > Qy(p) for some p.

The concept of FSD may also be understood in terms of cumulative 
distribution functions. Recall that a quantile function is just an inverse 
of a cdf. Using the notations introduced earlier, we denote the cdf of x by 
Fx and that of y by Fy. The formal defi nition of FSD in terms of cdfs is as 
follows:

First-Order Stochastic Dominance: Distribution x fi rst order 
stochastically dominates another distribution y if and only if Fx(b) ≤ 
Fy(b) for all b in the range [0, ∞] and Fx(b) < Fy(b) for some b.
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FSD ensures higher welfare according to every utilitarian welfare func-
tion with identical, increasing utility functions. The robustness implied by 
an unambiguous comparison of quantile functions extends to all income stan-
dards and all symmetric welfare functions for which “more is better.” However, 
if the resulting curves cross, the fi nal judgment is contingent on which income 
standard is selected. Even in this case, the quantile function can be helpful in 
identifying the winning and losing portions of the distribution.

Figure 2.7 depicts the situation where x FSD y. Panel a shows the FSD 
by quantile functions, and panel b shows the FSD by cdfs. In panel a, the 
 quantile function of x lies completely above that of y, which means that 
every quantile income of distribution x is larger than the corresponding 
quantile income of distribution y, so x FSD y. The same argument applies to 
the cdfs in panel b, where the cdf of x lies to the right of y. Later, we will fi nd 
the concept of FSD that is based on cdfs useful, especially in poverty analysis.

The generalized Lorenz (GL) curve is a second curve that is useful for 
dominance analysis. The generalized Lorenz curve graphs the area under the 
quantile function up to each percent p of the population. Thus, any point 
on a generalized Lorenz curve is the cumulative mean income held by the 
bottom p percent of the population. We denote the generalized Lorenz func-
tion of distribution x by GLx, and that for the p percent of the population 
by GLx(p). By construction, for income distribution x, GLx(100) = WA(x) 
and GLx (0) = 0.

Figure 2.7: First-Or der Stochastic Dominance Using Quantile Functions and Cumulative 
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Figure 2.8 describes the construction of a generalized Lorenz curve from 
a quantile function of a fi ve-person income vector x = ($10k, $15k, $20k, 
$25k, $30k). There are fi ve percentiles: 20th, 40th, 60th, 80th, and 100th. In 
panel a, we outline the quantile function of x, Qx. In panel b, we report the 
generalized Lorenz curve of x, GLx. The mean of distribution x is WA(x) = 20. 
A point on the generalized Lorenz curve denotes the area underneath the 
quantile function for the corresponding percentile of the population. Up to 
the 20th percentile of the population, the area under Qx is the area A.

In panel b, the corresponding value of GLx for the 20th percentile of the 
population is denoted by point I. Thus, the value at point I is A/100 = 10 × 
20/100 = 2. Similarly, the value of GLx for the 40th percentile of the popula-
tion is denoted by point II, and the value at point II is (A+B)/100 = (10+15) 
× 20/100 = 5. Repeating this approach, we fi nd that the value of GLx for 
the 100th percentile of the population is denoted by point V, and the 
value at point V is (A + B + C + D + E)/100 = (10 + 15 + 20 + 25 + 30) 
× 20/100 = 20. Note that the value at point V is the same as the mean of 
distribution x, WA(x).

The generalized Lorenz curve is closely linked with lower partial means 
(see Shorrocks 1983). Recall from our earlier discussion that the lower 
partial mean for a certain percentile of population p is the area underneath 

Figure 2.8: Quantile Function and Generalized Lorenz  Curve
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the quantile function divided by the percentile itself. Thus, the height of 
the generalized Lorenz curve at any percentile of population p is the lower 
partial mean times p itself, because the height of the generalized mean is the 
area underneath the quantile function at corresponding percentile p, that is, 
GLx(p) = pWLPM(x; p). If income distribution x has a large enough sample 
size, the generalized Lorenz curve takes a form similar to the one described 
in fi gure 2.9.

The horizontal axis in fi gure 2.9 shows the population share, and the ver-
tical axis denotes the height of the generalized Lorenz curve by income. The 
generalized Lorenz curve for distribution x is denoted by GLx. The maximum 
height of GLx is WA(x). The height of GLx for the 50th percentile of the 
population is GLx(0.5).

If th e total income in distribution x is distributed equally across all 
people in the society and distribution y is obtained, then the generalized 
Lorenz curve GLy becomes a straight line. The maximum height of GLy is 
also WA(x), because redistribution of incomes does not change the mean 
income. Notice that the height of GLy is higher than the height of GLx 
for every percentile p. This implies that every partial mean of distribution 
y is larger than the corresponding partial mean of distribution x. Thus, two 
generalized Lorenz curves of this sort show a dominance relation between two 
distributions in terms of partial means.

Figure 2.9: Generalized Lorenz Curve
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All partial means agree that distribution y has higher welfare than dis-
tribution x. Similarly, if there is another distribution x' whose generalized 
Lorenz curve, GLx', lies completely below GLx (also shown in fi gure 2.9), 
then all partial means agree that distribution x has higher welfare than dis-
tribution x'. The heights of the generalized Lorenz curves for distributions 
y, x, and x' at the 50th percentile are GLy(50), GLx(50), and GLy'(50), 
respectively. The generalized Lorenz curve represents second-order stochas-
tic dominance, which signals higher welfare according to every utilitarian 
welfare function with identical and increasing utility function exhibiting 
diminishing marginal utility. Example 2.4 provides a practical illustration of 
generalized Lorenz calculations. The generalized Lorenz curve is also closely 
related to the Sen mean. For distribution x, the Sen mean, WS(x), is twice 
the area underneath GLx.

Example 2.4: Suppose per capita income in India is Rs 25,000. If only 
3 percent of this mean income is received by the poorest 20 percent 
of the population, then GLInd(20) = Rs 750.

Suppose incomes in India were redistributed, thereby keeping 
the average income unaltered so that everyone in India has identical 
income. Let us denote this income distribution by y. Then the 
cumulative average income received by the poorest 20 percent of the 
population is 20 percent and GLy(20) = Rs 5,000. Thus, GLy(20) –  
GLInd(20) = Rs 5,000 – Rs 750 = Rs 4,250. The loss of welfare 
because of unequal distribution of income for the poorest 20 percent 
of the population is Rs 4,250. In relative terms, the loss of welfare is 
4,250/5,000 = 85 percent.

However, note that the loss presented in terms of the height of the 
generalized Lorenz curve is not the potential loss in the mean income 
of the poorest 20 percent of the population. The mean income of the 
poorest 20 percent of the population is GLInd(20)/0.2 = Rs 3,750.

Had income been equally distributed, the mean income of the 
poorest 20 percent would have been Rs 25,000. In that scenario, the 
potential loss of mean income is Rs 21,250. But in a relative sense, 
the percentage loss in mean income is 25,205/25,000 = 85 percent, 
which is the same as the percentage loss in terms of the height of the 
generalized Lorenz curve. In fact, the percentage loss of welfare using 
the height of the generalized Lorenz curve is always the same as the 
percentage loss of mean income of that percentile.
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Finally, a third curve depicts the general mean levels as parameter a varies. 
We call this curve a general mean curve. This curve has already been outlined 
in fi gure 2.6, where it is increasing in α; tends to the minimum income for 
very low a ; rises through the harmonic, geometric, arithmetic, and Euclidean 
means; and tends toward the maximum income as α becomes very large.

Why is this curve useful? At the beginning of this subsection, an example 
showed that different generalized means may rank an income distribution 
differently. So the general mean curve is useful for determining (a) whether 
a given comparison of general means is robust to the choice of any income 
standard from the entire class of general means, and, if not, (b) which of the 
income standards is higher or lower.

General mean curves are also related to the quantile function and the 
generalized Lorenz curve. A higher quantile function will always yield a 
higher general mean curve, and a higher generalized Lorenz curve will raise 
the general mean curve for a < 1, or the general means that favor the low 
incomes. The general mean curve concept will be particularly relevant to 
our later discussions of Atkinson’s inequality measure.

Growth Curves

Some analyses go beyond the ordinal question (Which distribution is 
larger?) to consider the cardinal question: How much larger in percentage 
terms is one distribution than another? This question is especially salient 
when the two distributions are associated with the same population at two 
points in time. Thus, the second question follows: At what percentage rate 
did the income standard grow?

The most common and well-known way of understanding growth is by 
the growth of per capita income or mean income. The arithmetic mean is 
the income standard involved in this case. However, the defi ning proper-
ties of an income standard ensure that its rate of growth is a meaningful 
number that can be compared with the growth rates of other income stan-
dards, either for robustness purposes or for an understanding of the quality 
of growth.

As in our use of various curves in dominance analysis, we may also use 
different growth curves to understand how robust the growth of an income 
standard is and to understand whether the growth is of meaningful quality. 
A growth curve depicts the rates of growth across an entire class of income 
standards, in which the standards are ordered from lowest to highest.
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In fact, each of the three dominance curves presented earlier suggests an 
associated growth curve. First, the growth incidence curve assesses how the 
quantile incomes are changing over time. Second, the generalized Lorenz 
growth curve indicates how the lower partial means are changing over time. 
Finally, the general mean growth curve plots the rate of growth of each general 
mean over time against parameter a. In the remainder of this section, we 
discuss the concepts of these different growth curves in greater detail.

Growth Incidence Curve

We start with the growth incidence curve. Consider two income distributions, 
x and y, at two different periods of time, where x is the initial income distri-
bution. The quantile incomes of distribution x and distribution y at percen-
tile p are denoted by WQI(x; p) and WQI(y; p), respectively. The growth of 
quantile income at percentile p is denoted by
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If every quantile registers an increase over time, then gQI(x, y; p) > for 
all p. The curve’s height at p = 50 percent gives the median income’s growth 
rate. Note that no part of this growth curve provides any information about 
the growth of mean income. Varying p allows us to examine whether this 
growth rate is robust to the choice of income standard, or whether the low-
income standards grew at a different rate than the rest.

Figure 2.10 depicts the growth curves of quantile incomes. The vertical 
axis denotes the growth rate of quantile income and the horizontal axis denotes 
the cumulative population share. Suppose there are two societies, X and X'. 
The income distributions of society X at two different points in time are 
x and y, while those of society X' are x' and y'. The dashed growth curve 
gQI(x, y) denotes the quantile income growth rates of society X over time, 
whereas the dotted growth curve gQI(x', y') denotes the quantile income 
growth rates of society X' over time.

Suppose the growth rates of mean income across these two distributions 
are the same and are denoted by g– > 0. Thus, the solid horizontal line at 
g– denotes the growth rate if the growth rate had been the same for all per-
centiles or the cumulative population share.
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What information do these two growth curves provide? Growth between 
x and y is pro-poor in the sense that lower quantile incomes have positive 
growth, whereas the upper quantile incomes have negative growth. Growth 
between x' and y', in contrast, is not pro-poor because lower quantile 
incomes have negative income growth, whereas upper quantile incomes 
have positive growth. In society X, the growth rate of income for the 20th 
percentile is much higher than that of the 40th percentile, as denoted by 
point A and point B, respectively. Note that the growths are higher than the 
mean growth rates. In society X', however, the income growth rate for the 
20th percentile is almost the same as that of the 40th percentile, as denoted 
by point A' and point B', respectively. We will discuss pro-poor growth in 
greater detail in the poverty section of this chapter.

Generalized Lorenz Growth Curve

The next growth curve is the generalized Lorenz growth curve. Consider the 
two income distributions, x and y, used previously. The lower partial means 
of distribution x and distribution y at percentile p are denoted by WLPM
(x; p) and WLPM(y; p), respectively. The growth of partial means at percen-
tile p is denoted by 

Figure 2.10: Growth Incidence Curves 
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If every quantile income registers an increase over time, then gLPM(x, y;  
p) > 0 for all p. Given that GLx(p) = pWLPM(x; p), the growth of the lower 
partial mean at a certain percentile is equal to the growth of the general-
ized Lorenz curve at that percentile. So the height of the generalized Lorenz 
growth curve at p = 20 percent is the rate at which the mean income of the 
lowest 20 percent of the population changed over time.

Unlike the growth incidence curve, this curve provides information 
about the growth rate of mean income, which is the height of the curve at 
p = 100 percent. Again, varying p allows us to examine whether this growth 
rate is robust to the choice of income standard, or whether the low-income 
standards grew at a different rate than that of the rest. If the growth rates of 
the lower-income standards are found to be lower than the mean income, 
then overall growth, indeed, has not been pro-poor. However, if all lesser 
“lower partial means” grow at a faster rate than the higher “lower partial 
means,” then growth is assumed to be pro-poor.

Figure 2.11 de picts the growth curves of lower partial mean incomes. 
The vertical axis denotes the growth rate of lower partial mean income, and 
the horizontal axis denotes the cumulative population share. Following the 
same notations as the growth incidence curve, suppose that there are two 

Figure 2.11: Growth Rate of Lower Partial  Mean Income
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 societies, X and X'. The income distributions of society X at two differ-
ent points in time are x and y, whereas those of society X' are x' and y'. 
The dashed growth curve gLPM(x, y) denotes growth rates of lower partial 
mean income of society X over time, whereas the dotted growth curve 
gLPM(x', y') denotes growth rates of lower partial mean income of society 
X' over time.

Suppose the growth rates of mean income across these two distributions 
are the same and are denoted by g– > 0. Thus, the solid horizontal line at 
g– denotes the growth rate if the growth rate had been the same for all per-
centiles or the cumulative population share.

What information do these two growth curves provide? Growth between 
x and y is pro-poor in the sense that mean incomes of the population’s bot-
tom percentiles have positive growth, whereas mean incomes of the popula-
tion’s upper percentiles have negative growth. Growth between x' and y', in 
contrast, is not pro-poor because mean incomes of the population’s bottom 
percentiles have negative income growth, whereas mean incomes of the 
population’s upper percentiles have positive growth.

In society X, the growth rates of the mean income of the bottom 20th 
percentile of the population and that of the bottom 40th percentile of the 
population are denoted by point C and point D, respectively. In society X', 
however, the growth rate of mean income of the bottom 20th percentile of 
the population and that of the bottom 40th percentile of the population are 
denoted by point C' and point D', respectively. Note that growth of mean 
income is the growth at the 100th percentile income where the two growth 
curves meet because they have been assumed to have the same growth rate 
of mean income.

General Mean Growth Curve

The fi nal of the three growth curves is the general mean growth curve. 
Considering the income distributions x and y discussed previously, we 
denote the general mean of order a of distribution x and distribution y by 
WGM(x; a) and WGM(y; a), respectively. The growth of general mean of 
order a is denoted by 
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When every general mean registers an increase over time, gGM(x,y; a) > 0.  
When a = 1, the curve’s height is the usual mean income growth rate. This 
rate is equal to the growth of the generalized Lorenz growth curve at p = 100 
percent. At a = 0 the curve shows the growth rate for the geometric mean, 
and so forth. As we will see later, each of these growth curves can help 
in understanding the link between growth and change in inequality 
over time.

Figure 2 .12 shows the growth curves of general mean incomes. The verti-
cal axis denotes the growth rate of general mean income, and the horizontal 
axis denotes the values of parameter a. Following the same notations as the 
previous two growth incidence curves, suppose that there are two societies, 
X and X'. Income distributions of society X at two different points in time   
are x and y, whereas those of society X' are x' and y'. The dashed growth 
curve gGM(x, y) denotes the growth rates of general mean income of soci-
ety X over time, whereas the dotted growth curve gGM(x', y') denotes the 
growth rates of general mean income of society X' over time.

Suppose the growth rates of mean income across these two distributions 
are the same and are denoted by g– > 0. Thus, the solid horizontal line at 
g– denotes the growth rate if the growth rate had been the same for all a.

What information do these two growth curves provide? Growth between 
x and y is pro-poor in the sense that general means for lower a, which focus 
more on the lower end of the distribution, have positive growth, whereas 

Figure 2.12: General Mean Growth C urves
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 general means for larger a have negative growth. Growth between x' and y', in 
contrast, is not pro-poor because the general means for lower a have negative 
income growth whereas the general means for larger a have positive growth. 
The mean income growth rates are the heights of the two growth curves at 
a  = 1, which are equal by assumption for this example. Heights at a  = 0 and 
a  = –1 are growth rates of the geometric and harmonic means, respectively.

Inequality Measures

The second aspect of a distribution is spread, which is evaluated using a 
numerical inequality measure, assigning each distribution a number that 
indicates its inequality level. There are two ways of understanding and inter-
preting an income inequality measure. One way is through the properties it 
satisfi es. The other way is by using a fundamental link between inequality 
measures and income standards. We begin with the fi rst approach by out-
lining the desirable properties an inequality measure should satisfy. In this 
section, any inequality measure is denoted by the notation I. Specifi c indices 
are denoted by using corresponding subscripts.

Desirable Properties

An inequality measure should satisfy four basic properties: symmetry, popula-
tion invariance, scale invariance, and the transfer principle. Like income stan-
dards, these properties may be classifi ed into categories. Invariance properties 
leave the inequality measures invariant to certain changes in the dataset, and 
they include symmetry, population invariance, scale invariance, and normaliza-
tion. The normalization property calibrates the measure’s value when there is 
no inequality. Dominance properties cause inequality measures to change in 
a particular direction. Properties in this category include the transfer principle 
and transfer sensitivity. Other properties, such as subgroup consistency and 
additive decomposability, are compositional properties relating subgroups and 
overall inequality levels. Most of these properties are similar in interpreta-
tion to the corresponding properties of income standards. 

The fi rst property, symmetry, requires that switching the income levels of 
two people leaves the evaluation of a society’s inequality unchanged. In other 
words, a person should not be given priority on the basis of his or her identity 
when evaluating a society’s inequality. In more technical terms, it requires 
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the inequality measure of distribution x to be equal to the inequality measure 
of another distribution x' if x' is obtained from x by a permutation of incomes.

For example, recall the three-person income vector x = ($10k, $20k, 
$30k) so that the fi rst, second, and the third persons receive incomes $10k, 
$20k, and $30k, respectively. If the incomes of the fi rst and second persons 
are switched, then the new income vector becomes x' = ($20k, $10k, $30k). 
This new vector x' is said to be obtained from vector x by a permutation of 
incomes. 

Symmetry: If distribution x' is obtained from distribution x by 
permutation of incomes, then I(x') = I(x).

The second property, population invariance, requires that the level of 
inequality within a society is invariant to population size, in the sense that 
a replication of an income vector results in the same inequality level as the 
original sample vector. What is the implication of this property? Consider 
the income vector of society X, x = ($10k, $20k, $30k). Now, suppose three 
more people join the society with the same income distribution so that the 
new income vector of society X is x' = ($10k, $10k, $20k, $20k, $30k, $30k). 
The population invariance property requires that the inequality level in society 
X remain unaltered. This property allows us to compare the inequality level 
across countries and across time with varying population sizes. Furthermore, 
population invariance allows the inequality measure to depend on a distribu-
tion function, which normalizes the population size to one.

Population invariance: If a vector x' is obtained by replicating vector 
x at least once, then I(x') = I(x).

The third property, scale invariance, requires that if an income distribu-
tion is obtained from another distribution by scaling all incomes by the same 
factor, then the inequality level should remain unchanged. For example, 
if everyone’s income in a society is doubled or halved, then the level of 
inequality of the society does not change. The scale invariance property 
ensures that the inequality being measured is a purely relative concept and 
is independent of the distribution’s size.

Scale invariance is analogous to the linear homogeneity property for 
income standards, which ensures that the relative status of every person 
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remains unchanged when compared to the income standard, even after all 
incomes are scaled up or down by the same factor. This similarity supports 
the idea that the relative inequality level remains unchanged.7

Scale Invariance: If distribution x' is obtained from distribution x' 
such that x' = cx, where c > 0, then I(x') = I(x).

The fourth property, normalization, requires that if incomes are the same 
across all people in a society, then no inequality exists within the society 
and the inequality measure should be zero. Normalization is a natural 
property. For example, if the income vector of a three-person society is 
($20k, $20k, $20k), then the inequality measure should be zero. Even if 
everyone’s income increases 10-fold and the new income vector is ($200k, 
$200k, $200k), the inequality measure should still be zero.

Normalization: For the income distribution x = (b, b ,..., b), I(x) = 0.

The fi fth property is the transfer principle, which requires that a regressive 
transfer between two people in a society should increase inequality and a 
progressive transfer between two people should reduce inequality. Regressive 
and progressive transfers were defi ned earlier for income standards.

Transfer Principle: If distribution x' is obtained from distribution x 
by a regressive transfer, then I(x') > I(x). If distribution x" is obtained 
from distribution x by a progressive transfer, then I(x") < I(x).

In inequality measurement, there is also a weaker version of the transfer 
principle, which requires that a regressive transfer between two people in a 
society not decrease inequality and that a progressive transfer between two 
people not increase inequality. Thus, the weaker principle allows the pos-
sibility that the level of inequality may remain unaltered because of progres-
sive or regressive transfers. 

Weak Transfer Principle: If distribution x' is obtained from 
distribution x by a regressive transfer, then I(x') ≥ I(x). If distribution 
x" is obtained from distribution x by a progressive transfer, then 
I(x") ≤ I(x).



84

A Unifi ed Approach to Measuring Poverty and Inequality

The transfer principle requires an inequality measure to decrease if the 
transfer is progressive. However, it does not specify the amount by which 
inequality should fall, and it is not concerned with the part of the distribu-
tion where the transfer is taking place. The same amount may be transferred 
between two poor people or between two rich people. Should the transfer 
have the same effect on the inequality measure no matter where it takes 
place? Consider the four-person income vector x = ($100, $200, $10,000, 
$20,000). First, suppose $20 is transferred from the second person to the 
fi rst person. The post-transfer income vector is x' = ($120, $180, $10,000, 
$20,000). Thus, transferring 10 percent of the second person’s income has 
increased the fi rst person’s income by 20 percent.

Now, suppose instead that the same $20 transfer takes place between the 
third and the fourth person. The post-transfer income vector is x" = ($100, 
$200, $10,020, $19,980), where transferring 0.1 percent of the fourth person’s 
income has increased the third person’s income by 0.2 percent. This transfer 
makes hardly any difference in the large incomes of the two richer people.

It may seem that a transfer of the same amount between two poor people 
and two rich people should not have the same effect on the overall inequal-
ity. However, the sixth property, transfer sensitivity, requires an inequality 
measure be more sensitive to transfers at the lower end of the distribution. In 
other words, this property requires that the inequality measure change more 
if a transfer takes place between two poor people than if the same amount of 
transfer takes place between two rich people the same distance apart. 

Suppose the initial income distribution is x = (x1, x2, x3, x4), where x1 < x2 
< x3 < x4, x2 – x1 = x4 – x3 > 0. Note that the distance between x1 and x2 is the 
same as the distance between x3 and x4. Suppose distribution x' is obtained 
from distribution x by a progressive transfer of amount d < (x2 – x1)/2 between 
x2 and x1, that is,  x' = (x1 + d, x2 – d, x3, x4), and distribution x" is obtained 
from distribution x by a progressive transfer of the same amount d between 
x3 and x4, that is, x" = (x1, x2, x3 + d, x4 – d  ). Thus, the same amount of 
progressive transfer has been made between two poorer people and two richer 
people, who are equally distant from each other. Both x' and x" are more 
equal than x according to the transfer principle, but can we compare x' and 
x"? The answer is yes. In fact, any transfer sensitive inequality measure should 
judge distribution x' as more equal than distribution x". Shorrocks and Foster 
(1987) have reinterpreted the transfer sensitivity property in terms of favor-
able composite transfer (FACT). When a distribution is obtained from another 
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distribution by a progressive transfer at the lower end of a distribution and 
simultaneously by a regressive transfer at the upper end of the same distribu-
tion, such that the variance remains unchanged, then the latter distribution 
is stated to be obtained from the former distribution by FACT. Thus, the 
transfer sensitivity property may be stated as follows:

Transfer Sensitivity: If distribution x' is obtained from distribution x 
by FACT, then I(x') < I(x').

When one distribution is obtained from another distribution by FACT, 
then the corresponding Lorenz curves intersect each other. In this case, the 
transfer principle cannot rank two distributions. However, if a Lorenz curve 
crosses the Lorenz curve of another distribution once from above, and the 
coeffi cient of variation (standard deviation divided by the mean) of the former 
distribution is no higher than that of the latter distribution, then all transfer 
sensitive measures agree that the former distribution has less inequality.8

The seventh property is subgroup consistency, which is conceptually the 
same as the corresponding property for income standards. This property 
requires that if the sizes and means of a subgroup population are fi xed, then 
overall inequality must rise when the inequality level rises in one subgroup 
and does not fall in the rest of the subgroups.

For example, suppose that income vector x with population size N is 
divided into two subgroup vectors: x' with population size N' and x" with 
population size N" such that N' + N" = N. Let a new vector, y, be obtained 
from x with the same population size N, and let its two subgroups be denoted 
by y' with population size N' and y" with population size N". The subgroup 
consistency property can be stated as follows:

Subgroup Consistency: Given that subgroup population sizes and 
subgroup means remain unchanged, if I(y') > I(x') and I(y") ≥ I(x"), 
then I(y) > I(x).

There is a closely related property that is often useful for understanding 
how much of the overall inequality can be attributed to inequality within 
subgroups and how much can be attributed to inequality across subgroups, 
given a collection of population subgroups. For example, the population of 
a country may be divided across various subgroups, such as across rural and 
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urban areas, states, provinces, and other geographic regions; across ethnic 
and religious groups; across genders; or across age groups. One may want to 
evaluate the source of inequality, such as whether overall income inequality 
is due to unequal income distribution within sex or unequal income distri-
bution across sex.

The eighth property is additive decomposability, which requires overall 
inequality to be expressed as a sum of within-group inequality and between-
group inequality. Within-group inequality is a weighted sum of subgroup 
inequalities. Between-group inequality is the inequality level obtained when 
every person within each subgroup receives the subgroup’s mean income. 
Kanbur (2006) discussed the policy signifi cance of this type of inequality 
decomposition. It is often found that the contribution of the between-group 
term is much lower than the within-group term, and, thus, policy priority 
is directed toward ameliorating within-group rather than between-group 
inequality. These types of policy conclusions should be carefully drawn, 
because the lower between-group term may receive much larger social 
weight than its within-group counterpart. Also, the between-group term’s 
share of overall inequality may increase as the number of groups increases. 
How to incorporate these issues into inequality measurement requires fur-
ther research, and solving these issues is beyond the scope of this book. 
However, if the policy interest is in understanding how the between-group 
inequality as a share of total inequality has changed over time for a fi xed 
number of groups, then the decomposability property is very useful.

To formally outline the additive decomposability property, we will use 
two groups to simplify the interpretation, but the defi nition can be extended 
to any number of groups. Suppose the income vector x with population size 
N is divided into two subgroup vectors: x' with population size N' and x" 
with population size N" such that N' + N" = N. Let us denote the means of 
these three vectors by x̄, x̄', and x̄". The additive decomposability property 
can be stated as follows:

Additive Decomposability: If income distribution x is divided into 
two subgroup distributions x' and x", then I(x) = W'I(x') + W"I(x") + 
I(x̄',x̄"), where W' and W" are weights.

The between-group contribution is I(x̄', x̄")/I(x) and the within-group 
contribution is [W' I(x') + W" I(x")]/I(x), as seen in example 2.5.
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Example 2.5: Consider the fi ve-person income vector x = ($10k, $15k, 
$20k, $25k, $30k), which is divided into two subgroups x' = ($10k, 
$30k) and x" = ($15k, $20k, $25k). The mean of x' is x̄' = $20k, and 
the mean of x" is also x̄" = $20k. Let an additively decomposable 
inequality index I be used to estimate the inequality level. The total 
within-group inequality is W'I(x') + W"I(x"). However, there is no 
between-group inequality in this case, because the mean incomes 
of both groups are equal. So the between-group contribution I(x̄', 
x̄")/I(x) is 0.

Inequality and Income Standards

There is a second way of understanding inequality measures: through 
income standards. This, in fact, relies on an intuitive link between inequal-
ity measures and pairs of income standards: a and b. Let a be the smaller 
income standard, and let b be the larger income standard. It is natural 
to measure inequality in terms of the relative distance between a and b, 
such as I = (b − a)/b, or some other increasing function of the ratio b/a. 
Indeed, scale invariance and the weak transfer principle essentially require 
this form for the measure. We will fi nd in our subsequent discussions that 
virtually all inequality measures in common use are based on twin income 
standards.

Commonly Used Inequality Measures

Commonly used inequality measures are mostly related to the fi ve kinds 
of income standards we discussed earlier. The inequality measures that we 
discuss in this section are quantile ratios, partial mean ratios, Gini coeffi cient, 
Atkinson’s class of inequality measures, and generalized entropy measures.

Quantile Ratio

A quantile ratio compares incomes of higher and lower quantile incomes. 
Inequality across quantile incomes provides a useful way to understand 
income dispersion across the distribution. Because no quantile ratio considers 
the entire distribution, this measure is a crude way of presenting inequality.
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For income distribution x, let the quantile income at the pth percentile 
be denoted by WQI(x; p), and let the quantile income at the p'th percentile 
be denoted by WQI(x; p'), such that p > p'. A quantile ratio is commonly 
reported as a ratio of the larger quantile income to the smaller quantile 
income. However, this view leads the values of inequality measures to range 
from one to ∞. This range is not comparable to other inequality measures, 
which commonly range from zero to one. In this book, we formulate the 
quantile ratio in such a way that it ranges from zero to one. The p/p' quantile 
ratio is represented by the following formula: 
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In this case, the quantile income at the pth percentile WQI(x; p) is the 
higher income standard, and the quantile income at the p'th percentile 
WQI(x; p') is the lower income standard.

The higher the quantile ratio, the higher the level of inequality across 
two percentiles of the population in the society. A quantile ratio is zero 
when both the upper and the lower quantile incomes are equal. A quantile 
ratio reaches its maximum value of one when the lower quantile income 
WQI(x; p') is zero. This means that no one in the lower percentile earns 
any income and that the upper quantile income is positive. Note that if all 
people in the society have equal incomes, then any quantile ratio is zero. 
However, a quantile ratio of zero does not necessarily mean that incomes are 
equally distributed across everyone in the society.

The quantile ratios used most often include the 90/10 ratio, 80/20 ratio, 
50/10 ratio, and 90/50 ratio. The 90/10 ratio, for example, captures the dis-
tance between the quantile income at the 90th percentile and the quantile 
income at the pth percentile as a proportion of the quantile income at the 
10th percentile. How should the number IQR(x; 90/10) = 0.9 be interpreted? 
There are, in fact, several ways to interpret the number:

• The number may be directly read as the gap between the lowest 
income of the richest 10 percent and the highest income of the poorest 
10 percent of the population, being 90 percent of the lowest income of 
the richest 10 percent of the population.

• The number may be seen as the highest income of the poorest 
10 percent of the population, being 10 percent (1 − 0.9 = 0.1) of the 
lowest income of the richest 10 percent of the population.
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• The number can be interpreted as the lowest income of the richest 
10 percent of the population, being 10 times (1/(1 – 0.9)) larger 
than the highest income of the poorest 10 percent of the population. 
Similarly, IQR(x; 90/50) = 0.75 implies that the lowest income of the 
richest 10 percent of the population is 1/(1 − 0.75) = 4 times larger 
than the highest income of the poorest 50 percent of the population.

Quantile ratios may be classifi ed into three categories: upper end quantile 
ratio, lower end quantile ratio, and mixed quantile ratio. The fi rst two categories 
capture inequality within any one side of the median, and the third category 
captures inequality in one side of the median versus that of the other side of 
the median. For example, IQR(x; 90/50) is an upper end quantile ratio, and 
IQR(x; 50/10) is a lower end quantile ratio, whereas IQR(x; 90/10) is a mixed 
quantile ratio.

What properties does a quantile ratio satisfy? A quantile ratio, as defi ned 
earlier, satisfi es symmetry, normalization, population invariance, and scale 
invariance. Thus, a quantile ratio satisfi es all four invariance properties. 
What about the dominance properties? It turns out that a quantile ratio 
satisfi es none of the dominance properties.

The following example shows that a quantile ratio does not satisfy the weak 
transfer principle. Suppose the highest income of the poorest 10 percent of 
the population is $100 and the lowest income of the richest 10 percent of the 
population is $2,000. Then IQR(x; 90/10) = ($2,000 −  $100)/$2,000 = 0.95. 
Now, suppose that a regressive transfer takes place between the poorest 
person in the society and the richest person among the poorest 10 percent 
of the population such that the highest income in that group increases to 
$120. Then the post-transfer quantile ratio is IQR(x; 90/10) = ($2,000 − 
$120)/$2,000 = 0.94.

Therefore, the quantile ratio shows a decrease in inequality even when 
a regressive transfer has taken place. If a quantile ratio does not satisfy the 
weak transfer principle, then it cannot satisfy its stronger version—the 
transfer principle, or transfer sensitivity. The quantile ratios are not addi-
tively decomposable and also do not satisfy subgroup consistency.

Partial Mean Ratio

A partial mean ratio is an inequality measure comparing an upper partial 
mean and a lower partial mean. Like quantile ratios, no partial mean ratio 
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considers the entire income distribution; thus, it is also a crude way of 
understanding inequality.

For income distribution x, let the upper partial mean for percentile p 
be denoted by WUPM(x; p) and the lower partial mean for percentile p' be 
denoted by WLPM(x; p'). A partial mean ratio is also commonly reported 
as a ratio of both partial means ranging from one to ∞. However, as with 
the quantile ratio, we formulate the partial mean ratio in such a way that 
it ranges from zero to one. The p/p' partial mean ratio is represented by the 
following formula: 
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The higher the partial mean ratio, the higher the level of inequality 
across two percentiles of a society’s population. A partial mean ratio is 
zero when both upper and lower partial mean incomes are equal. A quan-
tile ratio reaches its maximum value of one when the lower partial mean 
income WLPM(x; p') is zero and the upper partial mean income is positive. 
Note that if all people in the society have equal incomes, then any partial 
mean ratio is zero. However, a partial mean ratio of zero does not necessar ily 
imply that incomes are equally distributed across all people in the society.

The most well-known partial mean ratio was devised by Simon Kuznets 
and is known as the Kuznets ratio. It is based on two income standards: the 
mean of the poorest 20 percent of the population and the mean of the rich-
est 40 percent of the population. Using our formulation, the Kuznets ratio 
equivalent inequality measure of distribution x is denoted by IPMR(x; 20/40). 
How should the number IPMR(x; 20/40) = 0.8 be interpreted? Again, there 
are several ways to interpret this measure:

• The difference in mean income between the richest 20 percent of 
the population and the poorest 40 percent of the population is 
80 percent of the mean income of the richest 20 percent of the 
population.

• The mean income of the poorest 40 percent of the population is 
(1 − 0.8) = 0.2 or 20 percent or one-fi fth of the mean income of the 
richest 20 percent of the population.

• The mean income of the richest 20 percent of the population is 
1/(1 − 0.8) = 5 times larger than the mean income of the poorest 
40 percent of the population.
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What properties does a partial mean ratio satisfy? A partial mean ratio, 
as defi ned in equation (2.17), satisfi es symmetry, normalization, population 
invariance, and scale invariance. Thus, a partial mean ratio satisfi es all four 
invariance properties. What about the dominance properties? A quantile 
ratio satisfi es the weak transfer principle but does not satisfy the transfer 
principle, transfer sensitivity, and subgroup consistency. It does not satisfy 
the transfer principle because some regressive and progressive transfers may 
leave the inequality measure unchanged, since a partial mean ratio does not 
consider the entire income distribution.

Atkinson’s Class of Inequality Measures

Atkinson’s class of inequality measures, developed by Sir Anthony Atkinson, 
is based on general means (see Atkinson 1970). All inequality measures in 
this family are constructed by comparing the arithmetic mean and another 
income standard from the family of general means. Recall that each mea-
sure’s formulation in the general means family depends on a parameter 
denoted by a, which can take any value between − ∞ and + ∞.

In the Atkinson family of inequality measures, a is called the inequality 
aversion parameter. The lower the value of a, the higher a society’s aver-
sion toward inequality. In other words, the more averse a society is toward 
inequality across the population, the more emphasis it gives to lower 
incomes in the distribution by choosing a lower value of a. The Atkinson 
class of inequality measures for a < 1 may be expressed as
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The Atkinson index of order a is the difference between the arithmetic 
mean and the general mean of order a divided by the arithmetic mean. Any 
Atkinson index lies between zero and one, and inequality increases as the 
index moves from zero to one. The minimum level of inequality, zero, is 
obtained when the total income is equally distributed across everyone in the 
society. Unlike the quantile ratios and the partial mean ratios, if IA(x; a) = 0 
for any a < 1, then, by implication, the total income in the society is equally 
distributed. This is because any inequality measure in this family is con-
structed by considering the entire distribution.
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We already know from our discussion of income standards that the value 
of general means falls as a falls and vice versa. As a decreases, the distance 
between WA(x) and WGM(x; a) increases, implying that IA increases as a 
falls for a particular income distribution. Among the entire class of mea-
sures, three are used more frequently: a  = 0, a  = –1, and a  = –2. For a  = 0, 
the general mean takes the form of the geometric mean. The corresponding 
Atkinson’s inequality measure for distribution x is expressed as
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For a = –1, the general mean is known as the harmonic mean. The cor-
responding Atkinson’s inequality measure for distribution x is expressed as
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For a = –2, the general mean has no such name, and we will call it 
simply WGM(X; –2). The corresponding Atkinson’s inequality measure for 
distribution x is expressed as
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Following the relationship between the Atkinson’s class of inequality 
measures and parameter a, we can state that IA(x; −2) < IA(x; −1) < IA(x; 0) 
unless all incomes in distribution x are equal (see example 2.6).

Example 2.6: Consider the income vector x = ($2k, $4k, $8k, $10k) 
used previously in the general means example. The arithmetic mean 
is WA(x) = $6k, the geometric mean is WG(x) = $5.03k, the harmonic 
mean is WH(x) = $4.10k, and WGM(x; –2) = $3.44k.

Thus, 
IA(x; 0) = ($6k − $5.03k)/$6k = 0.162.  
IA(x; −1) = ($6k − $4.10k)/$6k = 0.317. 
IA(x; −2) = ($6k − $3.44k)/$6k = 0.427.

What is the interpretation of the number IA(x; 0) = 0.162? First, note 
that IA(x; 0) is based on two income standards: the arithmetic mean of x 
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and the geometric mean of x. The arithmetic mean represents the level 
of welfare obtained when the overall income is distributed equally across 
everyone in the society. This is an ideal situation when there is no inequality 
in the society.

The geometric mean, in contrast, is the equally distributed equivalent 
(ede) income, which, if received by everyone in the society, would yield 
the same welfare level as in x for the degree of inequality aversion a = 0. So 
IA(x; 0) = 0.162 implies that the loss of welfare because of inequality in dis-
tribution x is 16.2 percent of what the welfare level would be if the overall 
income had been equally distributed.

Suppose the society becomes more averse to inequality and a is reduced 
to −1. In this case, the equally distributed equivalent income is the har-
monic mean of x. The loss of total welfare because of unequal distribution 
increases from 16.2 percent to 31.7 percent. Likewise, the percentage loss 
of welfare would increase to 42.7 percent if the society became even more 
averse to inequality and a fell to −2.

What properties does any index in this family satisfy? Any measure in 
this family satisfi es all four invariance properties: symmetry, population invari-
ance, scale invariance, and normalization. In addition, unlike the quantile 
ratios and the partial mean ratios, measures in this class satisfy the transfer 
principle, transfer sensitivity, and subgroup consistency.

If distribution x' is obtained from distribution x by at least one regres-
sive transfer, then the level of inequality in x' is strictly higher than that 
in x. Furthermore, if transfers take place between poor people, then the 
inequality measure changes more than if the same amounts of transfers take 
place among rich people. Finally, because these measures satisfy subgroup 
consistency, they do not lead to any inconsistent results while decomposing 
across subgroups. If inequality in certain subgroups increases while inequal-
ity in the others does not fall, then overall inequality increases. However, 
measures in this class are not additively decomposable.

Gini Coeffi cient

The Gini coeffi cient, developed by Italian statistician Corrado Gini (1912), 
is the most commonly used inequality measure. It measures the average dif-
ference between pairs of incomes in a distribution, relative to the distribu-
tion’s mean. The most common formulation of the Gini coeffi cient for the 
distribution x is
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Note that equation (2.22) may be broken into two components: WA(x) 
(the mean of the distribution) and (∑N

n=1∑N
n'=1|xn – xn'|)/2N2 (the average 

difference between pairs of incomes). The second component is divided 
by its number of elements, 2N2. There are 2N2 elements because each ele-
ment in x is compared with another element in x including itself twice. 
This original Gini coeffi cient formula can be simplifi ed further. The second 
component of the Gini coeffi cient can be written as
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where WS(x) is the Sen mean of distribution x. Therefore, the Gini coeffi cient 
may be simply formulated by using the arithmetic mean and the Sen mean. 
Like any measure in Atkinson’s class, the Gini coeffi cient can be expressed as
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Thus, the Gini coeffi cient is the difference between the arithmetic 
mean and the Sen mean divided by the arithmetic mean. The coef-
fi cient lies between zero and one, and inequality increases as the index 
moves from zero to one. The minimum inequality level, zero, is obtained 
when income is equally distributed across everyone in the society. 
Like Atkinson’s measures, if IGini(x) = 0, then, by implication, income in 
the society is equally distributed. Again, this is because any inequality 
measure in this family is constructed by considering the entire distribution 
(see example 2.7).

What is the interpretation of IGini(x) = 0.292? First, IGini(x) is based on 
two income standards: the arithmetic mean of x and the Sen mean of x. 
The arithmetic mean represents the level of welfare obtained when the 
overall income is distributed equally across all people in the society. This is 
an ideal situation when there is no inequality in the society. The Sen mean, 
in contrast, is an ede income, which, if received by everyone in the society, 
would yield the same welfare level as in x. So IGini(x) = 0.292 implies that 
the loss of welfare because of inequality in distribution x is 29.2 percent of 
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the welfare level if overall income had been equally distributed. We will see 
later that the Gini coeffi cient has an interesting relationship with the well-
known Lorenz curve.

The Gini coeffi cient satisfi es all invariance properties: symmetry, population 
invariance, scale invariance, and normalization. In addition, it satisfi es the transfer 
principle. If distribution x' is obtained from distribution x by at least one regres-
sive transfer, then the level of inequality in x' is strictly higher than that in x. 
However, the Gini coeffi cient is neither transfer sensitive nor subgroup con-
sistent. It is not transfer sensitive because the Gini coeffi cient changes by the 
same amount whether transfers take place between poor people or between 
rich people. That the Gini coeffi cient is not subgroup consistent means that if 
the inequality in some subgroups increases while inequality in other subgroups 
does not fall, then the overall inequality may register a decrease.

The following is an example showing that the Gini coeffi cient is neither 
transfer sensitive nor subgroup consistent. Consider the vector x = ($4k, 
$5k, $6k, $7k, $14k, $16k). If a progressive transfer of $0.5k takes place 
between the fi rst person and the second person, then x' = ($4.5k, $4.5k, $6k, 
$7k, $14k, $16k). If a progressive transfer of the same amount takes place 

Example 2.7: Consider the income vector x = ($2k, $4k, $8k, $10k) 
that we used previously. First, we calculate the Gini coeffi cient using 
the formulation in equation (2.22). It can be easily verifi ed that 
WA(x) = $6k. The second component is

1
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Thus, IGini(x) = 1.75/6 = 0.292.
Next, we calculate the Gini coeffi cient using equation (2.24). The 

Sen mean of distribution x is WS(x) = $4.25k. Thus, IGini(x) = ($6k − 
$4.25k)/$6k = 1.75/6 = 0.292.
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between the two richer people, then x" = ($4k, $5k, $6.5k, $6.5k, $14k, 
$16k). As a result, IGini(x') = IGini(x") = 0.279. Thus, the Gini coeffi cient 
cannot distinguish between these two transfers.

The next example shows that the Gini coeffi cient is not subgroup consis-
tent. We use the same example that we used to show that the Sen mean does 
not satisfy subgroup consistency. The original income vector x = ($4k, $5k, 
$6k, $7k, $14k, $16k) becomes, over time, y = ($3.4k, $6.1k, $6k, $6.5k, 
$14k, $16k). The income vector of the fi rst subgroup x' = ($4k, $5k, $7k) 
becomes y' = ($3.4k, $6.1k, $6.5k), whereas the income vector of the sec-
ond subgroup remains unaltered. The Sen mean of the fi rst group falls from 
WS(x') = $4.67k to WS(y') = $4.64k, whereas the mean income remains 
unchanged at WA(x') = WA(y') = $5.33k. So the inequality of the fi rst 
group increases from IGini(x') = 0.125 to IGini(y') = 0.129. What happens 
to the overall inequality? It turns out that the overall Sen mean increases 
from WS(x) = $6.22k to WS(y) = $6.24k, whereas the overall mean income 
remains unchanged at WA(x) = WA(y) = $8.67k. The overall inequality 
decreases from IGini(x) = 0.282 to IGini(y) = 0.280.

However, unlike the Atkinson class of measures, the Gini coeffi cient is 
additively decomposable, but with an added residual term. If distribution x is 
divided into population subgroups x' with population size N' and x" with 
population size N", then the decomposition formula of the Gini coeffi cient is

 IGini(x) = w'IGini(x')+w" IGini(x") + IGini(x–', x– ") – residual, (2.25)

where the weights are w' = (N'/N)2(x̄'/x̄) and w" = (N"/N)2(x̄"/x̄). Note, 
however, that the weights may not sum to one. The residual term is not zero 
if and only if the groups’ income ranges overlap. If we consider the example 
above, where the income vector x = ($4k, $5k, $6k, $7k, $14k, $16k) is 
divided into two subgroup vectors: x' = ($4k, $5k, $7k) and x" = ($6k, $14k, 
$16k). These vectors overlap as $7k > $6k. Thus, the residual term will 
not vanish. However, if the two subgroups were x' = ($4k, $5k, $6k) and 
x" = ($7k, $14k, $16k), then the residual term would be zero.9

Generalized Entropy Measures

The fi nal inequality measures we consider are in the class of generalized 
entropy measures. Two well-known Theil measures are also in this class. The 
common formula for the generalized entropy measures of order a for any 
distribution x is
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At fi rst glance, the formula above looks complicated. However, measures 
in this class are closely related to general means. Every index in this class, 
except one, can be expressed as a function of the arithmetic mean and the 
general mean of order a. For a  ≠ 0, 1, the class of generalized entropy mea-
sures can be written as
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where we replace the term x̄ by WA(x) (the arithmetic mean), and where 
WGM(x; a) denotes the general mean of order a. Thus, a generalized 
entropy measure for any a  ≠ 0,1 may be easily calculated once we know the 
arithmetic mean and the general mean of order a.

For a  = 1, the generalized entropy is Theil’s fi rst measure of inequality 
and can be written as
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This is the only measure in this class that cannot be expressed as a function 
of general means and does not have a natural twin-standards representation.

For a = 0, the generalized entropy index is Theil’s second measure of 
inequality, which is also known as the mean logarithmic deviation and can be 
expressed as a function of the arithmetic mean, WA(x), and the geometric 
mean, WG(x), as follows:
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Besides the two Theil measures, the other commonly used measure in 
the entropy class is the index for a  = 2, which is closely related to the coef-
fi cient of variation (CV). The CV is the ratio of the standard deviation and 
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mean. For a  = 2, the general entropy measure is half the CV squared and 
can be expressed as

 

W x W x

W x

Var x CVE A

A

( ) ( )

( )

( )1

2

1

2 2

2 2

2

2

I xGE( ; )2 =
−

= = ,
W⎢⎣ ⎢⎣

⎢⎣ ⎢⎣ W xA ( )
2

⎢⎣ ⎢⎣

⎢⎣ ⎢⎣
 (2.30)

where Var(x) is the variance of the distribution x, which is the square 
of its standard deviation. In equation (2.29), WE(x) is the Euclidean 
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⎢⎣ ⎢⎣  is the variance of x (see example 2.8).

Example 2.8: Consider the income vector x = ($2k, $4k, $8k, $10k) 
that we used in the general means example. The arithmetic mean 
is WA(x) = $6k, the geometric mean is WG(x) = $5.03k, and the 
Euclidean mean is WE(x) = $6.78k.

We now calculate the two Theil inequality measures and the 
squared coeffi cient of variation:

IGE(x; 2)  = ([WE(x)]2 − [WA(x)]2)/(2[WA(x)2] = (6.782 − 62)/(2 × 62) 
= 0.279.

IT2(x) = ln[WA(x)/WG(x)] = ln [$6k/$5.03k] = 0.176.

The calculation of Theil’s fi rst measure is not as straightforward 
as that of the previous two measures. However, it can be calculated 
using the following steps. First, create a new vector from vector x by 
dividing every element by the mean of x as (2/6, 4/6, 8/6, 10/6). Then
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Having introduced the measures in the generalized entropy class, now 
we try to understand their behavior. First, what is the range of any measure 
in this class? The lower bound of any measure in this class is zero, which is 
obtained when incomes in a society are equally distributed across all people. 
However, unlike the Atkinson’s measures and the Gini coeffi cient, general-
ized entropy measures may not necessarily be bounded above by one.

Next, how do the measures in this class relate to the parameter? There 
are, in fact, three distinct ranges: a lower range a  < 1, an upper range a > 1,  
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and a limiting case where a  = 1. For the lower range, a  < 1, measures in this 
class are monotonic transformations of the Atkinson’s class of measures and 
can be written as
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where IA(x; a) is the Atkinson’s inequality measure for parameter a. 
For the range a < 1, the entropy measures behave the same way as the 
Atkinson’s measures. Over the range a > 1, the general mean places 
greater weight on higher incomes and yields a representative income that 
is typically higher than the mean income. An example is the squared coef-
fi cient of variation.

All measures in the generalized entropy class satisfy the invariance 
properties: symmetry, normalization, population invariance, and scale invari-
ance. Furthermore, they all satisfy the transfer principle and subgroup con-
sistency. However, transfer sensitivity is satisfi ed only by the measures in 
this class with a < 2. Measure IGE(x; 2) is, in fact, transfer neutral like 
the Gini coeffi cient. It turns out that the generalized entropy measures 
are the only inequality measures that satisfy the usual form of additive 
decomposability (see Shorrocks 1980). If distribution x is divided into 
two population subgroups, x' with population size N' and x" with popula-
tion size N", then the decomposition formula of the generalized entropy 
measure for a ≠ 0,1 is

 IGE(x; a) = w'IGE(x'; a) + w"IGE(x"; a) + IGE(x̄', x̄"; a), (2.32)

where the weights are w' = (N'/N)(x̄'/x̄)a and w" = (N"/N)(x̄"/x̄)a. For 
example, when a = 2, the weights are w' = (N'/N)(x̄'/x̄)2 and w" = (N"/N)
(x̄"/x̄)2.

Note that the weights may not always sum to one. However, for the two 
Theil measures, the weights do sum to one. The fi rst Theil measure can be 
decomposed as

 IT1(x) = w'IT1(x') + w"IT1(x") + IT1(x̄', x̄"), (2.33)

where the weights are w' = x̄'/x̄ and w" = x̄"/x̄. Although it is diffi cult to 
get an intuitive interpretation of the fi rst Theil measure, the additive 
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decomposability property makes the fi rst Theil measure useful in under-
standing within-group and between-group inequalities. The second Theil 
measure can be decomposed as

 IT2(x) = w'IT2(x') + w"IT2(x") + IT2(x̄', x̄"), (2.34)

where the weights are w' = (N'/N) and w" = (N"/N).

Inequality and Welfare

The Gini coeffi cient and the inequality measures in Atkinson’s family share 
a social welfare interpretation. As we have already discussed, they can be 
expressed as I = (x̄ − a)/x̄, where x̄ is the mean income of the distribution 
x and a is an income standard that can be viewed as a welfare function 
(satisfying the weak transfer principle). Note that the distribution in which 
everyone has the mean income has the highest level of welfare among all 
distributions with the same total income, and the distribution’s measured 
welfare level is just the mean itself. This fi nding results from the normaliza-
tion property of income standards.

Thus, the mean WA(x) = x̄ is the maximum value that the welfare func-
tion can take over all income distributions of the same total income. When 
incomes are all equal, a = WA(x) and inequality is zero. When the actual 
welfare level a falls below the maximum welfare level WA(x), the percentage 
welfare loss I = (WA(x) − a)/WA(x) is used as a measure of inequality. This 
is the welfare interpretation of both the Gini coeffi cient and the Atkinson’s 
class of measures.

The simple structure of these measures allows us to express the welfare 
function in terms of the mean income and the inequality measure. A quick 
rearrangement leads to a = WA(x)(1 – I), which can be reinterpreted as 
saying that the welfare function a can be viewed as an inequality-adjusted 
mean. If there is no inequality in the distribution, then (1 – I) = 1 and 
a = WA(x). If the inequality level is I > 0, then the welfare level is obtained 
by discounting the mean income by (1 – I) < 0.

For example, if we take I to be the Gini coeffi cient, IGini(x), then the Sen 
mean (or Sen welfare function) can be obtained by multiplying the mean by 
[1 – IGini(x)], that is, WS(x) = WA(x)[1 – IGini(x)]. Similarly, if we take I to 
be the Atkinson’s measure with parameter a = 0, IA(x; 0), then the welfare 
function is the geometric mean, and the geometric mean can be obtained by 
multiplying the mean by [1 – IA(x; 0)], that is, WG(x) = WA(x)[1 – IA(x; 0)].
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Dominance and Unanimity

An inequality measure estimates, with a single number, the inequality level 
in a society. A question may naturally arise: Do all inequality measures 
compare two income distributions in the same way? In other words, if an 
inequality measure evaluates income distribution x to be more equal than 
distribution y, would another inequality measure evaluate distributions x 
and y in the same way? The answer depends on the two inequality measures 
we use for evaluation. Not all inequality measures evaluate various distribu-
tions in the same manner.

We can clarify this concern with an example. Consider the two income 
vectors x = ($4k, $5k, $6k, $7k, $14k, $16k) and y = ($3.4k, $6.1k, $6k, 
$6.5k, $14k, $16k). These two vectors have the same mean. The Gini coef-
fi cient indicates that the inequality level in x is 0.282, which is higher than 
the inequality in y (0.280). However, the Atkinson’s measure that is based 
on the geometric mean shows that the inequality level in x is 0.127, which is 
lower than the level of inequality in y (0.132). Therefore, different inequal-
ity measures may disagree in different situations.

Is there any condition in which different inequality measures agree with 
each other? The answer is yes. Inequality measures that satisfy the four 
basic properties—symmetry, population invariance, scale invariance, and 
the weak transfer principle—agree with each other when Lorenz dominance 
holds between two distributions. To understand Lorenz dominance, we need 
to understand the Lorenz curve.

The Lorenz curve of an income distribution shows the proportion of total 
income held by the poorest p percent of the population.10 We denote the 
Lorenz curve of distribution x by Lx. Then Lx(p) is the share of total income 
held by the poorest p percent of the population. Indeed, Lx(100) = 100 
percent and Lx(0) = 0 percent. Suppose the total income of Nigeria is N25 
trillion and only N1 trillion is received by the poorest 20 percent of the 
population. Then LNig(20) = 4 percent. Suppose that income in Nigeria 
is redistributed, keeping the total income unaltered, so that everyone has 
identical income. Let us denote the equal income distribution by y. Then 
the percentage of total income enjoyed by the poorest 20 percent of the 
population is 20 percent, and Ly(20) = 20 percent.

In fi gure 2.13, the horizontal axis denotes the cumulative share of the 
population (p), and the vertical axis shows the share of total income. 
Note that the lowest and the highest values for both axes are 0 and 100, 
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 respectively. For income distribution x, Lx represents its Lorenz curve, 
denoted by the dotted curve. Following the example of Nigeria, Lx(20) = 4 
percent, which is the height of the curve Lx at point C.

If distribution y is obtained from distribution x by distributing income 
equally across the population, then the Lorenz curve becomes a 45-degree 
straight line, Ly (the solid line in fi gure 2.13). In this case, the share of the 
population’s bottom 20 percent in distribution y is Ly(20) = 20 percent. This 
is obtained at point A on Lorenz curve Ly.

Now, suppose the income distribution in Nigeria improves over time 
and the new income distribution is denoted by x'. The Lorenz curve for x' is 
denoted by the dashed curve Lx' in fi gure 2.13. The share of the bottom 20 
percent in the total income increases from 4 percent to 14 percent. This is 
shown at point B on the Lorenz curve Lx'.

Notice that every portion of Lorenz curve Lx' lies above tha t of Lorenz 
curve Lx. This is what we mean by Lorenz dominance: the income share 
of every cumulative population share in x' is higher than that in x. Thus, 
distribution x' Lorenz dominates distribution x'. Similarly, distribution x 
Lorenz dominates both distributions x and x'.

Any inequality measure satisfying the four basic properties—symmetry, 
population invariance, scale invariance, and the weak transfer principle—
would evaluate distribution y as more equal than distributions x and x' and 
distribution x' as more equal than distribution x. Thus, before comparing 
distributions using different inequality measures, the distributions’ Lorenz 

Figure 2.13: Lorenz Curve
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curves should be compared. If one distribution’s Lorenz curve dominates 
that of another distribution, then all inequality measures satisfying these 
four basic properties would consider the former distribution to be more equal 
than the latter. 

Well-known inequality measures satisfying these four basic properties are 
the Gini coeffi cient, measures in the Atkinson’s family, measures in the gen-
eralized entropy family, and partial mean ratios. What happens when two 
Lorenz curves cross? In this situation, Lorenz dominance does not hold, and 
the inequality level needs to be judged using inequality measures when dif-
ferent inequality measures may agree or disagree with each other. However, 
even in this case, the Lorenz curve can be helpful in identifying the winning 
and losing portions of the distribution.

The Lorenz curve also has interesting relationships with income stan-
dards and inequality measures. First, consider its relationship with the 
generalized Lorenz curve. A Lorenz curve may be obtained from a general-
ized Lorenz curve by dividing the latter by the mean. Thus, for distribu-
tion x, Lx(p) = GLx(p)/WA(x). The construction of a Lorenz curve can be 
easily understood by following the construction of the generalized Lorenz 
curve in fi gure 2.8. Next, recall that the height of the generalized Lorenz 
curve at a certain percentile of population p is the lower partial mean 
times p itself, that is, GLx(p) = p × WLPM(x; p). Therefore, the height 
of the Lorenz curve at a certain percentile of population p is the ratio of 
the lower partial mean to the overall mean times p itself, that is, Lx(p) = p × 
[WLPM(x; p)/WA(x)]. Note that the ratio of the lower partial mean to the 
overall mean itself may be used to construct a partial mean ratio, denoted 
by IPMR(x; 100/p).

Finally, an interesting relationship exists between the Lorenz curve and 
the Gini coeffi cient. The Gini coeffi cient of distribution x is twice the area 
between the Lorenz curves Lx and Ly in fi gure 2.13. Similarly, the Gini coeffi -
cient for distribution x" is twice the area between the Lorenz curves Lx' and Ly.

Inequality and Growth

The twin-standard view of inequality offers fresh insights into the relation-
ship between growth and inequality. Almost all inequality measures are 
constructed in terms of a larger income standard b and a smaller income 
standard a, and these income standards are expressed as 1 – a/b or b/a – 1. 
Suppose income standard a changes to a' over time with growth rate g– 

a, 
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that is, a' = (1 + g– 
a)a, and income standard b changes to b' over time with 

growth rate g– 
b, that is, b' = (1 + g– 

b)b. The inequality measure then changes 
from I = 1 – a/b to I' = 1 – a'/b'. To have a fall in inequality, we require I' < 
I or 1 – a'/b' < 1 – a/b, which occurs when g– 

a > g– 
b. Therefore, for a reduction 

in inequality, the smaller income standard a needs to grow faster than the 
larger income standard b.

Consider the example of the Gini coeffi cient, which is constructed from 
two income standards. The larger income standard is the arithmetic mean 
WA, and the smaller income standard is the Sen mean WS. Let us denote 
the growth rate of the mean income by g– and the growth rate of the Sen 
mean by g–S. The Gini coeffi cient will register a fall in inequality when the 
growth rate of the Sen mean is larger than the growth rate of the arithmetic 
mean, that is, g–S > g–. Similarly, inequality over time, in terms of the Gini 
coeffi cient, increases when g–S < g–.

What about the Atkinson’s measures and the generalized entropy mea-
sures? Measures in these classes, including Theil’s second measure, are based 
on the arithmetic mean and on any income standard from the class of gen-
eral means. For a < 1, the arithmetic mean is the larger income standard, 
and the other general mean–based income standard is the smaller income 
standard. In this case, if the growth rate of the smaller income standard of 
order a is denoted by g–GM(a), then inequality decreases when g–GM(a) > g–. 
If inequality is evaluated by Theil’s second index, then inequality falls when 
the growth of geometric mean g–GM(0) is larger than that of the arithmetic 
mean, that is, g–GM(0) > g–. For a > 1 in the generalized entropy measure, 
the arithmetic mean is the smaller income standard, and the other general 
mean–based income standard is the larger one. Inequality falls, according 
to these indices, when the growth rate of the arithmetic mean g– is higher.

Is there any way to tell if all inequality measures in the Atkinson family 
and the generalized entropy family have fallen? Yes, it is possible to do so 
just by looking at the general mean growth curve, as described in fi gure 2.12. 

A generalized mean growth curve is the loci of the growth rates of all 
income standards in the class of general means. Comparing distributions x 
and y for the general mean growth curve gGM(x,y) in fi gure 2.12 shows that 
all inequality measures in Atkinson’s class and the generalized entropy class 
agree that the inequality has fallen because the growth rates of the lower 
income standards are higher than ḡ. The growth rates of the larger income 
standards are lower than ḡ. However, for the general mean growth curve 
gGM(x',y') in the same fi gure, all inequality measures in Atkinson’s class and 
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the generalized entropy class agree that the inequality has risen because the 
growth rates of the lower income standards are lower than ḡ, whereas the 
growth rates of the larger income standards are higher than ḡ.

In a similar manner, the growth incidence curve may be used to under-
stand the change in inequality using quantile ratios. If the growth rate of 
the upper quantile income is larger than the growth rate of a lower quantile 
income, then inequality has risen over time. In contrast, if the growth rate 
of a lower quantile income is larger than the growth rate of the higher quan-
tile income, then inequality has fallen. For example, consider the growth 
incidence curve gQI(x,y) in fi gure 2.10. If inequality is measured by the 
90/10 measure IQR(x; 90/10), then inequality has fallen. Furthermore, for 
growth incidence curve gQI(x',y'), the level of inequality has increased for 
the same inequality measure.

Poverty Measures

The third aspect of a distribution is base, which is evaluated using a numeri-
cal poverty measure, assigning each distribution a number refl ecting its 
level of deprivation. In this section, before proceeding further, we introduce 
additional notations that are more specifi c to poverty measures than income 
standards and inequality measures. The income distribution of society X 
with N people can be summarized by the vector x = (x1,x2, …, xN), where 
xn is the income of person n. We also assume that the income distribution is 
ordered, that is, x1 ≤ x2 ≤ … xN.

Any poverty measure is constructed in two steps. The fi rst step is iden-
tifi cation, where each person is identifi ed as poor or nonpoor by using a 
threshold called the poverty line, denoted by z. More specifi cally, a person 
is identifi ed as poor if his or her income falls below the poverty line z and 
nonpoor if his or her income is greater than or equal to z. We denote the 
number of poor in our reference society X by q. So the number of nonpoor 
is N − q. Because elements in income distribution x are ordered, people 1,…, 
q are poor and people q + 1, …, N are nonpoor.

Suppose society X consists of four people with the income vector x = ($1k, 
$2k, $50k, $70k). If the poverty line is set at $10k, this means that a person 
must have $10k to meet the minimum necessities to lead a healthy life. This 
requirement would identify the fi rst two people as poor with earnings $1k 
and $2k, whereas the third person and the fourth person are identifi ed as 
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nonpoor. In this example, society X has two poor people and two nonpoor 
people. We summarize the incomes of the poor in vector x by the vector xq.

Poverty analysis is concerned only with the poor or the distribution’s 
base, which should be the group targeted for public assistance. It naturally 
ignores the incomes of nonpoor people in a society. In this way, the identifi -
cation step allows us to construct a censored distribution or censored vector 
of incomes for society X, which we denote by x* = (x*

1,x*
2, …,x*

N) such that  
xn

* = xn if income xn is less than the poverty line z and xn
* = z if income xn is 

greater than or equal to the poverty line z.
For the four-person income vector x = ($1k, $2k, $50k, $70k) in the 

previous example, the censored vector is denoted by x* = ($1k, $2k, $10k, 
$10k). Notice that incomes of the two nonpoor people are replaced by 
the poverty line, and portions of their income above the poverty line are 
ignored. A policy maker’s objective should be to include poor people at or 
above the poverty line. Including all poor people at or above the poverty 
line results in a nonpoverty censored distribution of income. We denote the 
nonpoverty censored distribution of society X corresponding to poverty line 
z by x– 

z 
* such that x– 

z 
* = (z,z,…,z).

The second step for constructing a poverty measure is aggregation. In this 
step, incomes of individuals who are identifi ed as poor using the poverty 
line in the identifi cation stage are aggregated to obtain a poverty measure. 
Therefore, a poverty measure depends on both the incomes of the poor and 
the criterion that is used for identifying the poor—that is, the poverty line. 
In fact, it turns out that any poverty measure is obtained by aggregating ele-
ments in the censored distribution x∗.

In this section, we denote a poverty measure by P, where specifi c indi-
ces are denoted using corresponding subscripts. We denote the poverty 
measure of distribution x for poverty line z by P(x; z). Alternatively, it may 
be denoted by P(x∗). There are two different ways to understand a poverty 
measure: one is based on the properties it satisfi es and the other is through 
its link with income standards. First, we discuss the properties that a poverty 
measure should satisfy.

Desirable Properties

A useful poverty measure should satisfy some desirable properties. Like 
income standards and inequality measures, poverty measure properties can 
fall into two categories:
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• Invariance properties leave poverty measures invariant to certain 
changes in the dataset. Properties in the invariance category are sym-
metry, normalization, population invariance, scale invariance, and focus.

• Dominance properties cause a poverty measure to change in a particu-
lar direction. Properties in the dominance category are monotonicity, 
transfer principle, transfer sensitivity, and subgroup consistency. 

Six of these properties—symmetry, population invariance, scale invariance, 
focus, monotonicity, and transfer principle—are called basic properties. Many 
of these properties are analogous to the corresponding properties of income 
standards and inequality measures.11

The fi rst invariance property, symmetry, requires that switching the 
income levels of two people while the poverty line remains the same leaves 
poverty unchanged. In other words, a person should not be given priority on 
the basis of his or her identity when evaluating the level of poverty within 
a society. Formally, it requires that the poverty measure of distribution x be 
equal to the poverty measure of another distribution x', if x' is obtained from 
x by a permutation of incomes without changing the poverty line.

For example, recall the four-person income vector ($1k, $2k, $50k, 
$70k). If the poverty line is z = $10k, then the fi rst two people are poor and 
the last two people are nonpoor. Now, if the income of the fi rst and the 
fourth individuals are switched, the new income vector becomes x' = ($70k, 
$2k, $50k, $1k). This new vector x' is said to be obtained from vector x by 
a permutation of incomes. 

Symmetry: If distribution x' is obtained from distribution x by 
permutation of incomes and the poverty line z remains the same, 
then P(x'; z) = P(x; z).

The second invariance property, normalization, requires that the poverty 
measure be zero if no one’s income in the society is less than the poverty 
line. This is a natural property. For example, if the income vector of the 
four-person society is ($1k, $2k, $50k, $70k), but the poverty line in this 
case is $1k, then any poverty measure should be 0, refl ecting that there are 
no poor in the society. 

Normalization: For any income distribution x and poverty line z, if 
min{x} ≥ z, then P(x; z) = 0.
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The third invariance property, population invariance, requires that pov-
erty be invariant to the population size, in the sense that a replication of 
an income vector results in the same level of poverty as the original sample 
vector if the poverty line does not change. The implication of this property 
is as follows. Consider the income vector of society X, x = ($1k, $2k, $50k, 
$70k). Suppose four more people with the same income distribution join the 
society so that the new income vector is x' = ($1k, $1k, $2k, $2k, $50k, $50k, 
$70k, $70k). The population invariance property requires that the poverty 
level in society x remains unaltered, at least if the poverty line does not 
change. This allows us to compare the extent of poverty across countries and 
across time with varying population sizes. Furthermore, this property allows 
any poverty measure to depend on a distribution function, which normalizes 
the population size to one.

Population Invariance: If vector x' is obtained by replicating 
vector x at least once and the poverty line remains unaltered, then 
P(x'; z) = P(x; z).

The fourth invariance property, scale invariance, requires that if an 
income distribution is obtained from another income distribution by 
scaling all incomes and the poverty line by the same factor, then the pov-
erty level should remain unchanged. For example, if everyone’s income 
and the poverty line in a society are tripled or halved, then the level of 
deprivation of the society does not change. The scale invariance prop-
erty ensures that the measure is independent of the unit of measurement 
for income. Consider the following example, where the income of each 
person in vector x = ($1k, $2k, $50k, $70k) increases by three times and 
becomes x' = ($3k, $6k, $150k, $210k) over time. If the poverty line also 
increases from, say, $6k to $18k, then the level of deprivation should not 
change over time.12

Scale Invariance: If distribution x' is obtained from distribution x 
such that x' = cx and z' = cz where c > 0, then P(x'; cz) = P(x; z).

The fi fth and fi nal axiom in the invariance properties is focus, which 
requires that if the income of a nonpoor person in a society changes but 
does not fall below the poverty line, then the level of poverty should not 
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change. This property ensures that the measure focuses on the poor incomes 
in evaluating poverty. In fact, focus ensures that the income distribution 
is censored at the poverty line before evaluating a society’s poverty. For 
example, suppose the initial income vector is x = ($1k, $2k, $50k, $70k) 
and the poverty line income is $6k. Thus, the third person and the fourth 
person are nonpoor. If the income of either the third or the fourth person 
increases, but the poverty line remains unaltered at $6k, then the society’s 
poverty level does not change.

Focus: If distribution x' is obtained from distribution x by increasing 
the income of a nonpoor person while the poverty line remains the 
same at z, then P(x'; z) = P(x; z).

The next group of properties are dominance properties. The fi rst of these 
properties requires that if the income of a poor person in a society increases, 
then the poverty level should register a fall, or at least it should not increase. 
There are two versions of this property. One is weak monotonicity, which 
requires that poverty should not increase because of an increase in a poor 
person’s income. The other is monotonicity, the stronger version, which 
requires that poverty should fall if a poor person’s income in the society 
increases.

These two properties are the same as the two corresponding properties 
of income standards, except the ones introduced here are solely concerned 
with incomes of the poor. For example, suppose the initial income vector 
is x = ($1k, $2k, $50k, $70k) and the poverty line income is $6k so that 
the fi rst two people are identifi ed as poor. If a new vector x' is obtained by 
increasing the income of either the fi rst or the second person, while the 
poverty line remains unchanged, then according to the weak monotonicity 
property, poverty should not be higher in x', and, according to the monoto-
nicity property, poverty should be lower in x'.

Weak Monotonicity: If distribution x' is obtained from distribution x 
by increasing the income of a poor person while keeping the poverty 
line unchanged at z, then P(x'; z) ≤ P(x; z).

Monotonicity: If distribution x' is obtained from distribution x by 
increasing the income of a poor person while keeping the poverty 
line unchanged at z, then P(x'; z) < (x; z).
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The second dominance property is the transfer principle, which requires 
that a regressive transfer between two poor people in a society increase pov-
erty and a progressive transfer between two poor people reduce poverty.13 
(For defi nitions of regressive and progressive transfers, refer to the section 
discussing the transfer principle for income standards.) Suppose the initial 
income vector is x = ($1k, $2k, $50k, $70k) and the poverty line income 
is $6k, so the fi rst two people are poor. If a new vector x' is obtained by a 
progressive transfer between the fi rst and the second person such that x'= 
($1.5k, $1.5k, $50k, $70k) and the poverty line is still fi xed at $6k, then pov-
erty in x' should be lower. Note that the transfer principle property allows 
the number of poor to change as a result of a regressive transfer because the 
richer poor may become nonpoor because of a regressive transfer.14

Transfer Principle: If distribution x' is obtained from distribution x 
by a regressive transfer between two poor people while the poverty 
line is fi xed at z, then P(x'; z) > P(x; z). If distribution x" is obtained 
from another distribution x by a progressive transfer between two 
poor people while the poverty line is fi xed at z, then P(x"; z) < P(x; z).

As in inequality measurement, we also defi ne a weaker version of trans-
fer principle in poverty measurement. It requires that a regressive transfer 
between two people in a society not decrease poverty and a progressive 
transfer between two people not increase poverty. Thus, the weaker prin-
ciple allows the possibility that the poverty level may remain unchanged 
because of a progressive or a regressive transfer. 

Weak Transfer Principle: If distribution x' is obtained from 
distribution x by a regressive transfer between two poor people while 
the poverty line is fi xed at z, then P(x'; z) ≥ P(x; z). If distribution 
x" is obtained from another distribution x by a progressive transfer 
between two poor people while the poverty line is fi xed at z, then 
P(x"; z) ≤ P(x; z).

The transfer principle requires a poverty measure to decrease if  the trans-
fer is progressive. However, it is not concerned with which part of the dis-
tribution the transfer is taking place. A same amount of transfer may take 
place between two extremely poor people, who are further away from the 
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poverty line, or between two moderately poor people, who are much closer 
to the poverty line.

Should the effect of transfer, no matter where it takes place, have 
the same effect on the poverty level? We elaborate this situation with an 
example. Consider the fi ve-person income vector x = ($80, $100, $800, 
$50, 000, $70,000). Let the poverty line be set at $1,050. Then the fi rst four 
people are identifi ed as poor because their incomes are below the poverty 
line. First, suppose $10 is transferred from the second person to the fi rst per-
son. Then the post-transfer income vector is x' = ($90, $90, $800, $1,000, 
$50,000, $70,000). Transferring 10 percent of the second person’s income 
has increased the fi rst person’s income by 12.5 percent.

Suppose, instead, that the same $10 transfer takes place between the 
third and the fourth persons, who are also poor. The post-transfer income 
vector is x'' = ($80, $100, $810, $990, $50,000, $70,000), where transfer-
ring 1 percent of the fourth person’s income increases the third person’s 
income by 1.25 percent. This transfer makes hardly any difference in the 
large pool of income of the two richer poor people. Therefore, one might 
feel that a transfer of the same amount between two extreme poor and 
two richer poor should not have the same effect on the society’s overall 
poverty.

The third dominance property, transfer sensitivity, requires a poverty 
measure to be more sensitive to a transfer between poor people at the lower 
end of the income distribution of the poor. In other words, this property 
requires that a poverty measure should change more when a transfer takes 
place between two extremely poor people than between two richer poor 
people. In terms of the example above, the level of deprivation should be 
lower in x' than in x''.

Suppose the initial income distribution is x and distribution x" is obtained 
from distribution x by a progressive (or regressive) transfer between two 
extremely poor people. Suppose further that distribution x" is obtained from dis-
tribution x by a progressive (or regressive) transfer of the same amount between 
two richer poor people. The following is the transfer sensitivity property:

Transfer Sensitivity: A poverty measure that satisfi es transfer 
sensitivity places greater emphasis on progressive (or regressive) 
transfers at the lower end of the distribution of the poor than at the 
upper end of the distribution of the poor; so P(x'; z) < (>) P(x"; z).
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The fi nal dominance property is subgroup consistency, which is concep-
tually the same as the corresponding property for income standards and 
inequality measures. This property requires that if subgroup population sizes 
are fi xed, then overall inequality must rise when poverty rises in one sub-
group and does not fall in the rest of the subgroups. For example, suppose 
that income vector x with population size N is divided into two subgroup 
vectors: x' with population size N' and x" with population size N" such 
that N' + N" = N. Let a new vector, y, be obtained from x with the same 
population size N, and let its two corresponding subgroups be denoted by 
y' with population size N' and y" with population size N". The subgroup 
consistency property can be stated as follows:

Subgroup Consistency: Given that subgroup population sizes remain 
unchanged, if P(y';z) > P(x';z) and P(y";z) ≥ P(x";z), then P(y;z) > P(x;z).

There is a property closely related to subgroup consistency that is often 
useful for understanding how much of the overall poverty is attributed to 
the poverty of a particular group, given a collection of population subgroups. 
For example, a country’s population may be divided into subgroups such as 
rural and urban areas, states, provinces, and other geographic regions; ethnic 
and religious groups; genders; or age groups. Often, one may want to evalu-
ate a particular group’s contribution. The additive decomposability property 
requires that overall poverty is expressed as a population-weighted average 
of subgroup poverty levels. This property is similar in spirit to the corre-
sponding properties of income standards and inequality measures. However, 
it is more analogous to that of income standards in the sense that there are 
no within-group and between-group terms as we see for a decomposable 
inequality measure.

To formally outline the property, we will use two groups to simplify 
the interpretation, but the defi nition can be extended to any number of 
groups. Suppose income vector x with population size N is divided into two 
subgroup vectors: x' with population size N' and x" with population size N" 
such that N' + N" = N. The additive decomposability property can be stated 
as follows (see example 2.9):

Additive Decomposability: If income distribution x is divided into two 

subgroup distributions x' and x", then P x z
N
N

P x z
N
N

P x z( ; ) ( ; ) ( ; ).′ ′= +
′ ′

′′



113

Chapter 2: Income Standards, Inequality, and Poverty  

Example 2.9: Consider the six-person income vector x = ($80, $100, 
$800, $1,000, $50,000, $70,000), which is divided into two subgroups 
x' = ($80, $100, $50,000) and x" = ($800, $1,000, $70,000). Suppose 
the poverty line is z = $1,100, which is the same across both subgroups. 
Note that N' = 3, N" = 3, and N = 6, and, thus, N'/N = N"/N = 3/6 
= 0.5. Then any additively decomposable poverty index can be 
expressed as P(x;$1,100) = 0.5P(x';$1,100) + 0.5P(x";$1,100).

Poverty and Income Standards

The second way of understanding poverty measures is through the income 
standards discussed earlier. Like inequality measures, most poverty measures 
are based on a comparison between two income standards: a higher income 
standard b and a lower income standard a. However, there is a crucial dif-
ference between inequality measures and poverty measures. In inequality 
measures, the higher and lower income standards are two different income 
standards applied to the same income vector. In poverty measures, the 
higher and lower income standards are the same income standards applied 
to two different income vectors: one is the censored distribution and the other 
is the nonpoverty censored distribution. Recall that a censored distribution is 
obtained from an original income distribution by replacing the income of the 
nonpoor by the poverty line. The nonpoverty censored distribution is that 
income distribution where all incomes are equal to the poverty line income.

It turns out that the higher income standard for poverty measures is the 
poverty line itself. Why is that so? This can be understood by the normaliza-
tion property of income standards, which requires that if all incomes are equal 
in an income distribution, then an income standard of the distribution should 
be equal to that commonly held income. Because in a nonpoverty censored 
income distribution all incomes are equal to the poverty line, any income 
standard of the nonpoverty censored distribution should be equal to the pov-
erty line itself, that is, b = z. Many well-known poverty measures take the form 
P = (z − a)/z or the form P = a/z or a monotonic transformation of either form.

Commonly Used Poverty Measures

In this section, we introduce various poverty measures that are in com-
mon use. We classify them into two categories. The fi rst category lists basic 
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poverty measures, and the second category lists advanced poverty measures. 
There are two basic poverty measures in common use: headcount ratio and 
poverty gap measure.

Headcount Ratio

The headcount ratio (PH) is a crude measure of poverty that simply counts 
the number of people whose incomes are below the poverty line z and 
divides that number by the total number of people in the society. In society 
X with population size N, if there are q poor people, then the headcount 
ratio is simply q/N. It is obvious that the headcount ratio lies between zero 
and one. If all people are poor in a society, then the headcount ratio is one. 
When there are no poor, it is zero.

The headcount ratio can also be understood using income standards 
applied to the nonpoverty censored distribution and a doubly censored dis-
tribution. What is a doubly censored distribution, and how do we obtain 
it? A doubly censored distribution x** is obtained from an original income 
distribution x by replacing nonpoor incomes with the poverty line income z 
and by replacing the poor incomes with zero. Therefore, income distribution 
x is censored upward at poverty line z for nonpoor and again censored at zero 
for the poor. The term doubly censored comes from the fact that distribution 
x*

z
* is obtained by censoring distribution x twice.

The arithmetic mean is the income standard used to understand head-
count ratio. The arithmetic mean of the nonpoverty censored distribution is 
poverty line z, and the arithmetic mean of the doubly censored distribution 
is called the dichotomous mean. If there are q poor people, or N − q nonpoor 
people, in society X, then the dichotomous mean of the society is

 
W x q

N q
N

z
N

zA ( ) .** = × − N q−+ =0  (2.35)

The headcount ratio of distribution x is a normalized shortfall of the 
dichotomous mean from the mean of the nonpoverty censored distribution 
(see example 2.10). Thus, the headcount ratio can be expressed as
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Example 2.10: How is the headcount ratio calculated by different 
methods? Consider the four-person income vector x = ($800, $1,000, 
$50,000, $70,000). If the poverty line is set at z = $1,100, then two of 
the four people are poor. Thus, the headcount ratio is PH(x;z) = 2/4 = 0.5 
or 50 percent.

How can the headcount ratio be calculated using the concept of 
doubly censored distribution?

The doubly censored vector of x is x*
z
* = (0, 0, $1,100, $1,100) 

and the nonpoverty censored distribution is x̄*
z  = ($1,100, $1,100, 

$1,100, $1,100).
Then WA(x̄*

z) = 4 × $1,100/4 = $1,100 and WA(x*
z
*) = 2 × 

$1,100/4 = $550.
Hence, PH(x;z) = ($1,100 − $550)/$1,100 = 0.5.

The headcount ratio is the most well-known and most widely used 
poverty measure because its interpretation is highly intuitive and simple. 
However, the effectiveness of the headcount ratio depends on which prop-
erties the headcount ratio satisfi es. It satisfi es all invariance properties: 
symmetry, normalization, population invariance, scale invariance, and focus. 
However, it does not satisfy any dominance property except subgroup consis-
tency. The headcount ratio is not sensitive to changes in the income level 
of the poor as long as incomes do not cross the poverty line. This is why 
the headcount ratio does not satisfy the other dominance properties and 
monotonicity, which require poverty measures to change as the incomes of 
the poor change. The headcount ratio satisfi es subgroup consistency because 
the headcount ratio is additively decomposable, as shown by example 2.11.

Poverty Gap Measure

The second basic poverty measure is the poverty gap measure. Like headcount 
ratio, it is also widely used. The poverty gap measure (PG) is the average 
normalized shortfall with respect to the poverty line across the poor. In 
society X, the normalized income shortfall of a person, say, n, is calculated as 
(z − x*n)/z, which means that the normalized income shortfall of a nonpoor 
person is zero. The average normalized income shortfall is the average of all 
normalized income shortfalls within a society. We denote the normalized gap 
vector of x by g* = ((z − x*1)/z,…,(z − x*

N)/z). Then the poverty gap measure is
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The poverty gap measure may also be understood and interpreted by 
using two income standards. The higher income standard is the poverty line 
z itself, obtained by taking an arithmetic mean of the nonpoverty censored 
distribution x̄*

z . The lower income standard is obtained by applying the 
arithmetic mean to the censored income distribution x*. Thus, the poverty 
gap measure can be expressed as
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There is a third way to interpret the poverty gap measure, which is as a 
product of the headcount ratio and the average normalized income shortfall 
among the poor. The average normalized income shortfall among the poor 

is P x z
q

z xIG nn

q
( ; ) ( )/z.= −

=∑1
1

 The poverty gap measure can be expressed as
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The poverty gap measure lies between zero and one. Zero is obtained 
when there are no poor in the society. A value of one is obtained when 

Example 2.11: Consider the six-person income vector x = ($80, $100, 
$800, $1,000, $50,000, $70,000), which is divided into two subgroups 
x' = ($80, $100, $800) and x" = ($1,000, $50,000, $70,000).

Suppose the poverty line, z = $1,100, is the same across both 
subgroups.

Note that N' = 3, N" = 3, and N = 6; thus, N'/N = N"/N = 3/6 = 0.5 
is the population share of each group.

The headcount ratio of x is PH(x;z) = 4/6 = 2/3; the headcount 
ratio of x' is PH(x';z) = 3/3 = 1; and the headcount ratio of x" is 
PH(x";z) = 1/3.

Thus, the overall headcount ratio may be obtained from the sub-
group headcount ratios. The population-weighted average headcount 
ratio of the subgroups is 0.5P(x';z) + 0.5P(x";z) = 0.5 × 1 + 0.5 × 1/3 
= 2/3.
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everyone in the society is poor and has zero income. When everyone in 
a society is poor, then the poverty gap measure is the average normalized 
income shortfall among the poor, PIG, because the headcount ratio is one in 
this situation, that is, PH = 1 (see example 2.12). 

Example 2.12: How is the poverty gap measure calculated by different 
methods? Consider the four-person income vector x = ($800, $1,000, 
$50,000, $70,000). The poverty line is set at z = $1,100. The cen-
sored income vector is x* = ($800, $1,000, $1,100, $1,100).

• Use the method in equation (2.37) to calculate the pov-
erty gap measure. The poverty gap vector is g* = (300/1100, 
100/1100,0,0). Then the poverty gap measure is PG(x;z) = 
WA(g*) = 0.09.

• The method in equation (2.38) uses two income standards. The 
mean of the censored distribution is WA(x*) = 1,000. The non-
poverty censored distribution is x̄*

z = ($1,100, $1,100, $1,100, 
$1,100). Thus, the mean of the nonpoverty censored distribu-
tion is WA(x*) = 1,100. Hence, the poverty gap measure is 
PG(x;z) = (1,100 − 1,000) / 1,100 = 0.09.

• The method in equation (2.39) uses the headcount ratio and 
the income gap ratio to calculate the poverty gap measure. We 
already know that the headcount ratio of x is 0.5. The income 
gap ratio of x may be obtained by taking the mean of the fi rst 
two elements of Gx and so PIG(x;z) = 2/11. Thus, the poverty gap 
measure is PG(x;z) = 0.5 × 2/11 = 0.09. 

What properties does the poverty gap measure satisfy? It satisfi es all 
invariance properties: symmetry, normalization, population invariance, scale 
invariance, and focus. Among dominance properties, it satisfi es only mono-
tonicity and subgroup consistency and does not satisfy the transfer principle 
and transfer sensitivity. Although it does not satisfy the transfer principle, it 
satisfi es the weak transfer principle, which means that the poverty gap mea-
sure does not increase (or decrease) because of a regressive (or progressive) 
transfer but also does not fall (or increase). The poverty gap measure satis-
fi es the monotonicity property, meaning that if the income of a poor person 
increases, then (unlike the headcount ratio) the poverty gap increases. The 
poverty gap measure satisfi es subgroup consistency because, like the head-
count ratio, it is additively decomposable.
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There is a long list of advanced poverty measures. These measures may 
not necessarily be as intuitive and as easy to understand as the two basic 
measures, but they are capable of moderating the limitations of the two basic 
measures. The advanced measures discussed in this book include the Watts 
index, the Sen-Shorrocks-Thon index, the squared gap measure, the Foster-
Greer-Thorbecke indices, the mean gap measure, and the Clark-Hemming-
Ulph-Chakravarty indices.

Watts Index

The Watts index was proposed by Watts (1968), and it is the average dif-
ference between the logarithm of the poverty line and the logarithm of 
incomes. For income distribution x with population size N and poverty line 
z, the Watts index can be written as

 P x z
N

z xnW
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The lowest value the Watts index can take is zero, which is obtained 
when no one is poor in the society. However, unlike the headcount ratio 
and the poverty gap measure, the Watts index has no maximum value.

Like the two basic measures, the Watts index can also be expressed as a 
difference between two income standards. The income standard used for the 
headcount ratio and the poverty gap measure is the arithmetic mean, where-
as the income standard for the Watts index is the geometric mean. The 
higher income standard is obtained by applying the geometric mean to the 
nonpoverty censored distribution x̄*

z. Because the geometric mean satisfi es 
normalization, the higher income standard is equal to the common ele-
ment in x*, which is the poverty line z itself. The lower income standard is 
obtained by applying the geometric mean to the censored income distribu-
tion x*. The Watts index is the logarithm of the ratio of the higher and the 
lower income standards.

The other way of interpreting the measure is by calculating the differ-
ence of their logarithms (see example 2.13). The formulation of the Watts 
index in terms of income standards is
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Example 2.13: How is the Watts index calculated by different meth-
ods? Consider the four-person income vector x = ($800, $1,000, 
$50,000, $70,000), with the poverty line set at z = $1,100. The cen-
sored vector is x* = ($800, $1,000, $1,100, $1,100). The logarithm of 
the poverty line is Inz = In1,000 = 7.

• Use the method in equation (2.40) to calculate the Watts index. 
The logarithmic differences between the poverty line and the 
censored incomes are (7 − In800, 7 − In1,000,0,0) = (0.3, 0.1, 0, 0), 
the mean of which is 0.103. Thus, PW(x;z) = 0.1.

• Calculate the Watts index using the income standards. The 
geometric mean of x* is WG(x*) = 991.9 and In[WG(x*)] = 6.9. 
Therefore, by equation 2.41, PW(x;z) = 7 − 6.9 = 0.1. Thus, both 
calculation and understanding of the Watts index are much easier 
in terms of income standards.

The Watts index satisfi es all invariance properties: symmetry, normaliza-
tion, population invariance, scale invariance, and focus, as well as all dominance 
properties: monotonicity, transfer principle, transfer sensitivity, and subgroup 
consistency. It satisfi es the transfer principle because poverty falls when 
income is transferred from a richer poor person to a poorer poor person. It 
satisfi es transfer sensitivity because it is more sensitive to a transfer at the 
lower end of the distribution than at the upper end of the income distribu-
tion of the poor. It satisfi es the subgroup consistency property because, like 
the two basic measures, it is additively decomposable.

Sen-Shorrocks-Thon Index

The Sen-Shorrocks-Thon (SST) poverty index was originally formulated in 
terms of a basic poverty measure and an inequality measure. The poverty 
gap measure is the basic poverty measure used for constructing the SST, and 
the Gini coeffi cient is the inequality measure. Thus, the SST index can be 
expressed as

 PSST(x;z) = PG(x;z) + [1− PG(x;z)]IGini(x∗). (2.42)

Note that the Gini coeffi cient is applied to the censored income distri-
bution x*.15 This measure is sensitive to inequality among the poor, which 
is evident from its formulation in equation (2.42). If there is no inequality 
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among the poor, then PSST(x;z) reaches its minimum. As inequality in creases, 
the values of PSST(x;z) increase because 1 − PG(x;z) > 0, which results from 
the fact that PG(x;z) lies between zero and one. The Gini coeffi cient lies 
between zero and one. When there are no poor in a society, the SST index is 
zero. The maximum value of one is obtained when everyone in the society is 
poor and has zero income.

The SST index has an interesting relationship with the average normal-
ized income shortfall among the poor, PIG. When everyone is poor in a 
society, but has equal income, then the SST index is equal to the average 
normalized income shortfall among the poor, that is, PSST(x;z) = PIG(x;z). 
This is because in this situation IGini(x*) is zero and PH = 1. When the 
inequality level among the poor increases while the average normalized 
income shortfall remains the same, the SST index becomes larger than the 
average normalized income shortfall.

The SST index can also be interpreted by an income standard. The 
income standard in this case would be the Sen mean. The SST index is the 
normalized difference between the Sen mean of the nonpoverty censored 
distribution and the Sen mean of the censored distribution. The Sen mean 
satisfi es the normalization property of income standards. Thus, the Sen 
mean of the nonpoverty censored distribution is the poverty line itself, that 
is, WS(x̄*) = z. The Sen mean of the censored distribution x* is denoted by 
WS(x*). The SST index16 can be presented as
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Given a censored distribution, once the Sen mean is calculated using the 
procedure discussed in the income standard section, the SST index can eas-
ily be obtained by applying equation (2.43). How do equations (2.42) and 
(2.43) give the same result? That question can easily be answered as 
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In the previous section, when discussing dominance and ambiguity 
results for income standards, we mentioned that the Sen mean is related to 
the  generalized Lorenz curve. The SST index is based on the Sen mean and 
thus is naturally related to the generalized Lorenz curve, which has been 
 graphically depicted in Zheng (2000). Example 2.14 shows how to calculate 
the SST index.
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Example 2.14: How is the Sen-Shorrocks-Thon index calcul ated 
by different methods? Consider the four-person income vector 
x = ($800, $1,000, $50,000, $70,000); the poverty line is set at 
z = $1,100. The censored vector is x* = ($800, $1,000, $1,100, $1,100).

• Calculate the SST index using equation (2.42). The poverty gap 
measure, as we already know, is 0.09. The Gini coeffi cient of x* is 
0.062. Then PSST(x;z) = 0.09 + (1 − 0.09) × 0.062 = 0.15. 

• Calculate the SST index using equation (2.43). The Sen 
mean of x* is 937.5. Thus, the SST index is PSST(x;z) = 
(1,100 − 937.5)/1,100 = 0.15.

What properties does the SST index satisfy? It satisfi es all invariance 
properties: symmetry, normalization, population invariance, scale invariance, 
and focus. However, it does not satisfy all dominance properties because it 
is based on the poverty gap measure and the Gini coeffi cient. It inherits 
the monotonicity property from the poverty gap measure, and it inherits 
the transfer principle from the Gini coeffi cient. However, neither the Gini 
coeffi cient nor the poverty gap ratio satisfi es transfer sensitivity; conse-
quently, the SST index does not satisfy transfer sensitivity. Furthermore, 
the Gini coeffi cient is neither subgroup consistent nor additively decom-
posable in the usual way. This shortcoming is also inherited by the SST 
index.

Despite these shortcomings, the SST index is useful because it can be 
broken down into the poverty gap measure and the Gini coeffi cient. In fact, 
the poverty gap measure can be further broken down into the headcount 
ratio (PH) and the average income gap of the poor (PIG).

Squared Gap Measure

The next poverty measure in the advanced measures category is the squared 
gap measure. This measure is calculated by averaging the square of the nor-
malized income shortfalls and is denoted by
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One way of interpreting the squared gap measure is as the weighted aver-
age of normalized income shortfalls, where each normalized income shortfall 
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is weighted by itself. This method of weighting puts greater emphasis on 
larger shortfalls during aggregation. Thus, a transfer of income from a richer 
poor person to a poorer poor person should reduce poverty. Like the SST 
index, the squared gap measure can also be expressed as a function of the 
headcount ratio (PH), the average normalized income shortfall (PIG), and the 
generalized entropy measure for a = 2 of the incomes of the poor (denoted 
by the vector xq), such that

 PSG(x;z) = PH[PIG
2 + 2(1 − PIG)2IGE(xq;2)]. (2.46)

The squared gap measure lies between zero and one (see example 2.15). 
A zero value is obtained when there are no poor people in the society 
because the headcount ratio is zero. The maximum value of one is reached 
when everyone in the society is poor and has zero income. 

Example 2.15: How is the squared gap measure calculated by different 
methods? Consider the four-person income vector x = ($800, $1,000, 
$50,000, $70,000). The poverty line is set at z = $1,100. The cen-
sored vector is x* = ($800, $1,000, $1,100, $1,100).

• Use the method in equation (2.45) to calculate the squared gap 
measure. The squared gap vector is sg* = ([300/1100]2, [100/1100]2, 
0, 0). Then the squared gap measure is PSG(x;z) = WA(sg*) = 0.02.

• The method in equation (2.46) uses the headcount ratio, average 
normalized income shortfall, and generalized entropy measure 
to calculate the squared gap measure. We already know that the 
headcount ratio of x* is 0.5 and that the poverty gap measure is 
0.18. The inequality measure IGE(x q ; 2) among the poor is 0.006. 
Then the squared gap measure is PSG(x;z) = 0.5[0.182 + 2 × (1 − 
0.18)2 × 0.006] = 0.02.

What properties does the squared gap measure satisfy? It satisfi es all 
invariance properties: symmetry, normalization, population invariance, scale 
invariance, and focus. However, among the dominance properties, it satisfi es 
monotonicity, the transfer principle, and subgroup consistency, but it does not 
satisfy transfer sensitivity because the headcount ratio, the income gap ratio, 
and the generalized entropy of order 2 do not satisfy this property. Hence, 
like the basic poverty measures and the SST index, the squared income gap 
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measure is transfer neutral. However, unlike the SST index, it satisfi es sub-
group consistency because it is additively decomposable.

Foster-Greer-Thorbecke (FGT) Family of Indices

This family of measures was proposed by Foster, Greer, and Thorbecke 
(1984). The FGT family of measures has the following formulation:
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where a ≥ 0. The parameter a can be interpreted as the inequality aver-
sion parameter among the poor, which is conceptually the same as that for 
Atkinson’s class of inequality measures. As a increases, a society’s aversion 
toward inequality among the poor increases.

Notice that there is a minor difference between parameter a in this 
case and parameter a in Atkinson’s class of inequality measures, where a 
lower value of a leads to greater aversion toward inequality. This differ-
ence exists because inequality is measured in the income space and poverty 
is measured in the normalized gap space, where large gaps imply worse 
situations.

Measures in the FGT family take the form of various well-known poverty 
measures introduced earlier for different values of a. For example, for a = 0, 
the formulation in equation (2.45) becomes the headcount ratio because 
(z − x*

n/z)0 =1 when xn < z and because (z − x*
n/z)0 = 0 when xn ≥ z. Thus, 

PFGT(x;z,0) = q/N = PH(x;z). For a = 1, the formula becomes the poverty 
gap measure, which is the average of all normalized income shortfalls. For 
a = 2, the formula is the squared gap measure, which is the average of the 
square of all normalized income shortfalls. 

As a increases and becomes very large, PFGT approaches a Rawlsian 
measure17 placing more emphasis on the largest normalized income gap of 
the poorest person. However, note that the value of PFGT for any distri-
bution decreases as a increases, and, for a very large a, the overall value 
of PFGT may be infi nitesimally small. This occurrence can be verifi ed by 
expressing the FGT formulation in equation (2.47) in general mean form 
using equation (2.3) as follows:

 PFGT(x;z,a) = [WGM(g∗; a)]a for a  > 0. (2.48)



124

A Unifi ed Approach to Measuring Poverty and Inequality

Recall that the general mean of a distribution converges toward the 
maximum or largest element in a vector or distribution. The largest element 
in the gap vector g* belongs to the poorest person in the society.

We have already discussed the properties that the headcount ratio, the 
poverty gap measure, and the squared gap measure satisfy. Thus, we know 
what properties the FGT family of indices satisfi es when a = 0, 1, and 2. The 
additional property that the measures in this family satisfy is transfer sensi-
tivity when a > 2, which implies that if a similar amount of transfer takes 
place between two poorer poor people and two richer poor people, then this 
measure is able to distinguish between these two situations.

An aspect that is not so intuitive in this family of measures is interpreta-
tion of the inequality aversion parameter. A larger value of a implies greater 
aversion to inequality among the poor. However, when there is no inequal-
ity in the society, should the poverty measure alter because of a change in α? 
For example, suppose that in a society of 100 people, everyone is poor and all 
people have an equal income of $500. If the poverty line is z = $1,000, then 
the normalized income gap of each person is one-half in this society. Given 
that there is no inequality in the society, it should not matter how averse the 
society is to inequality because there is no inequality.

However, the FGT family of measures may not remain the same for all α. 
For the simple example considered above, PFGT(x;z,1) = PG(x;z) = 1/2 and 
PFGT(x;z,2) = PSG(x;z) = 1/4. However, this problem can be easily solved 
by calculating a monotonic transformation of the original FGT family of 
measures as

 P'FGT(x;z,a) = [PFGT(x;z,a)]1/a  = WGM(g*; a) for a > 0. (2.49)

Note that this formula is not valid for the headcount ratio when a = 0. 
For the example above, P'FGT(x;z,a) = 1/2 for all a > 0 because the general 
mean satisfi es the normalization property of income standards.

Mean Gap Measure

The mean gap measure of poverty can be obtained by taking the Euclidean 
mean (WE) of the normalized income shortfalls. This is a monotonic trans-
formation of the squared gap measure. More specifi cally, the mean gap mea-
sure is the square root of the squared gap measure. The mean gap measure 
can be expressed as
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There is another interpretation of the mean gap measure: P'FGT(x;z,2). 
Because the mean poverty gap is a monotonic transformation of the squared 
gap measure, it satisfi es all the properties that are satisfi ed by the squared gap 
measure except the additive decomposability. One advantage of the mean 
gap measure compared with the squared gap measure is that the values of 
the mean gap measure are commensurate with the values of the poverty 
gap measure as discussed using equation (2.49). Values of the squared gap 
measure tend to be much smaller than the poverty gap measure, and these 
numbers are not comparable to each other.

Unlike the squared gap measure, values of the mean gap measure tend 
to be higher than those of the poverty gap measure, because it uses the 
Euclidean mean instead of the arithmetic mean. For example, for the four-
person income vector x = ($800, $1,000, $50,000, $70,000) and poverty line 
z = $1,100, the poverty gap measure is 0.09, whereas the mean gap measure 
is (0.02)1/2 = 0.14. However, had the income of the poor been equally dis-
tributed, the income vector would have been x' = ($800, $1,000, $50,000, 
$70,000), and the poverty gap measure would remain the same as that of x 
(that is, 0.09), but the mean gap measure would be 0.13.

Like the squared gap measure, the mean gap measure also lies between 
zero and one. Moreover, this measure has an interesting relationship with 
the average normalized income shortfall. When everyone in a society is 
poor, but there is no inequality, then the squared gap measure is equal to 
the average normalized income shortfall among the poor because CV = 0 
and PH = 1. Thus,
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Clark-Hemming-Ulph-Chakravarty (CHUC) Family of Indices

The fi nal measure in our discussion of poverty measures is the Clark-
Hemming-Ulph-Chakravarty (CHUC) family of indices (see Clark, 
Hemming, and Ulph 1981; Chakravarty 1983). This family is an extension 
of the Watts index. The CHUC index is based on the generalized mean 
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and is the normalized shortfall of the generalized mean of the observed cen-
sored income distribution x* from the generalized mean of the nonpoverty 
censored income distribution x̄*. Again, the generalized mean satisfi es the 
normalization property of income standards; thus, the generalized mean of 
the nonpoverty censored income distribution is the poverty line itself. The 
CHUC index for a  ≤ 1 can be expressed as
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The CHUC index lies between zero and one. The minimum value of 
zero is obtained when there are no poor people in a society. However, the 
maximum value of the CHUC index cannot be larger than one. When 
everyone in a society is poor, having equal income, this measure is equal 
to the average normalized income shortfall. It satisfi es all invariance and 
dominance properties. However, not all measures in this class are addi-
tively decomposable. For a = 1, the CHUC index is the poverty gap mea-
sure, and for a = 0, the CHUC index is a monotonic transformation of the 
Watts index.

Advantages and Disadvantages of Each Measure

We have shown that the two basic measures—the headcount ratio and the 
poverty gap measure—do not satisfy transfer-related properties and so are 
not sensitive to inequality across the poor. Besides not being sensitive to 
inequality, the headcount ratio does not satisfy monotonicity, which, if it is 
used as a target for public policy, may cause ineffi ciency in public spending. 
All of the subsequent advanced poverty measures, in contrast, are sensitive 
to inequality across the poor. The SST index and the mean gap measure are 
both equal to the poverty gap measure when everyone in a society is poor 
and no inequality exists among them. These two measures become larger 
than the poverty gap measure when the income gap remains the same, but 
inequality among the poor increases.

Each advanced measure, however, has its own pros and cons. Let us 
begin with the SST measure. We know from our previous discussion that 
this measure is not subgroup consistent, which means that it may lead to 
inconsistent outcomes when group-level analysis is of interest. This measure 
is also not transfer sensitive, which means that if a similar amount of transfer 
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takes place between two poorer poor people and two richer poor people, 
then this measure cannot distinguish between the two situations.

What, then, are the SST index’s advantages? The fi rst is that it can 
be neatly broken down into the headcount ratio, the average normalized 
income shortfall among the poor, and the well-known Gini coeffi cient. If 
one is not interested in group-level analysis, then this measure can be bro-
ken down into these three components to understand the source of change 
in poverty. In fact, the Gini coeffi cient can be broken down further into a 
within-group and a between-group component using the Gini decomposi-
tion formula introduced earlier. The within-group component assesses 
inequality among the poor, and the between-group component measures 
inequality between the average income of the poor and the poverty line.

This decomposition reveals whether the change in the measure’s inequal-
ity component is caused by the change in inequality among the poor or due 
to a change in the average income of the poor compared to the poverty line. 
Note that there is no within-group inequality among the nonpoor because they 
all have the same income equal to the poverty line. Furthermore, there is no 
residual term, which is commonly seen in the Gini decomposition, because 
there is no income overlap between the poor and the nonpoor.

Second, consider the squared gap measure. This measure has many posi-
tive features, such as it is additively decomposable and subgroup consistent. 
Furthermore, like the SST index, it can be broken down into the head-
count ratio, the average normalized income shortfall among the poor, and 
the generalized entropy measure order of 2 among the poor to understand 
the poverty composition. However, like the SST index, this measure is not 
transfer sensitive, which means that if a similar amount of transfer takes 
place between two poorer poor people and two richer poor people, then this 
measure cannot distinguish between these two situations.

Also, the generalized entropy measure order of 2 may be a bit unintuitive 
in the sense that it may range from zero to infi nity, unlike the Gini coeffi cient 
that ranges from zero to one. The same pros and cons apply to the mean gap 
measure, which is just a monotonic transformation of the squared gap measure.

Third, consider the Watts index. This measure appears to be a perfect 
measure of poverty in the sense that it satisfi es all the properties that we dis-
cussed earlier: it is additively decomposable, is transfer sensitive, and satisfi es 
the transfer principle and all other properties. However, this measure has two 
shortcomings. One is that it is not applicable when there are zero incomes 
because the logarithm of zero is undefi ned. The second shortcoming is that 
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it does not have an intuitive interpretation like the two basic measures, the 
SST index and the squared gap measure and its monotonic transformation 
(the mean gap measure). Also, like these other measures, it does not have an 
upper bound of one. Finally, the CHUC class of indices is a generalization of 
the Watts index. Like the Watts index, its members satisfy all the properties 
discussed earlier and also lie between zero and one. However, measures in 
this class are not defi ned for zero incomes when α ≤ 0.

Policy Relevance of Poverty Measures

Besides gauging the level of deprivation in a society, a poverty measure can 
have crucial policy relevance. In fact, different measures may have different 
policy implications. We discuss three policy implications below with cer-
tain examples. First is the infl uence of poverty measures as targeting tools. 
Second is the relevance of poverty measures in guiding public policies. Third 
is the use of the additive decomposability property for geographic targeting.

How Do Different Poverty Measures Infl uence the Targeting Exercise?

Besides gauging the level of deprivation in a society, a poverty measure is a 
useful tool that can infl uence a policy maker’s targeting exercise. An impor-
tant question that is often asked is the following: if a policy maker has allot-
ted a certain amount of the budget that he or she can spend on the welfare 
program for the poor, how should that budget be allocated among the poor? 
For instance, consider the following six-person society with income vector 
x = ($80, $100, $800, $1,000, $50,000, $70,000). The poverty line is set at 
$1,100 so that four people are poor and two people are nonpoor.

It is evident that the society’s policy maker requires at least $2,420 so 
that he or she can drive all four poor people out of poverty. Suppose that 
the policy maker can allot only $1,000 toward the welfare program for the 
poor. Then how should that budget of $1,000 be allocated among the poor? 
The answer depends on which poverty measure is used to assess the society’s 
deprivation. Different poverty measures provide different answers for this 
targeting exercise.

We begin this analysis when the society’s poverty is assessed by the 
headcount ratio. The easiest way for a policy maker to reduce the headcount 
ratio is to bring as many poor people as possible up to the poverty line. 
Therefore, the fi rst $100 of the allotted budget would be spent on the richest 
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poor person (with an income of $1,000). The next $300 would be spent on 
the second-richest poor person (with an income of $800).

After bringing these two poor people out of poverty, the policy maker 
still has $600 in his or her budget that remains unused. How and whom 
should this amount assist? Given that the headcount ratio does not satisfy 
the monotonicity property, because even if this entire amount is transferred 
to either of the two remaining poor people, the poorest people still remain 
under the poverty line and do not add to the headcount ratio. The policy 
maker in this situation would have no incentive to spend the remaining 
budget. This lack of incentive creates ineffi ciency in public spending. 
Although poverty is reduced by 50 percent, the poverty status of the two 
severely deprived people remains unchanged.

What if the society’s poverty is assessed by the poverty gap measure? Recall 
that, unlike the headcount ratio, the poverty gap measure satisfi es monotonicity; 
but, like the headcount ratio, it does not satisfy the transfer principle or transfer 
sensitivity. Thus, it is not sensitive to inequality among the poor. What implica-
tion does it have on the targeting exercise? In this case, the policy maker will 
be inclined to spend his or her entire budget because the poverty gap measure 
satisfi es monotonicity. An increase in a poor person’s income, even when he or 
she is not driven out of poverty, reduces the poverty gap measure. Therefore, 
unlike the headcount ratio, ineffi ciency in public spending does not arise.

Then how should the budget of $1,000 be allocated among the poor? The 
straightforward way is to spend the budget on any of the four poor people as 
long as they do not surpass the poverty line income. Given that the poverty 
gap measure is not sensitive to inequality among the poor, it does not matter 
who among the poor receives the assistance. For example, in one case, out 
of the budget of $1,000, the richest poor person, with an income of $1,000, 
may receive $100; the second-richest poor person may receive $300; and the 
third-richest poor person may receive the rest, or, in another case, the poor-
est person, with an income of $80, may receive the entire amount. In both 
cases, the improvements in the poverty gap measure are the same. Thus, the 
poverty gap measure is insensitive to whoever receives the assistance. The 
poorest section of a society may perpetually remain poor in spite of showing 
decent progress in terms of the poverty gap measure.

How would this policy exercise be affected when the society’s poverty is 
gauged by a distribution-sensitive poverty measure? A distribution-sensitive 
measure requires that assistance should go to the poorest of the poor fi rst. 
Thus, out of the $1,000 budget allotted for the poor, the fi rst $20 should go 
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to the poorest person whose income is $80 so that the incomes of the two 
poorest poor people are made equal. Then the rest of the budget should be 
equally divided between the two poorest people so that, after allocating 
the entire budget, the income distribution becomes x' = ($590, $590, $800, 
$1,000, $50,000, $70,000). 

What if, instead of $1,000, there was $1,600 allotted to the welfare of 
the poor? Then the fi rst $20 would be transferred to the poorest person. 
Next, out of $1,580, $1,400 would be divided equally between the two poor-
est people so that the incomes of all three of the poorest people would be 
equalized at $800. Finally, the rest of the budget of $180 is equally divided 
among the three poorest poor so that the post-allocation income vector 
is x" = ($860, $860, $860, $1,000, $50,000, $70,000). All distribution-
sensitive poverty measures support this type of targeting. However, not all 
measures refl ect similar amounts of decrease in poverty, which depends on 
how these measures weight different people.

Can Poverty Measures Infl uence Public Policy?

Like the targeting exercise, can a poverty measure infl uence public policy? 
Consider an example of a developing country where the major staple food is 
rice. As with other agricultural producers, rice producers are poor and their 
incomes are scattered around the country’s poverty line income. Some rice 
producers earn enough income to live just above the poverty line, but many 
rice producers are unfortunate enough to live below the poverty line.

There are other poor people in the country, such as those whose major 
occupation is agricultural labor, plantation labor, or other unskilled jobs. 
These poor people are the poorest in the country, and their major source 
of energy and nutrition is the staple food, rice. Rice is, in fact, a necessary 
commodity in that country, and the government controls its price.

Being benevolent, the government wants to see a reduction in poverty 
by adjusting the price of rice. Which of the following two policy options 
would reduce poverty?

• Option 1: Reduce the price of rice.
• Option 2: Increase the price of rice.

Suppose poverty in the country is assessed by the headcount ratio. If 
the government decides to choose option 1 and reduce the price, then rice 
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producers would be adversely affected because their income would fall, and 
rice consumers would benefi t because their real incomes would increase. 
Given that most rice consumers are poorer than rice producers, one does 
not know whether more or fewer people would become poor. Thus, the 
impact on the headcount ratio is uncertain.

However, if the price of rice increases, then producers gain, but the 
poorer consumers lose because their real incomes fall. Given that the 
already poor consumers become poorer, this is not taken into account by 
the headcount ratio because it does not satisfy monotonicity. Therefore, 
the number of poor people would most likely fall, thereby leading to a fall 
in the country’s headcount ratio. Thus, the potential assessment of poverty 
using the headcount ratio would incline the government to choose option 
2 and increase the price because poverty, according to the headcount ratio, 
would fall.

Note, however, that the decrease in the headcount ratio has ignored the 
change in inequality among the poor. The marginally poor producers would 
become better off because of the price increase, but the severely poor people 
would be worse off for the same reason. This occurrence is very similar to the 
idea of regressive transfer. The higher price paid by the poorer consumers is 
obtained by the lesser poor producers as profi t.

Any inequality-sensitive poverty measure, such as the squared gap, 
the Watts index, or the SST index, would be sensitive to such inequality 
among the poor. Suppose the poverty level in that country is now assessed 
with one such measure that is sensitive to inequality among the poor. If 
the government now chooses option 1 and reduces the price of rice, then 
the poorer consumers benefi t at the cost of a reduction in the producers’ 
income. The result is uncertain. If some producers become poorer than 
some consumers, then the poverty measure may increase. But if the pro-
ducers remain less poor than the consumers, then the poverty measure 
may fall.

However, if option 2 is chosen and the rice price rises, then inequality 
among the poor increases and, most certainly, the poverty measure would 
increase. Hence, the potential assessment of poverty using any inequality-
sensitive poverty measure would incline the government to not raise the 
price because poverty, according to any inequality-sensitive measure, would 
increase. The conclusion is that different poverty measures would incline the 
government to choose different policies.
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Additive Decomposability and Geographic Targeting

A poverty measure of a population subgroup refl ects the level of depriva-
tion for that subgroup. A higher value of a population subgroup’s poverty 
measure refl ects a higher level of deprivation. The poverty measures we 
have discussed in this chapter satisfy population replication invariance to 
be able to compare the poverty levels of different population sizes, so these 
measures are invariant to population size. However, a population subgroup 
with a higher level of poverty does not necessarily imply that the subgroup 
has a larger contribution to overall poverty.

A subgroup’s contribution to overall poverty also depends on the popula-
tion distribution across subgroups. Therefore, targeting a region or a group 
based on only a poverty measure may not be completely accurate. We also 
need to take the population distribution into account. If P is an additively 
decomposable poverty measure and the income distribution x with total popu-
lation size N is divided into M subgroups—x1 with population size N1, x2 with 
population size N2, …, xM with population size NM—then the contribution 
of group m to total poverty is NmP(xm;z)/NP(x;z), where z is the poverty line.

Consider the situation when poverty is assessed by the headcount ratio. 
A population subgroup’s headcount ratio denotes the population percentage 
identifi ed as poor. Interpreting a population subgroup’s contribution to over-
all poverty in terms of the headcount ratio is intuitive. If the total number 
of poor is q, and qm is the number of poor in subgroup m, then the overall 
headcount ratio is q/N and that of subgroup m is qm/Nm for all m = 1,…, M. 
Then subgroup m’s share of overall poverty is Nm[qm/Nm]/N[q/N] = qm/q. 
Thus, the contribution of the subgroup’s poverty to overall poverty in terms 
of the headcount ratio is just the share of overall poor in that subgroup.

For example, consider table 3.9 in chapter 3, which shows the distribu-
tion of the poor across Georgian subnational regions for years 2003 and 
2006. Suppose that, in 2003, the headcount ratio of the subnational region 
Kvemo Kartli is 44.4 percent, which is more than twice the headcount ratio 
of 20.9 percent in Tbilisi. However, the share of total poor living in Tbilisi 
is, in fact, slightly larger than that living in Kvemo Kartli, because the popu-
lation size of Tbilisi is more than twice that of Kvemo Kartli. In 2006, the 
headcount ratio of Kvemo Kartli decreased to 35.1 percent, which is still 
10 percent higher than the headcount ratio of Tbilisi, but the share of the 
poor living in Tbilisi increased to 20.4 percent alongside only 12.2 percent 
in Kvemo Kartli. Therefore, the Georgian government needs to understand 
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that, despite having a lower headcount ratio, a massive number of poor 
people reside in Tbilisi.

The share of subgroup poverty in overall poverty also has an intuitive inter-
pretation that can be relevant for geographic targeting. Using the same nota-
tions as in the previous paragraph, we can express the poverty gap measure as

 [∑q
i = 1(z − xi)]/Nz, 

where [∑q
i = 1(z − xi)] is the total sum of fi nancial assistance required to bring 

all poor people just to the poverty line to eradicate poverty. If the distribu-
tion x is divided into M subgroups as earlier, then the poverty gap measure 
of subgroup m is

 [∑qm
i = 1(z − xi)]/Nmz, 

where [∑qm
i = 1(z − xi)] is the total amount of fi nancial assistance required to 

eradicate poverty in subgroup m. The contribution of subgroup m’s poverty 
gap measure to the overall poverty gap ratio is

[Nm∑qm
i = 1(z − xi)]/Nmz]/N[∑q

i = 1(z − xi)]/Nz = ∑qm
i = 1(z − xi)/∑q

i = 1(z − xi). (2.53)

Therefore, a subgroup’s contribution is nothing but the share of total 
fi nancial assistance that should be received by that subgroup to eradicate pov-
erty. Thus, the contribution in terms of the poverty gap measure may be used 
to understand the requirement for fund allocation across geographic regions.

The subgroup contribution of other additively decomposable poverty 
measures that are sensitive to inequality, such as the squared gap or the 
Watts index, may not have such an intuitive implication for targeting. 
However, their additively decomposable property enables us to understand 
the subgroup’s contribution to overall poverty and monitor the targeting 
exercise. Although for these examples we have considered only the popula-
tion subgroups in terms of subnational regions, the population may well be 
grouped alternatively by gender, occupation, or household head character-
istics, as depicted in chapter 3.

Poverty, Inequality, and Welfare

Poverty measures that satisfy the transfer principle are called distribution-
sensitive poverty measures. The distribution-sensitive poverty measures 
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introduced earlier were the Watts index, the SST index, the FGT family of 
measures for α > 1, and the CHUC family of indices. Each of these distribu-
tion-sensitive poverty measures is built on a specifi c income or gap standard 
that is closely linked to an inequality measure. For example, the Watts index 
is closely linked with Theil’s second measure of inequality, the SST index 
is closely linked with the Gini coeffi cient, the FGT family of indices for 
α > 1 is linked with the generalized entropy measures, and the CHUC fam-
ily of indices is linked with Atkinson’s family of measures.

For the Watts index, SST index, and CHUC family of indices, the 
inequality measure is applied to the censored distribution x*, with greater 
censored inequality being refl ected in a higher level of poverty for a given 
poverty gap level. The FGT indices for α > 1, however, use generalized 
entropy measures applied to the gap distribution g*, with greater gap inequal-
ity leading to a higher level of poverty for a given poverty gap level.

Recall from our earlier discussion in the income standard section that 
certain income standards can be viewed as welfare functions, and this link 
provides yet another lens for interpreting poverty measures. The Sen mean 
used in the SST index and the general means for α ≤ 1 that are behind the 
CHUC indices can be interpreted as welfare functions. In each poverty 
measure, the welfare function is applied to the censored distribution to 
obtain the censored income standard, which is now seen to be a censored 
welfare function that takes into account poor incomes and only part of non-
poor incomes up to the poverty line. For these measures, poverty and cen-
sored welfare are inversely related—every increase in poverty can be seen as 
a decrease in censored welfare.

Dominance and Unanimity

A poverty measure assesses the level of poverty within a society by a single 
number for a given poverty line. Two obvious questions arise: (a) Does a 
single poverty measure evaluate two distributions in the same way for all 
poverty lines? and (b) Do all poverty measures evaluate two income distri-
butions in the same way? More specifi cally, according to the fi rst question, if 
one distribution has more poverty than another distribution for a particular 
poverty line, is there any certainty that the former distribution would have 
more poverty than the latter for any other poverty line?

Consider the following example with two four-person income distribu-
tions x = ($800, $900, $5,000, $70,000) and x' = ($200, $1,200, $1,600, 
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$70,000). Let poverty be measured by the headcount ratio. If the poverty 
line is $1,000, then distribution x has more poverty than distribution x'. 
What happens if the policy maker decides that the correct poverty line 
should be $800? Then distribution x has no poor people, but distribution 
x" has one poor person. Similarly, if the poverty line is $2,000, then, again, 
distribution x has less poverty than distribution x". Hence, the choice of 
poverty line affects the poverty comparison.

According to the second question, if one poverty measure determines 
income distribution x to have more poverty than distribution x', would 
other poverty measures compare these two distributions in the same way? 
This situation is analogous to our discussion of dominance and ambiguity 
for inequality and income standards. The answer is not too optimistic and 
depends on the poverty measure used—not all poverty measures evaluate 
different distributions in the same manner.

Consider the same two four-person income vectors used above: x = ($800, 
$900, $5,000, $70,000) and x' = ($200, $1,200, $1,600, $70,000). Let the 
poverty line be z = $1,000. We have already seen that the headcount ratio 
refl ects more poverty in distribution x than in distribution x'. How does the 
poverty gap measure PG compare these two distributions? It turns out that 
PG(x; z) = 0.08 < PG(x'; z) = 0.18. Distribution x has less poverty than distribu-
tion x'. Thus, these two basic measures disagree with each other.

Is there any way we can devise situations where we have unanimous 
results? To start, we try to answer the fi rst question using a concept intro-
duced at the beginning of this chapter: the cumulative distribution function, or 
cdf.18 Recall that the cdf of distribution x denotes the proportion of people in 
the distribution whose income falls below a given income level. In the pov-
erty analysis context, if that income level is the poverty line z, then the 
value of the cdf at z is nothing but the headcount ratio at poverty line z (see 
fi gure 2.14 below).

Poverty Incidence Curve

The horizontal axis of fi gure 2.14 denotes income, and the vertical axis 
denotes the values of a cumulative distribution function. If the poverty line 
is set at z, then the headcount ratio is PH(x; z), which is the percentage of 
people in distribution x who have incomes less than z. Similarly, PH(x; z') 
and PH(x; z") are the headcount ratios of distribution x corresponding to 
poverty lines z' and z'', respectively.
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Suppose there is another distribution x'. One can see in fi gure 2.14 that 
the headcount ratios corresponding to poverty lines z, z', and z" lie above 
the respective headcount ratios for distribution x. Is there any other poverty 
line that refl ects a higher headcount ratio in x than in x'? The answer is no. 
The cdf of x lies to the right of the cdf of x', which means that the headcount 
ratio for x' for no poverty line can be lower than the headcount ratio for x. 
When a cdf lies to the right of another cdf, fi rst-order stochastic dominance 
(introduced earlier) occurs. When such dominance relation holds between 
two cdfs, not only do the headcount ratios agree for all poverty lines, but the 
poverty gap measure, the squared gap measure, the mean gap measure, the 
Watts index, and the CHUC indices also agree for all poverty lines.

This approach also answers the second question, which asks when all 
poverty measures agree. Therefore, if the fi rst-order stochastic dominance 
holds, then there is no need to compare any two distributions by any poverty 
measure introduced earlier with respect to varying the poverty line. The 
choice of poverty measure and the choice of poverty line simply do not mat-
ter when the fi rst-order dominance condition holds. The cdf in the context 
of poverty measurement is also known as the poverty incidence curve.

Poverty Defi cit Curve

What if two poverty incidence curves cross? Then a unanimous relationship 
in terms of the headcount ratio does not hold. However, there are two other 

Figure 2.14: Poverty Incidence Curve and Headcount Ratio
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poverty-value curves that lead to a unanimous relationship in terms of the 
poverty gap measure and the squared gap measure. These two curves are 
known as the poverty defi cit curve and the poverty severity curve.

When the poverty defi cit curve of one distribution lies above the poverty 
defi cit curve of another distribution, then the former distribution has higher 
poverty—in terms of the poverty gap measure for all poverty lines—than 
the latter distribution. Similarly, if the poverty severity curve of a distribu-
tion lies above the poverty severity curve of another distribution, then the 
former distribution has higher poverty in terms of the squared gap measure 
for all poverty lines. We now elaborate these two concepts.

Figure 2.15 outlines the poverty defi cit curve concept. We use the pov-
erty incidence curve (panel a) to construct the poverty defi cit curve (panel 
b). The poverty incidence curve of distribution x is denoted by Fx. The 
height of a poverty defi cit curve at a poverty line is the area underneath 
the poverty incidence curve to the left of the poverty line. In fi gure 2.15, 
the height of the poverty incidence curve at poverty line z is denoted by 
height B, which is the shaded area below the poverty incidence curve Fx 
to the left of z. For instance, for the poverty line z, if q people are identi-
fi ed as poor, then Fx(z) = q/N percent, which is the percentage of the poor 
population.

What does the area underneath the incidence curve denoted by B 
mean? To understand, fi rst note that the lightly shaded area denoted by 
A is the average income of the q poor people times the share of the poor. 

Figure 2.15: Poverty Defi cit Curve and the Poverty Gap Measure
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This can be easily verifi ed from the quantile function as described earlier 
in fi gure 2.5.

Recall that an income distribution’s cdf is just the inverse of the relevant 
distribution’s quantile function. Thus, A is WA(xA)(xq)q/N = (x1 + … + xq  )/N.  
Another interpretation of area A is that it is the per capita income of an aver-
age poor person in the society. The combined area A + B denotes the society’s 
per capita income, which, if held by each poor person, means that the poor will 
not be poor anymore.

This per capita income is qz/N. Thus, area B, which is also the height of 
the poverty defi cit curve Dx at poverty line z, is the difference between the 
area A + B and the area A, or the average income shortfall or the defi cit, 
that is, [z − WA(xq)]q/N. This defi cit is the minimum per capita income of 
the society, which, if transferred to the poor, will lift the poor out of poverty. 
Area B is also zPG(x; z). The maximum height of the poverty defi cit curve 
is denoted by C, which is xN − WA(x).

Example 2.16: Suppose in a country of 100 million (m) people with a 
per capita income of $20,000, 30 million people are poor. The aver-
age income of these poor people is $400. So the per capita income 
held by an average poor person is ($1,000 − $400) × 30m ÷ 180m.

If the poverty line is $1,000, then the defi cit is ($1,000 − $400) × 
30m ÷ 100m = $180.

Thus, $180 per capita, which is only 0.9 percent of the per capita 
income of the country, is the minimum amount required to bring all 
30 million poor people out of poverty. 

Note that the larger height of the poverty defi cit curve Dx compared 
to the poverty defi cit curve Dx' at z refl ects a larger poverty gap measure 
in  distribution x than in distribution x' at poverty line z. It is evident from 
fi gure 2.15 that the poverty defi cit curve Dx lies above the poverty defi cit 
curve Dx' for all poverty lines. Hence, distribution x has higher poverty than 
distribution x' for all poverty lines in terms of the poverty gap measure.

This type of unanimity result, however, fails to hold when two poverty 
defi cit curves cross each other. We should then check the poverty severity 
curve of these two distributions. If the poverty severity curve of a distribu-
tion lies above the poverty severity curve of another distribution, then the 
former distribution has higher poverty than the latter in terms of the squared 
gap measure or the mean gap measure for all poverty lines.
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Poverty Severity Curve

Panel a of fi gure 2.16 displays the poverty defi cit curve that we will use to 
show how a poverty severity curve is constructed. As explained earlier, the 
height B of a poverty defi cit curve is proportional to the poverty gap measure 
and is the poverty gap measure times the poverty line. As shown in panel b, 
the height of the poverty severity curve Sx at poverty line z is D, which is the 
area underneath the poverty defi cit curve Dx. Area D is proportional to the 
squared gap measure. Therefore, the larger the height of the poverty sever-
ity curve Sx than the poverty severity curve Sx at z, the larger the squared 
gap measure in distribution x than in distribution x' at poverty line z. It 
turns out that the poverty severity curve Sx lies above the poverty severity 
curve Sx' for all poverty lines. Hence, distribution x has higher poverty than 
 distribution x' for all poverty lines.

Note that the dominance by the poverty defi cit curve is equivalent to 
the second-order stochastic dominance, and the dominance by the poverty 
severity curve is equivalent to the third-order stochastic dominance.19

When there is dominance in terms of poverty incidence curves, all pov-
erty measures satisfying the invariance properties and monotonicity agree 
with each other when ordering distributions according to the level of pov-
erty for any poverty line. Such dominance relationships do not always hold. 
When two poverty incidence curves cross, one distribution has higher or 
lower poverty only for a part of the entire range of incomes. In fact, different 
poverty measures may order two distributions differently.

Figure 2.16: Poverty Severity Curve and  the Squared Gap Measure
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One way of examining the robustness of poverty comparisons is by cal-
culating the vector of poverty levels of different measures for a fi xed pov-
erty line. For instance, the headcount ratio, the poverty gap measure, the 
squared gap measure, the Watts index, and the SST index can be depicted 
in a fi ve-dimensional vector. If there are two distributions x and x', then the 
fi ve-dimensional vector of x for poverty line z is

 (PH(x; z), PG(x; z), PSG(x ;z), PW(x ;z), PSST(x ;z)), 

and the fi ve-dimensional vector of x' for poverty line z is

 (PH(x'; z), PG(x'; z), PSG(x'; z), PW(x'; z), PSST(x'; z)). 

Vector dominance between these two vectors would then be interpreted 
as a variable measure poverty ordering that ranks distributions when all fi ve 
measures unanimously agree. If each element in the vector x is greater than 
each corresponding element in the vector x', then distribution x has unani-
mously more poverty than distribution x' for poverty line z.

Sensitivity Analysis with Respect to the Poverty Line

The dominance analysis discussed earlier helps us understand whether one dis-
tribution has more or less poverty than another distribution. It is not concerned 
about the level of poverty, which is often of particular policy interest. The num-
ber of poor people in a country or the fact that many poor people have been 
moved out of poverty over a particular time period are always matters of great 
concern. These data, of course, depend on the particular poverty line chosen.

As discussed in the introductory chapter, there are three different types 
of poverty lines:

• An absolute poverty line may be adjusted with the rate of infl ation over 
time, but it is not adjusted with income growth over time.

• A relative poverty line is not fi xed over time, and it changes with income 
growth. For example, if a poverty line is set at 50 percent of the median 
income, then the poverty line changes as the median income changes 
over time. Or the poverty line may be set at 50 percent of mean 
income. In this case, the growth rate of the poverty line over time is 
the same as the growth rate of per capita income over time.

• A hybrid poverty line is created by taking a weighted average of an 
absolute poverty line and a relative poverty line.
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No matter how a poverty line is chosen, one can argue that it is  arbitrary. 
It is possible to propose a feasible alternative, which may change the 
 perspective of poverty signifi cantly. Thus, one must examine the sensitiv-
ity of poverty with respect to the poverty line. One way of conducting the 
sensitivity analysis is to change the poverty by certain percentages, then 
estimate how much the poverty level has changed.

For example, suppose the headcount ratio of society x is 25 percent for 
poverty line z = $10,000. Let this fi gure increase to 30 percent when the 
poverty line is increased to $10,200. This means that a 2 percent increase in 
the poverty line increases the headcount ratio by 5 percent. The lower the 
change in the poverty estimate because of change in the poverty line, the 
more reliable the point estimate based on a particular poverty line. If there is 
too much variation, then the poverty estimate may not be considered reliable.

Growth and Poverty

When a country is rapidly growing, one must evaluate the quality of the 
growth. By growth, we generally mean a country or society’s growth in mean 
income, and, by merely looking at the growth, there is no way of knowing 
who has benefi ted from this growth. This growth may result from a rise in 
incomes of the richer part of the distribution or from a rise in incomes of the 
poorer part of the distribution.

There are various ways of understanding if the growth is pro-poor or 
 anti-poor. First, we may be interested in knowing directly if poverty has 
increased or decreased because of the growth. Second, we may want to 
know if the growth has relatively benefi ted or hurt the population with lower 
incomes. In this case, it is not enough just to understand if poverty has 
increased or decreased; it is also important to understand whether the situ-
ation of the poor has changed in comparison to others in the distribution. 
Third, we may be interested in knowing if the growth has lowered poverty 
more than a counterfactual-balanced growth path would. In this case, one 
may be  interested in knowing how much of the change in poverty is due to 
growth and how much is due to the redistribution. 

Consider some examples to clarify these various ways of understand-
ing pro-poor growth. Suppose the society consists of four people and the 
income vector is x = ($80, $100, $200, $260). The society’s mean income 
is $160. First, if the poverty line income is $120, then two people are 
poor. Suppose that, over time, incomes of these four people change to 



142

A Unifi ed Approach to Measuring Poverty and Inequality

x' = ($100, $125, $160, $575). The society’s mean income has grown by 
50 percent to $240. If the poverty line remains unchanged at $120, then 
the headcount ratio goes down. In fact, poverty goes down for any poverty 
measure that satisfi es the monotonicity property. Thus, if one is merely 
interested in knowing if poverty has decreased because of growth, then the 
growth has been pro-poor for a fi xed poverty line. If, instead of $120, the 
poverty line is set at $180, then the change in poverty may not appear to 
be pro-poor by all measures. For example, despite growth of 50 percent, the 
headcount ratio deteriorates. Thus, in terms of the headcount ratio, the 
growth in the distribution appears to be anti-poor.20

Given that a fi xed poverty line is diffi cult to defend, we must understand 
the change in poverty for a variable poverty line. The approach is analogous 
to the dominance analysis. If one poverty curve (incidence, defi cit, or sever-
ity) dominates another poverty curve, then poverty has improved unambigu-
ously in the dominant distribution because of growth. Besides merely knowing 
the direction of change in poverty, we may be interested in the magnitude of 
the reduction in poverty relative to the growth in mean—the growth elastic-
ity of poverty. The growth elasticity of poverty is defi ned as the percentage 
change in poverty resulting from a 1 percent change in the mean income. 
If the elasticity is greater than one, then the percentage change in poverty 
has been larger than the percentage change in mean income, or the growth 
of mean income. For an application of the growth elasticity of poverty using 
the headcount ratio, see Bourguignon (2003). To understand the change in 
the growth or elasticity of poverty for a variable poverty line, various poverty 
growth curves can be constructed (similar to the various growth curves dis-
cussed in the income standard section).

A second way of understanding a change in poverty as pro-poor is by look-
ing at the gain of the poor relative to the gain in the mean. Reconsider the two 
income vectors in the previous example. The growth rate of the mean was 
50 percent. Have the incomes of individuals at the bottom of the distribution 
improved enough to catch up with the growth in mean? The answer is no. The 
growth of the poorest person’s income was 25 percent. The income growth of 
the two poorest people also totaled 25.0 percent, and the growth of the three 
poorest people totaled 1.3 percent. Then how was the 50 percent growth 
achieved? It was achieved because the richest person’s income grew by about 
121 percent. Thus, this second way understands the relationship between 
poverty and growth from an inequality perspective and may be referred to as 
an inequality-based approach, as discussed in chapter 1.
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The tools we used to understand the relationship between growth and 
inequality can also be used here. Comparing the growth rates of two income 
standards may provide some insight. If a lower income standard grows faster 
than the mean, then incomes of the poorer section of the distribution must 
have grown faster than the mean. In contrast, if an upper income standard 
grows faster than the mean, then incomes of the richer section of the dis-
tribution must have grown faster than the mean. For example, one may 
compare the growth rate of the Sen mean (emphasizing lower incomes) vis-
à-vis the growth of the average. Indeed, the growth in the Sen mean is only 
24 percent compared to 50 percent growth in mean income.

One can also use other income standards, such as the general means, 
for this exercise. For example, Foster and Székely (2008) computed the 
growth in general means for different a to show that although the growth 
rate mean incomes in Mexico and Costa Rica were the same, the growth 
of general means was starkly different. In Mexico, the growth in mean 
income was mostly driven by the increase in the income of the richer 
section of the population. In Costa Rica, the growth in mean was driven 
by the increase in the income of the poorer section. The same amount of 
growth may have improved the situation of the poor in Costa Rica, but it 
may have deteriorated the situation of the Mexican poor.

One may also be interested in understanding the composition of change 
in poverty because of growth and because of change in inequality.21 As discussed 
in chapter 1, pro-poor growth may be understood as a difference between 
the growth rate of an original distribution and a counterfactual distribution 
that has the same mean and relative distribution as the original distribution. 
Then the overall change in poverty can be split into a change because of 
growth and a change because of redistribution.

Consider the following simple example using the vectors above: 
x = ($80, $100, $200, $260) and x' = ($100, $125, $160, $575). The mean 
of x is $160, whereas the mean of x' is $240. We now rescale each element 
of vector x' in such a way that it has the same mean as x, and we denote the 
transformed vector by x". Thus, x" = (66.7, 83.3, 106.7, 383.3).

Let us simply measure poverty by the headcount ratio (this exercise can 
be performed using any poverty measure). For the poverty line of $120, the 
headcount ratio in x is 2/4, which decreases to 1/3 in x'.

How was this reduction obtained? Distribution x" is obtained from x by 
redistribution while keeping the mean unchanged. The headcount ratio for 
x", as a result, increases from two-fourths to three-fourths. Thus, poverty has 
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increased because of redistribution. However, distribution x' may be seen as 
being obtained from distribution x" by merely increasing everyone’s income 
by the same proportion with balanced growth. As a result, the headcount 
ratio falls from three-fourths to one-fourth. Hence, the improvement in 
poverty in this case has resulted from growth rather than redistribution.22

Exercises

1. Consider the following table that enables you to construct a cumula-
tive distribution function (cdf) from income data.

Category
(i)

Income
($ xi)

Number of
people

(ni)
pi F(xi) (pi ë xi)

1   12,000 10
2 13,000 15
3 14,000 40
4 15,000 20
5 16,000 15

 There are fi ve income categories (Xi) in the economy. Each category 
contains a certain number of people (ni).

 a.  What is the total number of people (n) in the economy?
 b.  Let pi denote the proportion of people in each category. Fill in the 

column corresponding to pi for each i. The probability mass function is 
defi ned as a function that gives the probability of a discrete variable 
taking the same value. Now draw the probability mass function.

   Hint: Draw a diagram with x on the horizontal axis and p on the 
vertical axis.

 c.  Let F(xi) denote the proportion of people who have an income no 
higher than xi. Fill in the column corresponding to F(xi) for each i.  
Now draw the cdf.

   Hint: Draw a diagram with x on the horizontal axis and F(x) on 
the vertical axis.

 d.  What is the relationship between pi and F(xi)?
 e.  Calculate the proportion of people having an income less than 

$14,100. What is the proportion of people having an income more 
than $14,900?

 f.  What is the average income for the economy?
 g.  Fill in the last column, and fi nd the sum of all cells in that column. 

What does the sum give you?
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 h.  Use the cdf to calculate the area to the left of the cdf bounded by 
x = 0 and F(x) = 1. What do you get?

 i.  Calculate the median, the 95th percentile, and the 20th percentile 
using the cdf that you drew in 1c. 

2. The Gini coeffi cient is probably the most commonly used index of 
relative inequality. What are some of the advantages and disadvan-
tages of this measure?

3. The variance of logarithm (VL) is an inequality measure that is com-
puted as
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 where WL(x) is the mean of the logarithm of elements in x as defi ned 
in the chapter.

 a.  Verify that the variance of logarithms satisfi es scale invariance. What 
property of the variance of logarithms ensures scale invariance?

 b.  Graph the Lorenz curves for the two distributions x = (1,1,1,1,41) 
and y = (1,1,1,21,21). Can the curves be ranked?

 c.  Find the variance of logarithms of the two distributions. What is 
wrong here?

 d.  Find the mean log deviation (the second Theil measure) of the 
two distributions. What is correct here?

4. Construct an inequality measure that violates replication invariance.
5. Are the following statements true, false, or uncertain? In each case, 

support your answer with a brief but precise explanation.
 a.  The Kuznets ratios satisfy the Pigou-Dalton transfer principle.
 b.  Distribution y = (1,2,3,2,41) is more unequal than distribution 

x = (1,8,4,1,36) in terms of the Lorenz criterion.
 c.  The four basic properties of inequality measurement are enough to 

compare any two income distributions in terms of relative inequality.
 d.  If everyone’s income increases by a constant dollar amount, 

inequality must fall.
6. Consider the distribution x = (1,3,6).
 a.  Draw the Lorenz curve, and calculate the area between the 

45-degree line and the curve.
 b.  Calculate the Gini coeffi cient for x. What is the relationship 

between the Gini coeffi cient and the calculated area?
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7. Consider the distribution x = (3,6,9,12,24,36).
 a.  Divide the distribution into the following two subgroups: x1 = (3,6,9) 

and x2 = (12,24,36). Calculate the Gini coeffi cient for x, x1, and x2. 
Using the traditional additive decomposability formula, check if 
the Gini coeffi cient is decomposable in this situation. 

 b.  Divide distribution x into the following two subgroups: 
x3 = (3,24,36) and x4 = (6,9,12). Again, using the traditional 
additive decomposability formula, check if the Gini coeffi cient is 
decomposable in this situation.

 c. What is the difference between these two circumstances? Explain.
 d.  What is the residual for the Gini coeffi cient in these two 

circumstances?
8. For the two distributions x = (2,100; 700; 1,100; 200) and y = (3,410; 

620; 2,170; 6,510), do the following:
 a.  Calculate the WGM(.; a) and use it to calculate the Atkinson 

measure IA(.; a) for a = 0, –1. 
 b.  Do you have the same IA(.; a) for both distributions or not? What 

is going on here?
9. For the income distributions x = (3,3,5,7) and y = (2,4,6,6), do the 

following:
 a.  Calculate the generalized entropy measure and IGE(x; a) and 

IGE(y;  a) for a = 1,0,1,2,3,4.
 b.  Plot the values of a on the horizontal axis and the values of IGE(x; a)  

and IGE(x; a) on the vertical axis.
 c.  Join the points, and check if they intersect. If they intersect, then 

report at what value of a they intersect, and explain why.
10. Are the following statements true, false, or uncertain?
 a.  The second Theil measure is subgroup consistent.
 b.  The arithmetic mean is higher than the harmonic mean but less 

than the geometric mean.
 c.  The sum of the decomposition weights of the generalized entropy 

measure is always less than 1.
11. How is the generalized Lorenz curve GL(p) derived from a cdf? Draw 

this process and explain. What value does the generalized Lorenz 
curve take at p = 1?

12. Suppose an inequality measure is given by I(x) = (x̄—e(x))/x̄, where 
e(x) is one of the equally distributed equivalent income functions used 
by Atkinson (namely, a general mean with a parameter less than one).
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 a.  Which equivalent income function is the lower income 
standard?

 b.  Show that if the lower income standard grows at a faster rate than 
the upper income standard, then inequality will fall.

 c.  Suppose the mean income grows at a rate of 3 percent. Under 
what circumstances will the Atkinson index fall? When will the 
Gini index fall?

13. Because of economic growth, the income distribution changes as fol-
lows over time: (1,1,1,1), (1,1,1,2), (1,1,2,2), (1,2,2,2), (2,2,2,2).

 a.  Explain the relevance of this example to the development literature.
 b.  Can unambiguous inequality comparisons be made between these 

distributions?
 c.  How does the Gini coeffi cient change over time in this example?
14. Provide an example illustrating that the Gini coeffi cient violates 

subgroup consistency. Explain why it does.
15. Country A has a more equal income distribution than Country B 

such that Country A’s Lorenz curve dominates that of Country B.
 a.  What should be the relationship between these two countries in 

terms of generalized Lorenz?
 b. What does this fi nding say about welfare and inequality?
16. Why should a poverty measure be sensitive to the distribution of 

income among the poor?
17. Suppose that the incomes in a population are given by x = (4,2,10) 

and the poverty line is z = 6.
 a. Find the number of people who are poor.
 b. Find the headcount ratio PH.
 c. Find the (normalized) poverty gap measure PG.
 d. Find the squared poverty gap measure PSG.
 e.  If the income of person 2 falls by one unit so that the new distribu-

tion is y = (4,1,10), what happens to PH, PG, and PSG?
 f.  If person 2 gives person 1 a unit of income, resulting in distribution 

u = (5,1,10), what happens to PH, PG, and PSG? Explain.
18. One of the big problems in evaluating poverty levels is arriving at a 

single poverty line that represents the cutoff level between the poor 
and the nonpoor. Many people believe that a poverty line must be 
arbitrary to some extent. But if this is so, and if changing the pov-
erty line reverses poverty judgments, then all our conclusions about 
poverty might be ambiguous. To solve this problem, we might make 
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comparisons not only for a single poverty line but also for a range 
of poverty lines. Consider the three distributions from the previous 
example: x = (4,2,10), y = (4,1,10), u = (5,1,10). 

 a.  If z = 6 is the poverty line, does x or y have more poverty accord-
ing to the headcount ratio? Will this determination be reversed at 
some other poverty line? Explain. Does x or y have more poverty 
according to the poverty gap measure? Will this determination be 
reversed at some other poverty line? Explain.

 b.  If z = 6 is the poverty line, does x or u have more poverty accord-
ing to the headcount ratio? Will this determination be reversed at 
some other poverty line? Explain. Does x or u have more poverty 
according to the poverty gap measure? Will this determination be 
reversed at some other poverty line? Explain.

 c.  Do you think unambiguous comparisons with variable poverty 
lines might be made in practice? If not, why not? If so, why?

19. Which inequality measure is the Sen-Shorrocks-Thon (SST) poverty 
index based on? 

 a.  Explain why the SST index is not subgroup consistent and provide 
a counterexample to illustrate your point.

 b.  Which inequality measure is the Foster-Greer-Thorbecke (FGT) 
index PSG(x; z) based on? Show that the measure is subgroup con-
sistent.

20. Why should a measure of poverty satisfy scale invariance (homoge-
neity of degree 0 in incomes and the poverty line)? Which poverty 
measures satisfy scale invariance?

21. Suppose instead of the PSG(x; z) measure one were to use the 
PMG(x; z) measure.

 a.  What is the main constructive difference between these two 
measures?

 b.  What would be the advantages and disadvantages of using the 
PMG(x; z) measure?

22. Why do inequality decompositions have a between-group term but 
poverty decompositions do not?

23. Suppose inequality decreases without growth of mean income. What 
may likely happen to poverty? Suppose growth of mean income 
occurs without a change in inequality. What may likely happen to 
poverty? Explain.
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24. Suppose that the per capita poverty gap measure is used with a rela-
tive poverty line that sets z = αμ for some α > 0. When does one 
distribution have a lower level of relative poverty for all α > 0? (Hint: 
Think Lorenz.)

25. We have already shown that the poverty measures are different from 
each other and differ in their sensitivity to a distribution. Please pro-
vide certain examples with illustrative distributions and poverty lines 
such that 

 a. The SST index rises, but the three FGT indices fall.
 b.  The headcount ratio rises, but the SST index, poverty gap mea-

sure, and squared gap measure fall.
 c.  The poverty gap measure rises, but the headcount ratio, SST, and 

squared gap measures fall.
 d.  The squared gap measure rises, but the headcount ratio, poverty 

gap measure, and SST measure fall.

Notes

 1.  For further discussion on the use of consumption expenditure data ver-
sus income data, see Atkinson and Micklewright (1983) and Grosh and 
Glewwe (2000). 

 2.  For a more detailed discussion of some of these issues, see Deaton (1997).
 3.  For the concept and a more detailed discussion about the principle, see 

Pigou (1912, 24–25); Dalton (1920); Atkinson (1970); Dasgupta, Sen, 
and Starrett (1973); and Rothschild and Stiglitz (1973).

 4.  For further discussion of the concept, see Foster and Shorrocks (1991).
 5.  Going forward in this book, we will use the notation WA(x) and x– inter-

changeably. They both denote the mean of distribution (x).
 6.  The measure was originally proposed by Sen (1976b) and thus we 

named the income standard after him. See also Foster and Sen (1997).
 7.  A related property has been developed by Zheng (2007a). Called unit 

consistency, it has a weaker requirement than the scale invariance 
property. The unit consistency property requires that if one distribu-
tion is more unequal than another distribution, then just changing the 
unit of measurement keeps the former distribution more unequal than 
the latter. The property can be formally stated as follows: for any two 
distributions x and x', if I(x) < I(x'), then I(cx) < I(cx') for any c > 0. 
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For example, if the elements of two distributions are converted from 
Indian rupees to U.S. dollars, then the direction of inequality between 
any two distributions should not change if the inequality measure satis-
fi es unit consistency. An inequality measure that satisfi es scale invari-
ance also satisfi es unit consistency, but the converse is not necessarily 
true. A class of decomposable inequality measures satisfying unit con-
sistency has been developed by Zheng (2007a). In this book, however, 
we focus on relative inequality measures satisfying the scale invariance.

 8.  For a more in-depth theoretical discussion of the transfer sensitivity 
property, see Shorrocks and Foster (1987).

 9.  A geographical interpretation of the residual term can be found in 
Lambert and Aronson (1993), where the residual term is shown to be 
an effect of the re-ranking effect. The inequality of a distribution is 
computed in three steps: (a) within-group inequalities are computed 
in each subgroup; (b) the groups are ranked by their mean incomes 
and a concentration curve representing between-group inequalities is 
constructed; and (c) the Lorenz curve is constructed. The difference 
between the Lorenz curve of the distribution in the third step and the 
concentration curve from the second step is known as the residual term. 

10.  The Lorenz curve was developed by Max Lorenz (1905).
11.  Interested readers, who may desire to have further theoretical under-

standing of the properties and their interrelationship, should see Zheng 
(1997) and Chakravarty (2009).

12.  A related but weaker property has been developed by Zheng (2007b). 
See note 8.

13.  This axiom is also known in the literature as strong transfer (see Zheng 
2000). However, to keep the terminologies comparable across sections, 
we prefer to use the term transfer principle.

14.  A weaker version of this property exists that is known in the literature 
as weak transfer (see Chakravarty 1983), which can be stated as follows: 
if distribution x' is obtained from distribution x by a regressive transfer 
between two poor people while the poverty line is fi xed at z and the 
number of poor does not change, then P(x'; z) > P(x; z). If distribu-
tion x" is obtained from another distribution x by a progressive transfer 
between two poor people while the poverty line is fi xed at z and the 
number of poor does not change, then PS(x"; z) < P(x; z). Note that this 
property is different from the weak transfer principle that we defi ne in 
this book. 
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15.  Previously, Sen (1976b) proposed the index PS(x; z) = PH[PIG + (1 − PIG)-
IGini(xq)], where xq is the income distribution of the poor only. This mea-
sure was modifi ed later by Thon (1979) and Shorrocks (1995).

16.  For a more elaborated discussion on various formulations of the SST 
index, see Xu and Osberg (2003).

17.  Rawls’s welfare function maximizes the welfare of society’s worse-off 
member. “Social and economic inequalities are to be arranged ... to the 
greatest benefi t of the least advantaged...” (Rawls 1971, 302).

18.  For an in-depth discussion on poverty ordering, see Atkinson (1987), 
Foster and Shorrocks (1988), and Ravallion (1994).

19.  Note that the poverty defi cit curve and the generalized Lorenz curve 
have an interesting relationship. They are based on the area under-
neath the cdf and the quantile function, where a quantile function is 
an inverse of a cdf. See fi gure 2.7.

20.  For various approaches to measuring pro-poor growth for a fi xed poverty 
line, see Kakwani and Son (2008).

21.  For a discussion on the poverty-growth-inequality triangle, see 
Bourguignon (2003).

22.  The growth-redistribution decomposition becomes a bit more compli-
cated when there is interregional migration. For such decomposition 
with change in population, see Huppi and Ravallion (1991). An appli-
cation of their method can be found in table 30 of chapter 3.
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Chapter 3

In this chapter, we discuss how to interpret tables and graphs generated by 
the ADePT analysis program. The chapter is organized in six sections: 

• In the fi rst section, we discuss how to interpret results at the country 
level, decomposing across rural and urban areas. 

• In the second and third sections, we move into analyses at a more 
disaggregated level: across subnational regions in the second section 
and across various population subgroups—such as household charac-
teristics, employment situation, and so forth—in the third section. 

• In the fourth and fi fth sections, we perform sensitivity and domi-
nance analyses. These are useful for policy evaluation, because results 
in the fi rst two sections are based on many assumptions, such as 
choice of poverty line and selection of methodologies for measuring 
poverty and inequality. 

• It is always important to check how robust these results are with 
respect to the assumptions. For example, we may assume the poverty 
line to be a certain level of income or per capita expenditure and fi nd 
poverty decreasing over time. Then how can we be sure that poverty 
has not increased for other possible poverty lines? 

• Insights revealed in the fi rst fi ve sections may be helpful when prepar-
ing any report on poverty and inequality. 

• In the fi nal section, we discuss some advanced analyses.

How to Interpret ADePT Results 
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Tables and graphs in this chapter were generated by ADePT’s Poverty 
and Inequality modules using the Integrated Household Survey of Georgia 
dataset for 2003 and 2006. Calculations assumed the equivalence scale 
parameter is 1, which implies that every household member is assumed to 
be adult equivalent. Hence, per capita expenditure was calculated by divid-
ing the total expenditure by the number of household members regardless of 
their age and gender. Calculations assumed the economy-of-scale parameter 
is 1. This implies that no economies of scale exist when two or more indi-
viduals share a household. (Other scale choices are, of course, possible, and 
these parameters can be changed in ADePT.)

Consumption expenditures are in lari (or GEL, the Georgian national 
currency) per month. Many tables use one or two poverty lines of GEL 75.4 
and GEL 45.2 per month. In the fi rst case, if a household fails to meet a 
monthly consumption expenditure of GEL 75.4 for each member in that 
household, then the household (and each member in the household) is 
identifi ed as poor. In the second case, a household is identifi ed as poor if the 
household fails to meet a per capita expenditure of GEL 45.2 per month.

Tables may have an occasional small numerical inconsistency. To 
improve readability, ADePT displays data with a limited number of decimal 
places by rounding the underlying raw data. This process can result in values 
that appear incorrect, such as 29.9 + 1.0 = 31.0 (as opposed to 29.9 + 1.0 = 
30.9, or 29.9 + 1.1 = 31.0). Spreadsheets generated by ADePT (the sources 
for tables in this chapter) include raw data, which are visible in the formula 
bar when a cell is selected.

Rounding numbers also affects how we present some of the results. 
Certain poverty and inequality measures are traditionally reported in 
decimals. However, this presentation does not provide us enough power to 
differentiate between numbers. For example, the Gini coeffi cient of 0.26 
and the Gini coeffi cient of 0.34 both may read as 0.3. Similarly, the FGT2 
poverty index, or the squared poverty gap index, may take reasonable low 
values in decimals such as 0.019 or 0.024. Again, these numbers may be 
signifi cantly different. Therefore, to improve readability, we normalize all 
poverty and inequality fi gures in a 0–100 scale.

The text in this chapter has numerous references to table cells. To help 
you quickly fi nd data in tables, numbers and letters in brackets reference 
table cells by row and column. For example, [3,E] refers to the cell in row 3, 
column E.
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Analysis at the National Level and Rural/Urban 

Decomposition

While preparing a report on poverty and inequality, one would fi rst be inter-
ested in results at the national level. This part of the chapter contains seven 
tables with results at the national level. We then decompose the results 
across urban and rural areas.

Income Distribution across the Population

Initially, understanding income distribution across the population is impor-
tant. A distribution’s density function is the percentage of population that 
falls within a range of per capita expenditure. Figure 3.1 graphs the per 
capita expenditure density function for urban Georgia. The vertical axis 
shows probability density function of consumption expenditures. The hori-
zontal axis is per capita expenditure or any other equivalent achievement.
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  Figure 3.1: Probability Density Function of Urban Georgia
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In fi gure 3.1, the solid curve is urban Georgia’s density function for 2003, 
and the dotted curve is the density function of urban consumption expendi-
ture distribution for 2006. The median is an important income standard that 
can be found in the diagram. It is indicated by the corresponding vertical 
lines: solid line for 2003 and dotted line for 2006.

A density function can also be useful for understanding a distribution’s 
skewness. As can be seen from fi gure 3.1, the density functions for both years 
are positively skewed. However, an important change from 2003 to 2006 is 
that more people mass around the distribution’s median in 2006. We can 
also see that the density functions for both years are unimodal. When more 
than one mode exists, a society is considered to be polarized by consumption 
expenditure or income.

Standard of Living and Inequality across the Population

Table 3.1 reports the mean and median per capita consumption expenditure 
and their growth over time, and the inequality across the population using 
the Gini coeffi cient. It also decomposes them across rural and urban areas 
and across two years: 2003 and 2006. Table rows denote three geographical 
regions: urban area, rural area, and all of Georgia (row 3). Per capita con-
sumption expenditure is measured in lari per month.

Columns A and B report the mean per capita consumption expenditure 
for 2003 and 2006, respectively. Column C reports the percentage change 
or growth in per capita expenditure over the course of these three years. The 
average per capita expenditure of the urban area in 2003 is GEL 128.9 [1,A], 
which is larger than the average rural per capita expenditure of GEL 123.5 
[2,A]. The mean urban per capita expenditure in 2006 is GEL 127.3 [1,B], 

 Table 3.1: Mean and Median Per Capita Consumption Expenditure, Growth, and the Gini 

Coeffi cient

Region

Mean Median Gini coeffi cient

2003
(GEL)

2006
(GEL)

Growth
(%)

2003
(GEL)

2006
(GEL)

Growth
(%) 2003 2006

Change
(%)

A B C D E F G H I

1 Urban 128.9 127.3 −1.2 108.4 101.1 −6.8 33.5 35.6 2.2
2 Rural 123.5 124.8 1.0 101.5 105.3 3.7 35.3 35.1 −0.3
3 Total 126.1 126.0 −0.1 104.7 103.3 −1.4 34.4 35.4 0.9

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
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which fell by 1.2 percent [1,C]. The mean rural per capita expenditure, in 
contrast, increased by 1.0 percent to GEL 124.8 in 2006 [2,B]. Georgia’s 
overall per capita consumption expenditure in 2003 is GEL 126.1 [3,A], 
which fell by 0.1 percent to GEL 126.0 in 2006 [3,B].

Columns D, E, and F report the median per capita expenditures for 
2003 and 2006 and their growth rates. The percentage changes in medians 
or median growths are much larger than the mean per capita expenditure 
growth. The rural median growth is 3.7 percent [2,F], whereas the urban 
median “growth” is –6.8 percent [1,F]. The overall change in median is 
–1.4 percent [3,F].

Columns G, H, and I use the Gini coeffi cient to capture inequality in 
the distribution. The rural Gini coeffi cient has marginally fallen from 35.3 
[2,G] to 35.1 [2,H], while the urban Gini coeffi cient over these three years 
increased from 33.5 in 2003 [1,G] to 35.6 in 2006 [1,H]. The overall Gini 
coeffi cient changed by 0.9 from 34.4 [3,G] to 35.4 [3,H]. (Gini coeffi cient 
is reported on a scale from 0 to 100 in this chapter, rather than from 0 to 1.)

Lessons for Policy Makers

Note that the mean and the median, two different measures of standard of 
living, are differently sensitive to the distribution of per capita consumption 
expenditure. Mean is more sensitive to extreme values, whereas median is 
more robust to extreme values. For example, if the only change in the dis-
tribution of per capita expenditure is at the highest quintile or the lowest 
quintile, the change would be refl ected by the mean, but the median would 
not change. In contrast, in certain situations, when changes occur in the 
middle of the distribution, mean per capita expenditures may remain unal-
tered, but the median may refl ect the change.

It is important to analyze and understand the growth in both these 
measures of central tendency. However, changes in different measures of 
central tendency do not provide enough information about the change 
in the overall distribution. They do not tell us how the spread or inequal-
ity within   the distribution changes over time, which can be captured by 
an inequality measure. In the above exercise, rural mean and median per 
capita expenditure increased, but rural inequality marginally fell. On the 
contrary, the urban inequality has increased over these three years from 
33.5 in 2003 [1,G] to 35.6 in 2006 [1,H], while the mean and median 
have fallen.
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Overall Poverty

Table 3.2 examines the performance of groups of people considered poor. 
It analyzes poverty in Georgia by decomposing across rural and urban areas 
using three different poverty measures: headcount ratio, poverty gap measure, 
and squared gap measure. These three poverty measures belong to the FGT 
(Foster-Greer-Thorbecke) family of poverty measures. Table rows denote 
three geographic regions: urban, rural, and all of Georgia (rows 3 and 6). The 
variable is monthly per capita consumption expenditure in lari. There are 
two poverty lines: GEL 75.4 per month and GEL 45.2 per month.

Columns A and B report headcount ratios for 2003 and 2006, respec-
tively. A region’s headcount ratio is the proportion of the population that 
is poor compared to that region’s total population. When the poverty line 
is GEL 75.4 per month, then the urban headcount ratio in 2003 is 28.1 
percent [1,A]. This means that 28.1 percent of the population in the urban 
area belongs to households that cannot afford the per capita consumption 
expenditure of GEL 75.4 per month. The urban headcount ratio for 2006 is 
30.8 percent [1,B]. Column C reports the change in urban headcount ratios 
over the course of these three years, which is an increase of 2.7 percentage 
points [1,C].

In contrast, the rural headcount ratio decreased by 0.5 percentage point 
from 31.6 percent [2,A] in 2003 to 31.1 percent [2,B] in 2006. Overall, 
Georgia’s poverty headcount has increased by 1.0 percentage point from 
29.9 percent [3,A] to 31.0 percent [3,B]. Similarly, for the poverty line of 

Table 3.2: Overall Poverty

percent

Region

Headcount ratio Poverty gap measure Squared gap measure

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4
1 Urban 28.1 30.8 2.7 8.6 9.3 0.7 3.9 4.0 0.1
2 Rural 31.6 31.1 −0.5 10.7 10.9 0.2 5.2 5.5 0.3
3 Total 29.9 31.0 1.0 9.7 10.1 0.4 4.6 4.8 0.2

Poverty line = GEL 45.2
4 Urban 8.9 9.3 0.4 2.4 2.4 0.0 1.0 1.0 −0.1
5 Rural 11.4 12.1 0.7 3.6 4.0 0.3 1.7 1.9 0.2
6 Total 10.2 10.7 0.5 3.0 3.2 0.2 1.4 1.4 0.1

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
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GEL 45.2 per month, Georgia’s headcount ratio increased from 10.2 percent 
in 2003 [6,A] to 10.7 percent in 2006 [6,B]. The rural headcount ratio in this 
case increased from 11.4 percent [5,A] to 12.1 percent [5,B]. This change 
implies that the proportion of extreme poor (per capita expenditure below 
GEL 45.2) in the rural area increased, but the proportion of nonextreme 
poor (per capita expenditure between GEL 45.2 and GEL 75.4) decreased.

Columns D, E, and F analyze the poverty gap measure in 2003 and 2006. 
The poverty gap measure lies between a minimum of 0 and a maximum of 
100, where the minimum is when no one in a region is poor and the maxi-
mum is when everyone has zero consumption expenditure and the poverty 
line is positive. When the poverty line is GEL 75.4, the urban area’s poverty 
gap measure is 8.6 in 2003 [1,D], which increases by 0.7 to 9.3 in 2006 [1,E]. 
Likewise, the rural area’s poverty gap measure increases by 0.2 from 10.7 in 
2003 [2,D] to 10.9 in 2006 [2,E]. The total increase in poverty gap measure 
is 0.4 from 9.7 [3,D] to 10.1 [3,E]. When the poverty line is GEL 45.2, the 
overall poverty gap measure increases by 0.2 from 3.0 in 2003 [6,D] to 3.2 
in 2006 [6,E].

Columns G, H, and I analyze the squared gap measure. The squared gap 
measure also lies between a minimum of 0 and a maximum of 100, where 
the minimum is when no one in a region is poor and the maximum is when 
everyone has zero consumption expenditure and the poverty line is positive. 
This measure is sensitive to inequality across the poor. Column I shows 
that the rural area’s squared gap measure when the poverty line is GEL 75.4 
increased by 0.3 from 5.2 in 2003 [2,G] to 5.5 in 2006 [2,H]. For the rural 
area it increased by 0.1 point from 3.9 [1,G] to 4.0 [1,H]. A similar pattern 
of changes is visible for the lower poverty line.

Lessons for Policy Makers

Consider the situation when the poverty line is GEL 75.4. From column C, 
one can see that the headcount ratio increased in the urban area by 2.7 per-
centage points and it decreased in the rural area by 0.5 percentage point. In 
other words, the rural area performed better than the urban area in reducing 
the proportion of poor people.

However, when we look at the poverty gap numbers, we see a different 
scenario. It turns out, in fact, from column F that the poverty gaps for both 
regions have registered increases, with the urban area registering a larger 
increase (0.7 point increase in the urban area compared with 0.2 point 
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increase in the rural area). Thus, although the number of poor in the rural 
area decreased, the same is not true when deprivation is measured in terms 
of the average relative shortfall. Column F still refl ects that the increase in 
the rural poverty gap is lower than that of its urban counterpart. But col-
umn I shows that the increase in the squared gap measure is larger in the 
rural area (0.3) than in the urban area (0.2), which implies that inequality 
among the rural poor has been suffi ciently high that despite a fall in the 
headcount ratio, the increase in the squared gap measure is larger than that 
in the urban area.

The change in the rural area’s headcount ratio is quite different when 
the poverty line is GEL 45.2 per month. The increase in rural poverty is 
much higher than the increase in urban poverty by all three measures. In 
fact, the squared gap measure slightly decreases for the urban area. We con-
clude from this result that the situation for the rural area’s extreme poor has 
actually worsened in 2006 compared with 2003.

Distribution of Poor across Rural and Urban Areas

Table 3.3 analyzes the distribution of population and poor people across 
rural and urban areas. Table rows denote three geographic regions: urban, 
rural, and all of Georgia (rows 3 and 6). The variable is per capita consump-
tion expenditure in l per month. There are two poverty lines: GEL 75.4 per 
month and GEL 45.2 per month.

Columns A, B, and C analyze the headcount ratio, that is, the popula-
tion percentage that is poor. Columns A and B report the headcount ratio 

Table 3.3: Distribution of Poor in Urban and Rural Areas

percent

Region

Headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty Line = GEL 75.4

1 Urban 28.1 30.8 2.7 45.6 48.6 3.0 48.5 48.9 0.3
2 Rural 31.6 31.1 −0.5 54.4 51.4 −3.0 51.5 51.1 −0.3
3 Total 29.9 31.0 1.0 100.0 100.0 0.0 100.0 100.0 0.0

Poverty Line = GEL 45.2

4 Urban 8.9 9.3 0.4 42.4 42.3 −0.1 48.5 48.9 0.3
5 Rural 11.4 12.1 0.7 57.6 57.7 0.1 51.5 51.1 −0.3
6 Total 10.2 10.7 0.5 100.0 100.0 0.0 100.0 100.0 0.0

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
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for the years 2003 and 2006, respectively, while column C reports the differ-
ence across these two years. Columns D, E, and F report the distribution of 
poor people across rural and urban areas, with the number in the cell being 
the proportion of poor people located in that region. Another way of seeing 
this is as the region’s percentage contribution to poverty, or the headcount 
ratio times the share of the region’s overall population divided by the overall 
headcount ratio. Columns G, H, and I provide the population distribution 
across rural and urban areas, or the percentage of the overall population 
residing in that region.

The headcount ratio for the urban area’s population in 2003 is 28.1 
percent [1,A]. In other words, 28.1 percent of the urban area popula-
tion is poor. The headcount ratio increased for urban Georgia in 2006 to 
30.8 percent [1,B].

Of all poor people in Georgia in 2003, 45.6 percent [1,D] reside in 
urban areas. The share of all poor people living in urban ar eas increases to 
48.6 percent in 2006 [1,E]. This represents an increase of 3.0 percentage 
points [1,F]. The shares of rural and urban area population do not change 
much over the course of the three years. But when the poverty line is GEL 
75.4 per month, the share of poor in urban areas increases in 2006 because 
of the increase in headcount ratio.

Lessons for Policy Makers

This exercise has a very useful policy implication because the headcount 
ratio does not provide any information about where most poor people live. 
A region may have a lower headcount ratio, but if that region is highly 
populated, then the number of poor may be high. Thus, policies should focus 
on regions with high headcount ratios as well as regions with larger shares 
of poor.

Composition of the FGT Family of Indices

Table 3.4 analyzes the composition of poverty fi gures reported in table 3.2. 
Table rows denote three geographic regions: urban, rural, and all of Georgia 
(rows 3 and 6). The variable is per capita consumption expenditure in lari 
per month. There are two poverty lines: GEL 75.4 Lari per month and GEL 
45.2 Lari per month.
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Table 3.4: Composition of FGT Family of Indices by Geography

Region

Headcount ratio 
(%)

Income gap 
ratio

Poverty gap 
measure

GE(2) among 
the poor

Squared gap 
measure

A B C D E

Poverty line = GEL 75.4

2003
1 Urban 28.1 30.5 8.6 4.6 3.9
2 Rural 31.6 33.7 10.7 5.9 5.2
3 Total 29.9 32.3 9.7 5.3 4.6

2006
4 Urban 30.8 30.1 9.3 4.1 4.0
5 Rural 31.1 34.9 10.9 6.4 5.5
6 Total 31.0 32.6 10.1 5.3 4.8

Poverty line = GEL 45.2

2003
7 Urban 8.9 26.8 2.4 4.0 1.0
8 Rural 11.4 31.8 3.6 5.3 1.7
9 Total 10.2 29.7 3.0 4.7 1.4

2006
10 Urban 9.3 25.7 2.4 3.3 1.0
11 Rural 12.1 32.7 4.0 5.7 1.9
12 Total 10.7 29.7 3.2 4.7 1.4

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.

The headcount ratio reports the proportion of people within a region 
who are poor. The poverty gap measure and the squared gap measure can be 
broken down as follows:

• The poverty gap measure is the headcount ratio multiplied by the 
income gap ratio divided by 100.

• The income gap ratio is the average per capita expenditure shortfall 
from the poverty line divided by the poverty line.

The squared gap (PSG) can be decomposed into three factors: headcount 
ratio (PH), income gap ratio (PIG), and generalized entropy measure (GE) 
for α = 2 among the poor, such that PSG = PH [P2

IG + 2(1 − PIG)2 IGE (x; 2)].
These measures make possible a richer set of information for policy 

analysis. An improvement in the poverty gap measure may result from a 
reduction in the number of poor or a reduction in the average normalized 
gap among the poor. Similarly, an improvement in the squared coeffi cient of 
variation may result from a decrease in the number of poor, a decrease in the 



165

Chapter 3: How to Interpret ADePT Results 

average normalized gap among the poor, or a decrease in inequality among 
the poor in terms of the generalized entropy measure.

For the GEL 75.4 per month poverty line, the poverty gap measure 
for Georgia increased from 9.7 in 2003 [3,C] to 10.1 in 2006 [6,C]. This 
increase comes from both a headcount ratio increase from 29.9 percent 
[3,A] to 31.0 percent [6,A] and an income gap ratio increase from 32.3 [3,B] 
to 32.6 [6,B]. However, the urban poverty gap measure increase derives 
from an increase in the headcount ratio and a reduction in the income gap 
ratio. In contrast, the rural poverty gap measure increase was a result of 
an increase in the income gap ratio because the rural headcount ratio fell 
slightly between 2003 and 2006.

Some interesting results are also evident when the poverty line is set 
at GEL 45.2 per month. The urban poverty gap measure does not change 
because an increase in the number of poor has been offset by an income 
gap ratio decrease. In fact, the total poverty gap measure increase from 3.0 
in 2003 [9,C] to 3.2 in 2006 [12,C] was caused solely by an increase in the 
headcount ratio from 10.2 percent [9,A] to 10.7 percent [12,A], because the 
income gap ratio remained unchanged at 29.7 [9,B] and [12,B].

Lessons for Policy Makers

The squared gap measure depends on another component: inequality among 
the poor. Surprisingly, inequality among the poor does not change between 
2003 and 2006 for both the higher and the lower poverty lines. For both 
poverty lines and both years, inequality among the poor is higher in the 
rural area. Thus, not only does the number of rural poor increase when the 
poverty line is GEL 45.2, but also the average normalized shortfalls and 
inequality across the poor go up.

Quantile Incomes and Quantile Ratios

Besides analyzing poverty, one must understand the situation of the rela-
tively poor population compared to the rest of the population. Table 3.5 
reports fi ve quantile per capita expenditures (PCEs) and certain quantile 
ratios of per capita consumption expenditure for Georgia and its rural 
and urban areas. It compares two different periods: 2003 and 2006. Table 
rows denote three geographic regions: urban, rural, and all of Georgia 
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(rows 3 and 6). Per capita consumption expenditure is measured in lari 
per month.

Columns A through E denote quantile PCE for fi ve percentiles. Column 
A denotes the quantile PCE at the 10th percentile, column B denotes the 
quantile PCE at the 20th percentile, and so forth. Columns F through I 
report the quantile ratios based on the quantile PCE reported in the fi rst 
fi ve columns. Column F, for example, reports the 90/10 ratio, computed as 
(quantile PCE at the 90th percentile – quantile PCE at the 10th percentile) / 
quantile PCE at the 90th percentile. The larger the 90/10 ratio, the larger is 
the gap between these two percentiles.

In 2003, the quantile PCE at the 10th percentile of Georgia is GEL 44.8 
[3,A], implying that 10 percent of the Georgian population lives with per 
capita consumption expenditure less than 44.8. Similarly, 20 percent of the 
Georgian population lives with per capita consumption expenditure less than 
61.4 [3,B]. In contrast, 10 percent of the Georgian population lives with per 
capita expenditure more than GEL 229.8 [3,E], which is the 90th percentile.

The corresponding 90/10 quantile ratio using these two quantile PCEs 
is 80.5 [3,F], which means that the gap between the two percentiles is 
80.5 percent of the quantile PCE at the 90th percentile. Stated another 
way, the quantile PCE at the 90th percentile is 100 / (100 – 80.5) = 5.1 
times larger than the 10th percentile. Likewise, the quantile PCE at the 
80th percentile of Georgia is GEL 177.0 [3,D], which is nearly three times 
larger than the quantile PCE at the 20th percentile [3,B]. The correspond-
ing 80/20 measure is 65.3 [3,G]. Inequality between the quantile PCE at 

 Table 3.5: Quantile PCEs and Quantile Ratios of Per Capita Consumption Expenditure

Region

Percentile

F G H I

10th
(GEL)

20th
(GEL)

50th (median, 
GEL)

80th
(GEL)

90th
(GEL)

A B C D E

2003
1 Urban 47.4 64.1 108.4 182.1 229.6 79.3 64.8 52.8 56.3
2 Rural 42.2 58.8 101.5 173.1 230.0 81.6 66.0 55.9 58.4
3 Total 44.8 61.4 104.7 177.0 229.8 80.5 65.3 54.4 57.3

2006
4 Urban 46.7 61.2 101.1 174.0 231.3 79.8 64.8 56.3 53.8
5 Rural 41.0 58.5 105.3 175.9 229.1 82.1 66.8 54.0 61.1
6 Total 43.8 59.8 103.3 175.0 230.5 81.0 65.8 55.2 57.6

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: PCE = per capita expenditure.

Quantile ratio

90-10 80-20 90-50 50-10
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the 90th percentile per capita expenditure and the quantile PCE at the 
10th percentile is larger in the rural area (81.6 [2,F]) than in the urban area 
(79.3 [1,F]) in 2003. The 90/10 measure increases for Georgia and both its 
urban and rural areas in 2006 [4,F] and [5,A].

Lessons for Policy Makers

This table is helpful in holistically understanding inequality across the per 
capita consumption expenditure distribution. The mean and median are 
measures of a distribution’s central tendency and the distribution’s size, while 
the Gini coeffi cient is a single measure of the overall distribution that does 
not provide any information about which part of the distribution changed.

The four additional quantile PCEs reported in table 3.5 provide infor-
mation about different parts of the distribution. For example, the Gini 
coeffi cient analysis in table 3.1 shows that inequality in the rural area has 
decreased, whereas inequality in the urban area has increased. Which part 
of the distribution is responsible for such changes? The Gini coeffi cient does 
not provide an answer to this question. A decrease in inequality in the rural 
area has not been obtained by increasing the income of the poorest because 
the quantile PCE at the 10th percentile in the rural area fell to GEL 41.0 in 
2006 [5,A] compared to GEL 42.2 in 2003 [2,A]. The quantile PCE at the 
80th percentile increased from GEL 173.1 in 2003 [2,D] to GEL 175.9 in 
2006 [5,D]. In other words, even though the Gini coeffi cient fell, inequality 
between the quantile PCEs at the 80th percentile and the 20th percentile 
increased in the rural area: from 66.0 in 2003 [2,G] to 66.8 in 2006 [5,G], 
according to the 80/20 measure.

Partial Means and Partial Mean Ratios

Table 3.6 reports two lower partial means, two upper partial means, and two 
partial mean ratios, based on the partial means between two periods: 2003 
and 2006. Table rows denote three geographic regions: urban, rural, and all 
of Georgia (rows 3 and 6). Per capita consumption expenditure is measured 
in lari per month.

Columns A and B report two lower partial means (LPM), columns C and 
D report two upper partial means (UPM), and columns E and F report partial 
mean ratios. The fi rst partial mean ratio, for example, reports the 90/10 
partial mean ratio, computed as (90th percentile UPM – 10th percentile 
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LPM) / 90th percentile UPM). The larger the 90/10 ratio, the larger is the 
gap between these two partial means.

A lower partial mean is the average per capita expenditure of all people 
below a specifi c percentile cutoff. An upper partial mean is the mean per 
capita expenditure above a specifi c percentile. A partial mean ratio captures 
inequality between a lower partial mean and an upper partial mean.

It is evident from the table that the average per capita expenditure of the 
urban Georgian population’s poorest 20 percent is only GEL 45.2 in 2003 
[1,B], whereas the average income of the population’s richest 20 percent is 
GEL 261.8 [1,D]. The corresponding 80/20 partial mean ratio is 82.7 [1,F], 
which means that the gap between the two partial means is 82.7 percent 
of the 80th upper partial mean. Stated another way, the mean per capita 
expenditure of the population’s richest 20 percent is 100 / (100 – 82.7) = 
5.8 times larger than the mean per capita expenditure of the population’s 
poorest 20 percent. Likewise, in rural areas, the mean per capita expendi-
ture of the population’s richest 20 percent (GEL 259.1 [2,D]) is 6.5 times 
larger than the mean per capita expenditure of the population’s poorest 
20 percent (GEL 39.9 [2,B]) in 2003. The corresponding 80/20 partial mean 
ratio is 84.6 [2,F].

Lessons for Policy Makers

In table 3.5, we reported different percentiles of a distribution. For example, 
the 10th percentile for Georgia in 2003 is GEL 44.8 [3,A], meaning that 

Table 3.6: Partial Means and Partial Mean Ratios

Region

Lower partial mean Upper partial mean

10th percentile
(GEL)

20th percentile
(GEL)

90th percentile
(GEL)

80th percentile
(GEL)

A B C D E F

2003
1 Urban 34.5 45.2 319.5 261.8 89.2 82.7
2 Rural 29.0 39.9 321.3 259.1 91.0 84.6
3 Total 31.5 42.3 320.4 260.5 90.2 83.8

2006
4 Urban 34.5 44.3 347.7 273.5 90.1 83.8
5 Rural 27.8 39.0 317.0 258.2 91.2 84.9
6 Total 30.8 41.6 332.0 265.7 90.7 84.4

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.

Partial mean ratio

90-10 80-20
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10 percent of the Georgian population lives with a per capita expendi-
ture less than GEL 44.8. But what is the average income of these people? 
Similarly in table 3.5, 10 percent of the Georgian population has a per 
capita expenditure more than GEL 229.8 [3,E], which is the 90th percen-
tile for Georgia, but we do not know exactly how rich this group is. Partial 
means are useful for answering this question, and the partial mean ratios tell 
us the difference in the average per capita expenditures between a poorer 
and a richer group.

Distribution of Population across Quintiles

Table 3.7 analyzes the population distribution in Georgia and its rural and 
urban areas across fi ve quintiles of per capita consumption expenditure. 
It compares two time periods: 2003 and 2006. Table rows denote three 
geographic regions: urban, rural, and all of Georgia (row 1). Per capita 
consumption expenditure is measured in lari per month. Each of the fi ve 
columns denotes a quintile. Column A denotes the lowest, or fi rst, quintile, 
column B denotes the second quintile, and so forth.

All cells in row 1 have a value of 20, obtained by dividing Georgia’s 
entire population into fi ve equal groups in terms of per capita expenditure. 
Each group contains 20 percent of the population. The fi fth quintile con-
tains the richest 20 percent of the population, the fourth quintile consists 
of the second-richest 20 percent of the population, and so on, and the fi rst 
quintile consists of the poorest 20 percent of the population.

 Table 3.7: Distribution of Population across Quintiles

percent

Region

Quintile

First Second Third Fourth Fifth

A B C D E

1 Total 20.0 20.0 20.0 20.0 20.0

2003
2 Urban 18.1 19.6 20.4 20.8 21.1
3 Rural 21.8 20.4 19.6 19.2 19.0

2006
4 Urban 19.0 21.6 20.6 19.2 19.7
5 Rural 21.0 18.5 19.4 20.8 20.3

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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Rows 2 and 3 report the population distribution in urban and rural areas 
for 2003 using the national quintiles. Consider the value 18.1 [2,A] in the 
urban row. This value implies that 18.1 percent of the total urban popula-
tion falls in the fi rst quintile. The next cell is 19.6 [2,B], meaning that 
19.6 percent of the total urban population falls in the second quintile. Similarly, 
21.1 percent [2,E] of the total urban population falls in the fi fth quintile.

The picture is slightly different for the rural area, where 19.0 percent 
[3,E] of the total rural population falls in the fi fth quintile and 21.8 per-
cent [3,A] falls in the lowest quintile. In 2006, the urban population share 
in the fi rst two quintiles increased to 19.0 percent [4,A] and 21.6 percent 
[4,B], respectively, but the rural population share in the same two quintiles 
decreased to 21.0 percent [5,A] and 18.5 percent [5,B], respectively. In 
contrast, the rural population share in the two highest quintiles increased, 
[3,D] and [3,E] compared with [5,D] and [5,E], but the urban population 
share in the two highest quintiles decreased, [2,D] and [2,E] compared with 
[4,D] and [4,E].

Lessons for Policy Makers

This table is helpful in understanding the population’s mobility across dif-
ferent consumption expenditure levels in different regions. A single welfare 
measure—inequality or poverty—cannot refl ect this mobility.

Analysis at the Subnational Level

Analyses in the previous section concentrate at the national level and 
across rural and urban areas. For better policy implementation, we need to 
understand the results at a more disaggregated level, such as across subna-
tional or geographic regions, or across population groups having different 
characteristics.

In this section, we conduct subnational analysis, and in the next section, 
we conduct analysis across other population subgroups. Some tables here are 
similar to tables discussed in the previous section, and we occasionally refer 
to those tables.

During the analysis across population subgroups, we assume the poverty 
line to be the same across all subgroups. However, in the ADePT program 
different poverty lines can be used for different subgroups in the analyses.
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Standard of Living and Inequality

Table 3.8 results from calculating the mean and median per capita consump-
tion expenditure, and the Gini coeffi cient, for Georgia’s subnational regions. 
Columns A and B report the mean per capita consumption expenditure for 
years 2003 and 2006, respectively. Column C reports the percentage change 
or growth in per capita expenditure over the course of these three years.

The mean per capita expenditure decreases for some regions (such as 
Kakheti [1,C], Tbilisi [2,C], and Imereti [9,C]) and increases for others 
(such as Shida Kartli [3,C], Kvemo Kartli [4,C], and Samtskhe-Javakheti 
[5,C]). Imereti registers the steepest fall (7.0 percent [9,C]) in mean per 
capita consumption expenditure, from GEL 150.3 in 2003 [9,A] to GEL 
139.9 in 2006 [9,B]. In contrast, Kvemo Kartli refl ects the highest increase 
in mean per capita expenditure, 16.1 percent [4,C]. It increased from GEL 
93.5 in 2003 [4,A] to GEL 108.5 in 2006 [4,B].

Columns D, E, and F report median per capita expenditures and their 
growth. Although the change in overall median is −1.4 percent [11,F] (much 
larger than the change in overall mean), changes in subnational regions are 
mixed. For Kvemo Kartli, the growths of mean and median are almost the 
same [4,C] and [4,F]. For Samtskhe-Javakheti, the growth in mean [5,C] is 
three times larger than the growth of median [5,F]. In  contrast, the growth 

 Table 3.8: Mean and Median Per Capita Income, Growth, and the Gini Coeffi cient across 

Subnational Regions

Region

Mean Median Gini coeffi cient

2003
(GEL)

2006
(GEL)

Growth
(%)

2003
(GEL)

2006
(GEL)

Growth
(%) 2003 2006

Change 
(%)

A B C D E F G H I

1 Kakheti 107.9 102.2 −5.2 92.7 80.4 −13.2 34.4 38.5 4.0
2 Tbilisi 144.5 143.1 −0.9 122.2 111.4 −8.8 32.1 36.4 4.3
3 Shida Kartli 122.9 125.6 2.3 98.7 101.7 3.0 36.6 35.9 −0.7
4 Kvemo Kartli 93.5 108.5 16.1 81.0 94.1 16.2 32.6 32.7 0.1
5 Samtskhe-Javakheti 116.5 121.5 4.3 98.8 100.3 1.5 32.9 31.1 −1.8
6 Ajara 107.8 101.8 −5.6 91.6 83.3 −9.0 33.9 34.4 0.4
7 Guria 134.3 125.6 −6.5 113.9 101.3 −11.1 33.9 35.0 1.1
8 Samegrelo 117.2 125.1 6.7 97.0 109.5 12.8 34.1 32.3 −1.9
9 Imereti 150.3 139.9 −7.0 128.6 122.4 −4.8 33.0 32.9 −0.1

10 Mtskheta-Mtianeti 113.0 123.6 9.3 103.7 96.7 −6.7 33.5 37.4 3.9
11 Total 126.1 126.0 −0.1 104.7 103.3 −1.4 34.4 35.4 0.9

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
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of median in Samegrelo [8,F] is twice as large as the growth of mean per 
capita consumption expenditure [8,C]. The most interesting pattern can be 
seen for Mtskheta-Mtianeti, where the mean grows by 9.3 percent [10,C], 
but the median falls by 6.7 percent [10,F].

Columns G, H, and I analyze inequality within subnational regions 
using the Gini coeffi cient, which lies between 0 and 100. Although the 
overall Gini coeffi cient has increased by 0.9 [11,I], a mixed picture is 
found across subnational regions. In Tbilisi and Kakheti, inequality rises by 
4.3 percent [2,I] and 4.0 percent [1,I], respectively. In Samtskhe-Javakheti, 
inequality falls by 1.8 percent [5,I], while in Kvemo Kartli and Imereti, the 
Gini coeffi cient changes by a meager 0.1 [5,I] and [9,I], going up and down, 
respectively.

Headcount Ratio and the Distribution of Poor

Table 3.9 analyzes the headcount ratio of Georgia by population subgroup, 
where each subgroup is classifi ed by subnational regions—such as Kakheti, 
Ajara, and Imereti—which could be states or provinces. The poverty line 
for this table is GEL 75.4 per month (we use only one poverty line here, but 
the analysis could be conducted for any number of poverty lines).

 Table 3.9: Headcount Ratio by Subnational Regions, 2003 and 2006

percent

Region

Headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4

1 Kakheti 38.9 46.2 7.3 12.6 13.8 1.3 9.7 9.3 −0.4
2 Tbilisi 20.9 25.2 4.3 17.1 20.4 3.3 24.6 25.2 0.6
3 Shida Kartli 35.2 30.8 −4.5 8.3 7.2 −1.1 7.0 7.2 0.2
4 Kvemo Kartli 44.4 35.1 −9.3 16.8 12.2 −4.6 11.3 10.8 −0.5
5 Samtskhe-Javakheti 30.0 24.4 −5.7 4.6 3.8 −0.8 4.6 4.8 0.2
6 Ajara 37.1 44.6 7.5 10.7 13.7 2.9 8.7 9.5 0.8
7 Guria 25.3 34.4 9.2 2.7 3.5 0.7 3.2 3.1 −0.1
8 Samegrelo 33.5 29.4 −4.1 11.8 9.0 −2.8 10.5 9.5 −1.1
9 Imereti 20.6 23.0 2.3 12.1 13.4 1.3 17.5 18.0 0.5

10 Mtskheta-Mtianeti 34.3 35.2 0.9 3.3 3.1 −0.2 2.9 2.7 −0.2
11 Total 29.9 31.0 1.0 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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Table rows list subnational regions. Columns A, B, and C analyze 
headcount ratios. Columns D, E, and F outline the distribution of poor 
people across the subgroups, with the number in the cell being the pro-
portion of all poor people in the country that are included in that sub-
group. Another way of seeing this is the percentage contribution of the 
subgroup to overall poverty, or the headcount ratio times the population 
share in that group, divided by the overall headcount ratio. Columns G, 
H, and I depict the population distribution in subnational regions, or the 
percentage of the population that resides in that region. Row 11 shows 
that the overall headcount ratio increases from 29.9 percent in 2003 
[11,A] to 31.0 percent in 2006 [11,B], refl ecting a 1.0 percentage point 
(rounded) increase.

In cell [1,A], we fi nd that in 2003, 38.9 percent of the population in 
Kakheti is poor. In other words, the headcount ratio for this population 
subgroup is 38.9 percent. Cell [1,B] is 46.2, the headcount ratio for the 
same population subgroup in 2006. Thus, the headcount increased by 
7.3 percentage points [1,C] over the course of these three years. In row 4, we 
see that Kvemo Kartli’s headcount ratio decreased by 9.3 percentage points, 
from 44.4 percent [4,A] to 35.1 percent [4,B]. The headcount ratio also fell 
between 2003 and 2006 in other regions, such as Shida Kartli [3,C] and 
Samtskhe-Javakheti [5,C].

Cell [1,D] is 12.6, meaning that of all poor people in Georgia in 2003, 
12.6 percent can be found in Kakheti. The share of all poor living in 
Kakheti increases to 13.8 percent in 2006 [1,E], an increase of 1.3 percentage 
points.

Now compare Kvemo Kartli and Imereti. Clearly, Kvemo Kartli’s pov-
erty headcount ratio (44.4 percent [4,A]) is more than twice as large as 
Imereti’s poverty headcount ratio (20.6 percent [9,A]) in 2003. However, 
the share of all poor people is only around 40 percent larger in Kvemo 
Kartli (16.8 percent in Kvemo Kartli [4,D], compared with 12.1 percent 
in Imereti [9,D]). This is due to the different population shares of the two 
regions as given in the table’s fi nal columns. The population share living 
in Imereti in 2003 is 17.5 percent [9,G], while the Kvemo Kartli share 
is only 11.3 percent [4,G]. Therefore, a policy maker should take into 
account a region’s population share in addition to the headcount ratio, 
because a region may have a lower headcount ratio because of a higher 
number of poor.
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Poverty Gap Measure and Subnational Contribution 

to Overall Poverty

Table 3.10 analyzes Georgia’s poverty gap measure across subnational regions. 
The poverty line is GEL 75.4 per month. Table rows list subnational regions. 
Columns A, B, and C analyze poverty gap measures for 2003, 2006, and the 
changes over time. Columns D, E, and F report the percentage contribution 
of the subnational regions to the overall poverty gap measure. Columns G, 
H, and I depict the population distribution of the subnational regions, or the 
percentage of the overall population that resides in each region.

The overall poverty gap measure increases from 9.7 in 2003 [11,A] to 
10.1 in 2006 [11,B], refl ecting a 0.4 point increase [11,C]. For Kakheti, 
the poverty gap measure in 2003 is 13.4 [1,A]. The poverty gap measure 
for the same population subgroup in 2006 is 17.8 [1,B]. Thus, the poverty 
gap measure increased by 4.4 points [1,C] over three years. The poverty gap 
measure in Kvemo Kartli decreased by 3.5 points, from 15.4 in 2003 [4,A] to 
11.9 in 2006 [4,B]. The poverty gap measure also fell between 2003 and 2006 
in other regions, such as Samegrelo [8,C] and Mtskheta-Mtianeti [10,C]. 
Kakheti’s contribution to the overall poverty gap measure is 13.4 percent 
[1,D]. Its contribution increased to 16.3 percent in 2006 [1,E], an increase 
of 2.9 percentage points [1,F].

Table 3.10: Poverty Gap Measure by Subnational Regions

Region

Poverty gap measure
Contribution to 

overall poverty (%)
Distribution of 
population (%)

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 

1 Kakheti 13.4 17.8 4.4 13.4 16.3 2.9 9.7 9.3 −0.4
2 Tbilisi 5.5 7.3 1.8 14.0 18.2 4.2 24.6 25.2 0.6
3 Shida Kartli 11.7 10.9 −0.8 8.5 7.8 −0.7 7.0 7.2 0.2
4 Kvemo Kartli 15.4 11.9 −3.5 18.1 12.8 −5.3 11.3 10.8 −0.5
5 Samtskhe-Javakheti 10.0 6.6 −3.4 4.7 3.2 −1.6 4.6 4.8 0.2
6 Ajara 12.8 14.6 1.8 11.5 13.7 2.2 8.7 9.5 0.8
7 Guria 8.3 10.6 2.3 2.8 3.3 0.5 3.2 3.1 −0.1
8 Samegrelo 11.0 8.8 −2.2 12.0 8.2 −3.8 10.5 9.5 −1.1
9 Imereti 6.1 7.5 1.4 11.1 13.4 2.4 17.5 18.0 0.5

10 Mtskheta-Mtianeti 13.1 11.7 −1.4 3.9 3.1 −0.8 2.9 2.7 −0.2
11 Total 9.7 10.1 0.4 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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Now compare Guria and Imereti. Clearly, Guria’s poverty gap measure 
(8.3 [7,A]) is larger than Imereti’s poverty gap measure (6.1 [9,A]) in 2003. 
But Guria’s contribution is only 2.8 percent [7,D], whereas Imereti’s contri-
bution is 11.1 percent [9,D]. The contribution of subnational regions to the 
overall poverty gap and the share of poor in each region are quite different. 
The share of poor in each of Kakheti and Ajara is almost identical in 2006 
(9.3 percent for Kakheti [1,H], compared with 9.5 percent in Ajara [6,H]), 
but their contributions to the total poverty gap measure are quite different 
(16.3 percent in Kakheti [1,E], compared with 13.7 percent in Ajara [6,E]). 
Thus, the average normalized shortfall of per capita expenditure from the 
poverty line is much higher in Kakheti, and that is not captured by the 
headcount ratio analysis.

Squared Gap Measure and Subnational Contribution 

to Overall Poverty

Table 3.11 analyzes Georgia’s squared gap measure across subnational 
regions. The poverty line is GEL 75.4 per month. Table rows list subna-
tional regions. Columns A, B, and C analyze the squared gap measure for 
2003, 2006, and the difference over time. Columns D, E, and F report the 

Table 3.11: Squared Gap Measure by Subnational Regions

Region

Squared gap measure
Contribution to overall 

poverty (%)
Distribution of 
population (%)

2003 2006 Change (%) 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 

1 Kakheti 6.6 9.4 2.7 14.0 18.2 4.2 9.7 9.3 −0.4
2 Tbilisi 2.1 3.0 0.9 11.4 15.9 4.6 24.6 25.2 0.6
3 Shida Kartli 6.0 5.5 −0.6 9.3 8.2 −1.1 7.0 7.2 0.2
4 Kvemo Kartli 7.8 6.2 −1.7 19.4 13.9 −5.5 11.3 10.8 −0.5
5 Samtskhe-Javakheti 4.8 2.8 −2.0 4.8 2.9 −1.9 4.6 4.8 0.2
6 Ajara 6.4 6.8 0.5 12.1 13.6 1.5 8.7 9.5 0.8
7 Guria 3.7 4.6 0.9 2.6 3.0 0.4 3.2 3.1 −0.1
8 Samegrelo 5.2 3.7 −1.4 11.9 7.4 −4.5 10.5 9.5 −1.1
9 Imereti 2.7 3.6 0.9 10.3 13.6 3.3 17.5 18.0 0.5

10 Mtskheta-Mtianeti 6.8 5.9 −0.8 4.2 3.3 −0.9 2.9 2.7 −0.2
11 Total 4.6 4.8 0.2 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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percentage contribution of the subnational regions to the overall squared 
gap measure. Columns G, H, and I depict the population distribution of 
the subnational regions, or the percentage of the overall population that 
resides in each region. Row 11 shows that the overall squared gap mea-
sure increased from 4.6 in 2003 [11,A] to 4.8 in 2006 [11,B], refl ecting a 
0.2 point increase [11,C].

The squared gap measure for Kakheti is 6.6 in 2003 [1,A]. The squared 
gap measure for the same population subgroup is 9.4 in 2006 [1,B]. Thus, 
the squared gap measure increased by 2.7 points in three years [1,C]. The 
squared gap measure in Kvemo Kartli decreased by 1.7 points, from 7.8 in 
2003 [4,A] to 6.2 in 2006 [4,B]. The squared gap measure also fell between 
2003 and 2006 in other regions, such as Samegrelo [8,C] and Mtskheta-
Mtianeti [10,C]. Kakheti’s contribution to the overall squared gap measure 
in 2003 is 14.0 percent [1,D]. The contribution increased to 18.2 percent in 
2006 [1,E], an increase of 4.2 percentage points [1,F].

Lessons for Policy Makers

Comparing the contribution of subnational regions to the overall squared 
gap measure to the contribution to the overall squared gap measure and 
the share of poor in each region, we see they are not necessarily the same. 
Tbilisi’s contribution to overall poverty in 2006 is larger than Kakheti’s 
contribution when poverty is measured by headcount ratio and poverty 
gap measure, but Tbilisi’s contribution is lower in 2006 (3.0 [2,B]) than 
that of Kakheti (9.4 [1,B]) when poverty is measured using the squared gap 
measure. This fi nding may refl ect that inequality across the poor, captured 
by the squared normalized shortfalls, is much higher in Kakheti, and that 
is not captured by the analysis based on headcount ratio or poverty gap 
measure.

Quantile Incomes and Quantile Ratios

In addition to analyzing poverty, understanding how a population’s poor 
segment compares to the rest of the population is important. Table 3.12 
reports quantile per capita expenditure for fi ve percentiles and certain 
quantile ratios of per capita consumption expenditure for Georgia’s sub-
national regions in 2003. Each of the fi rst fi ve columns denotes a quantile 
PCE. Column A denotes the quantile PCE at the 10th percentile, column 
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 Table 3.12: Quantile PCE and Quantile Ratio of Per Capita Consumption Expenditure, 2003

Region

Quantile PCE

90-10 
(%)

80-20 
(%)

90-50 
(%)

50-10 
(%)

10th 
percentile 

(GEL)

20th 
percentile 

(GEL)

50th 
percentile 
(median, 

GEL)

80th 
percentile 

(GEL)

90th 
percentile 

(GEL)

A B C D E F G H I

1 Kakheti 37.8 52.6 92.7 150.4 191.1 80.2 65.0 51.5 59.2
2 Tbilisi 56.0 74.3 122.2 202.8 252.9 77.9 63.3 51.7 54.2
3 Shida Kartli 38.6 55.9 98.7 169.8 228.4 83.1 67.1 56.8 60.9
4 Kvemo Kartli 34.3 48.3 81.0 126.5 165.1 79.2 61.8 51.0 57.7
5 Samtskhe-Javakheti 43.0 61.2 98.8 160.5 190.2 77.4 61.9 48.0 56.5
6 Ajara 37.8 53.1 91.6 146.5 203.3 81.4 63.7 54.9 58.7
7 Guria 47.7 64.0 113.9 189.1 241.9 80.3 66.1 52.9 58.1
8 Samegrelo 41.2 56.2 97.0 160.7 208.5 80.2 65.0 53.5 57.5
9 Imereti 54.0 74.1 128.6 211.6 267.0 79.8 65.0 51.8 58.0

10 Mtskheta-Mtianeti 33.9 52.5 103.7 162.0 200.1 83.1 67.6 48.2 67.3
11 Total 44.8 61.4 104.7 177.0 229.8 80.5 65.3 54.4 57.3

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: PCE = per capita expenditure.

Quantile ratio

B denotes the quantile PCE at the 20th percentile, column C denotes the 
median, column D denotes the quantile PCE at the 80th percentile, and 
column E denotes the quantile PCE at the 90th percentile.

Columns F through I report the quantile ratios based on the quantiles 
reported in the fi rst fi ve columns. Column G, for example, reports the 80/20 
ratio, computed as (quantile PCE at the 80th percentile – quantile PCE at 
the 20th percentile) / quantile PCE at the 80th percentile. The larger the 
80/20 ratio, the larger is the gap between these two percentiles.

In 2003, the quantile PCE at the 10th percentile of Kakheti is 37.8 [1,A], 
which implies that 10 percent of the population in Kakheti lives with per 
capita consumption expenditure less than GEL 37.8. Similarly, 20 percent 
of Kakheti’s population lives with per capita consumption expenditure less 
than GEL 52.6 [1,B]. In contrast, 10 percent of people in Kakheti live with 
per capita expenditure more than GEL 191.1 [1,E], the quantile PCE at the 
90th percentile. The corresponding 90/10 measure using these two quantile 
PCEs is 80.2 [1,F], meaning that the gap between the two quantile PCEs is 
80.2 percent of the quantile PCE at the 90th percentile. Described another 
way, the quantile PCE at the 90th percentile is 100 / (100 – 80.2) = 5.1 
times larger than the quantile PCE at the 10th percentile.

Likewise, the quantile PCE at the 80th percentile of Kakheti is 
GEL 150.4 [1,D], nearly three times larger than the quantile PCE at the 
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20th percentile per capita expenditure [1,B]. It is evident that Shida Kartli 
has a lower quantile PCE at the 10th percentile than Samegrelo but a larger 
quantile PCE at the 90th percentile. As a result, the 90/10 quantile ratio of 
Shida Kartli [3,F] is higher than the 90/10 quantile ratio of Samegrelo [8,F].

Lessons for Policy Makers

This table is helpful in holistically understanding inequality across the per 
capita consumption expenditure distribution. The mean and median measure 
a distribution’s central tendency and measure. The Gini coeffi cient is a single 
measure of the overall distribution, but it does not provide any information 
about which part of the distribution has changed. The four additional quan-
tile PCEs reported in the table provide further information about different 
parts of the distribution.

Partial Means and Partial Mean Ratios

Table 3.13 reports two lower partial means, two upper partial means, and 
two partial mean ratios for Georgia’s subnational regions in 2003. Columns 
A and B report the two lower partial means, columns C and D report the two 
upper partial means, and columns E and F report the partial mean ratios. 
The fi rst of the partial mean ratios, for example, reports the 90/10 partial 

 Table 3.13: Partial Means and Partial Mean Ratios for Subnational Regions, 

2003

Region

Lower partial mean Upper partial mean Partial mean ratio (%)

p10 p20 p20 p10 90-10 80-20

A B C D E F

1 Kakheti 25.6 35.9 222.3 276.0 90.7 83.8
2 Tbilisi 44.1 54.9 286.7 348.8 87.3 80.9
3 Shida Kartli 26.2 37.1 263.3 331.0 92.1 85.9
4 Kvemo Kartli 23.9 32.3 186.7 230.9 89.6 82.7
5 Samtskhe-Javakheti 30.5 41.5 234.4 294.8 89.6 82.3
6 Ajara 26.2 36.5 222.4 273.4 90.4 83.6
7 Guria 35.9 45.8 275.3 337.2 89.4 83.4
8 Samegrelo 30.8 40.1 241.1 302.9 89.8 83.4
9 Imereti 39.8 52.4 299.1 362.1 89.0 82.5

10 Mtskheta-Mtianeti 25.0 34.7 222.7 265.7 90.6 84.4
11 Total 31.5 42.3 260.5 320.4 90.2 83.8

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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mean ratio, computed as (90th percentile UPM – 10th percentile LPM) / 
90th percentile UPM. The larger the 90/10 partial mean ratio, the larger is 
the gap between these two partial means.

A lower partial mean is the average per capita expenditure of all people 
below a specifi c percentile cutoff. An upper partial mean is the mean per 
capita expenditure above a specifi c percentile. A partial mean ratio captures 
inequality between a lower partial mean and an upper partial mean. In 
table 3.5, we reported a distribution’s different quantile PCEs. For example, 
the quantile PCE at the 10th percentile of Georgia in 2003 was GEL 44.8, 
meaning that 10 percent of the Georgian population lives with per capita 
expenditure less than GEL 44.8. However, that does not tell us the average 
income of these people. Similarly, 10 percent of the Georgian population 
has per capita expenditure more than GEL 229.8, Georgia’s quantile PCE 
at the 90th percentile, but we do not know exactly how rich this group 
is. Partial means are useful for determining these values, and partial mean 
ratios tell us the difference in the average per capita expenditures between 
a poorer and a richer group.

It is evident from table 3.13 that the average per capita expenditure of 
the poorest 20 percent of people in Ajara is only GEL 36.5 in 2003 [6,B], 
whereas the average income of the richest 20 percent of the population is 
GEL 222.4 [6,C]. The corresponding 80/20 partial mean ratio is 83.6 [6,F], 
meaning that the gap between the two partial means is 83.6 percent of the 
80th upper partial mean. Stated another way, the mean per capita expendi-
ture of the population’s richest 20 percent is 100 / (100 – 83.6) = 6.1 times 
larger than the mean per capita expenditure of the population’s poorest 
20 percent. Likewise, in Shida Kartli, the mean per capita expenditure of 
the population’s richest 20 percent (GEL 263.3 [3,C]) is 7.1 times larger 
than the mean per capita expenditure of the population’s poorest 20 percent 
(GEL 37.1 [3,B]) in 2003. The corresponding 80/20 partial mean ratio is 
85.9 [3,F].

Lessons for Policy Makers

A larger inequality in terms of the quantile ratio does not necessarily trans-
late into higher inequality in terms of the partial mean ratio. In table 3.12, 
we found that the 80/20 quantile ratio for Imereti (65.0) was larger than 
that of Ajara (63.7), but in table 3.13 Ajara’s 80/20 partial mean ratio (83.6 
[3,F]) is slightly larger than Imereti’s (82.5 [9,F]).
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Distribution of Population across Quintiles by Subnational 

Region

Table 3.14 analyzes the population distribution in subnational regions across 
fi ve quintiles of per capita consumption expenditure. Column 1 denotes the 
lowest or the fi rst quintile, column 2 denotes the second quintile, and so 
forth.

All cells in row 1 have a value of 20, obtained by dividing Georgia’s 
entire population into fi ve equal-sized groups in terms of per capita expen-
diture. Each group contains 20 percent of the population. The fi fth quintile 
contains the richest 20 percent of the population; the fourth quintile con-
sists of the second-richest 20 percent of the population, and so on, and the 
fi rst quintile consists of the poorest 20 percent of the population.

For the subnational regions, table cells report population percentage in 
each quintile. Consider the value 27.6 for Kakheti [2,A]. This value implies 
that 27.6 percent of Kakheti’s population lives with per capita expenditure 
less than the fi rst quintile. The next cell to the right is 20.9 [2,B], imply-
ing that 20.9 percent of Kakheti’s population falls in the second quintile. 
Similarly, only 12.5 percent [2,E] of Kakheti’s population falls in the fi fth 
quintile.

The picture is slightly different for Imereti, where only 13.3 percent 
[10,A] and 15.3 percent [10,B] of its population fall in the fi rst and second 

 Table 3.14: Distribution of Population across Quintiles by Subnational 

Region, 2003

percentage of population

Region

Quintile

First Second Third Fourth Fifth

A B C D E

1 Total 20.0 20.0 20.0 20.0 20.0

2 Kakheti 27.6 20.9 20.8 18.3 12.5
3 Tbilisi 12.4 17.9 19.9 22.5 27.2
4 Shida Kartli 23.0 21.7 17.0 19.7 18.5
5 Kvemo Kartli 30.0 27.5 21.2 13.5 7.9
6 Samtskhe-Javakheti 20.1 24.0 21.6 20.2 14.1
7 Ajara 25.9 22.9 21.7 15.6 13.8
8 Guria 17.4 17.7 20.7 20.4 23.8
9 Samegrelo 23.5 19.8 20.6 21.3 14.7

10 Imereti 13.3 15.3 18.2 22.9 30.3
11 Mtskheta-Mtianeti 25.5 17.5 20.2 21.2 15.6

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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quintiles, respectively, and 30.3 percent [10,E] of its population falls in the 
fi fth or richest quintile. Kvemo Kartli appears to be the poorest among all 
subnational regions because 30.0 percent [5,A] of its population falls in the 
poorest quintile and only 7.9 percent [5,E] of its population falls in the rich-
est quintile.

Lessons for Policy Makers

This table is helpful in understanding population mobility across different 
consumption expenditure levels in different regions, which a single measure 
of welfare, inequality, or poverty cannot refl ect.

Subnational Decomposition of Headcount Ratio

Table 3.15 decomposes poverty to explore the factors that caused a change 
in headcount ratio. Table rows are divided into two categories. Rows 1 
through 4 report the change in the overall poverty and three factors affect-
ing this change: total intrasectoral effect, population-shift effect, and inter-
action effect. Rows 5 through 14 report the intrasectoral effects for various 
regions in Georgia.1 Column A reports the absolute change in headcount 

 Table 3.15: Subnational Decomposition of Headcount Ratio, Changes 

between 2003 and 2006

Absolute change Percentage change

 A B

Poverty line = GEL 75.4 
1 Change in headcount ratio 1.04 100.00
2 Total intrasectoral effect 1.09 104.98
3 Population-shift effect −0.18 −17.38
4 Interaction effect 0.13 12.40

Intrasectoral effects by region
5 Kakheti 0.70 67.93
6 Tbilisi 1.06 102.38
7 Shida Kartli −0.31 −30.37
8 Kvemo Kartli −1.05 −101.76
9 Samtskhe-Javakheti −0.26 −25.06

10 Ajara 0.65 62.79
11 Guria 0.30 28.70
12 Samegrelo −0.43 −41.25
13 Imereti 0.41 39.18
14 Mtskheta-Mtianeti 0.03 2.44

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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poverty and the size of the factors contributing to this change. Column B 
shows how these factors change the headcount ratio.

The change in overall headcount ratio between 2003 and 2006 is 1.04 
[1,A]. This overall change of 1.04 percentage points is divided into three 
different effects. The fi rst is the total intrasectoral effect, 1.09 [2,A]. The 
total population-shift effect is negative and amounts to –0.18 [3,A]. The 
interaction between the intrasectoral factor and the population shift fac-
tor is 0.13 [4,A]. If we sum these three effects, we get the overall absolute 
change in headcount ratio poverty: (1.09 – 0.18 + 0.13) = 1.04 [1,A].

The next column reports the proportion these effects have relative to the 
overall change. The proportion of the total intrasectoral effect on the over-
all change in poverty is 104.98 percent [2,B]. This number is calculated by 
dividing the total intrasectoral effect by the change in poverty: (100 × 1.09) 
/ 1.04 = 104.98. The corresponding entries for the population-shift effect 
and the interaction effect are calculated by the same method. For example, 
(100 × –0.18) / 1.04 = –17.38 and (100 × 0.13) / 1.04 = 12.40 [4,B].

The next set of results decomposes the total intrasectoral effect across 
Georgia’s regions. Column A reports the size of the intrasectoral effect, and 
column B reports the intrasectoral effect as a proportion of the total change 
in the overall headcount ratio. For example, the intrasectoral effect for 
Kakheti is 0.70 [5,A], and its proportion of the overall poverty change is 
67.93 percent [5,B], calculated as (100 × 0.70) / 1.04 = 67.93.

The intrasectoral effect of Kakheti is calculated as the change in 
headcount ratio between 2003 and 2006, which is 7.3 percentage points 
(reported in column C of table 3.9), multiplied by its population share in 
2003 (reported in column G of table 3.9). The intrasectoral effects are nega-
tive for regions such as Shida Kartli, Kvemo Kartli, Samtskhe-Javakheti, and 
Samegrelo, because the poverty headcount ratio fell in these regions. For the 
rest of the regions, the intrasectoral effects are positive. The contribution of 
this effect is highest for Tbilisi and lowest for Kvemo Kartli.

Lessons for Policy Makers

The total intrasectoral effect is even higher than the total change in the 
overall headcount ratio. Thus, if the region-wise population shares are 
kept constant, then the change in poverty is 1.09 percentage points [2,A]. 
However, if we keep the regional headcount ratios constant and consider 
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only the changes in regional population shares, then the poverty rate would 
have fallen by 0.18 percentage point [3,A]. Thus, the intrasectoral effect 
dominates and the overall headcount ratio increases. Finally, the second set 
of results gives us an idea about the headcount ratio’s regional contribution 
in terms of intrasectoral effect.

Poverty Analysis across Other Population Subgroups

In this section, we discuss the results when the population is divided in various 
ways: household head’s characteristics, household member’s employment sta-
tus, education level, age group, demographic composition, and landownership.

Standard of Living and Inequality by Household Head’s 

Characteristics

Table 3.16 reports the mean and median per capita consumption expendi-
ture and their growth over time and inequality across the population using 
the Gini coeffi cient across various household characteristics. Table rows 
denote various household characteristics. Columns A and B report the 
mean per capita consumption expenditure for 2003 and 2006, respectively. 
Column C reports the percentage change in per capita expenditure over 
these three years. It is evident from rows 1 and 2 that the mean per capita 
expenditure goes up by 1.1 percent [2,C] for female household heads but 
decreases by 0.5 percent [1,C] for male household heads.

Columns D, E, and F report the median per capita expenditures for 2003 
and 2006 and the growth rates between these years. Although the overall 
change in median is –1.4 percent [20,F] (much larger than the change in 
overall mean of –0.1 percent [20,C]), the changes in the groups with vari-
ous household characteristics are mixed. For female household heads, the 
median increases by 1.5 percent [2,F], but it falls by 2.2 percent [1,F] for 
male household heads. We fi nd a mixed picture for the other household 
characteristics.

Columns G, H, and I report inequality by household head’s characteris-
tics using the Gini coeffi cient, which lies between 0 and 100. Although the 
overall Gini coeffi cient increases by 0.9 [20,I] in 2006, changes for different 
household characteristics vary over a broad range.
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Headcount Ratio by Household Head’s Characteristics

Table 3.17 analyzes poverty by population subgroup according to various 
household head characteristics. The poverty line is set at GEL 75.4 per month.

Table rows report categories for three household head characteristics: 
gender, age, and education level. Columns A, B, and C analyze the pov-
erty headcount ratios for 2003, 2006, and the change between those years. 
Columns D, E, and F outline the distribution of poor people across the 
subgroups, with the number in the cell being the proportion of all poor 
people in the country contained in each subgroup. We can also call this 
the subgroup’s percentage contribution to overall poverty, or the headcount 
ratio times the population share included in that group. Columns G, H, and 

 Table 3.16: Mean and Median Per Capita Consumption Expenditure, Growth, and Gini 

Coeffi cient, by Household Characteristics

Characteristic of 
household head

Mean per capita 
consumption expenditure

Median per capita 
consumption expenditure Gini coeffi cient

2003
(GEL)

2006
(GEL)

Change
(%)

2003
(GEL)

2006
(GEL)

Change
(%) 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4

Gender 
1 Male 127.2 126.6 −0.5 106.7 104.3 −2.2 33.7 34.8 1.1
2 Female 122.9 124.3 1.1 98.9 100.4 1.5 36.5 37.0 0.5

Age 
3 15–19 110.8 217.8 96.6 90.0 150.7 67.3 16.2 31.7 15.5
4 20–24 188.0 223.5 18.9 131.7 188.3 43.0 40.6 35.0 −5.6
5 25–29 121.1 153.9 27.1 114.8 121.9 6.2 32.1 33.8 1.7
6 30–34 130.1 121.7 −6.5 111.4 98.1 −12.0 33.2 38.1 4.8
7 35–39 121.3 124.2 2.4 103.9 105.1 1.2 32.7 34.3 1.6
8 40–44 127.9 128.5 0.5 109.7 105.1 −4.2 33.8 35.3 1.5
9 45–49 127.6 132.7 4.0 102.9 104.4 1.4 35.7 36.2 0.5

10 50–54 121.5 120.7 −0.6 100.9 105.0 4.1 34.4 32.6 −1.8
11 55–59 134.7 132.8 −1.4 117.0 104.2 −10.9 33.5 38.0 4.5
12 60–64 130.5 123.0 −5.7 109.4 102.5 −6.4 32.3 34.3 2.0
13 65+ 122.8 121.8 −0.8 100.9 99.9 −1.0 35.1 34.8 −0.3

Education 
14 Elementary or less 101.3 101.6 0.4 80.9 84.6 4.5 36.5 37.5 1.0
15 Incomplete secondary 109.5 106.7 −2.6 90.8 90.3 −0.5 34.5 33.4 −1.0
16 Secondary 116.2 118.6 2.1 97.3 99.6 2.3 33.7 34.1 0.4
17 Vocational-technical 127.7 116.3 −8.9 107.1 97.5 −9.0 34.6 34.6 0.0
18 Special secondary 134.4 127.5 −5.2 113.1 106.1 −6.2 33.9 33.0 −1.0
19 Higher education 153.7 155.1 0.9 129.7 123.7 −4.7 31.9 36.0 4.1
20 Total 126.1 126.0 −0.1 104.7 103.3 −1.4 34.4 35.4 0.9

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
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I depict the subgroup population distributions, or the population percent-
age contained in each subgroup. Row 20 shows that overall headcount ratio 
increases from 29.9 percent in 2003 [20,A] to 31.0 percent in 2006 [20,B], 
refl ecting a 1.0 percentage point increase [20,C] in the headcount ratio.

We see that 28.4 percent of male household heads [1,A] are poor. In 
other words, the headcount ratio for this population subgroup is 28.4 percent. 
The headcount ratio of the same group in 2006 is 30.0 percent [1,B]. So the 
headcount ratio for the population in the male-headed household increased 
by 1.6 percentage points [1,C] from 2003 to 2006.

In row 4, we fi nd that 18.5 percent [4,A] of the population from house-
holds headed by someone in the 20–24 age group is poor. The headcount 
ratio for the same population subgroup in 2006 is 8.2 percent [4,B], a 

 Table 3.17: Headcount Ratio by Household Head’s Characteristics

percent

Characteristic of 
household head

Poverty headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4

Gender 
1 Male 28.4 30.0 1.6 69.6 71.5 1.9 73.3 73.6 0.3
2 Female 34.1 33.5 −0.5 30.4 28.5 −1.9 26.7 26.4 −0.3

Age 
3 15–19 0 0 0 0 0 0 0 0.1 0.1
4 20–24 18.5 8.2 −10.3 0.3 0.2 −0.2 0.5 0.6 0
5 25–29 33.4 18.4 −15.0 1.3 0.7 −0.7 1.2 1.1 −0.1
6 30–34 26.9 36.2 9.3 3.3 3.1 −0.2 3.7 2.7 −1.0
7 35–39 31.6 31 −0.6 5.7 4.8 −0.9 5.4 4.7 −0.6
8 40–44 28.5 29.9 1.4 9 8.2 −0.8 9.5 8.5 −1.0
9 45–49 30.1 28.2 −1.9 11.9 10.7 −1.3 11.9 11.7 −0.2

10 50–54 32.8 31.1 −1.7 12.7 12.2 −0.5 11.6 12.2 0.6
11 55–59 26.0 30.0 4.0 7.7 11.2 3.5 8.9 11.6 2.7
12 60–64 24.2 32.4 8.2 8.7 7.6 −1.1 10.8 7.3 −3.5
13 65+ 32.1 32.4 0.2 39.2 41.4 2.2 36.5 39.6 3.1

Education 
14 Elementary or less 44.2 43.1 −1.0 12.4 10.2 −2.2 8.4 7.3 −1.1
15 Incomplete secondary 38.4 38.7 0.3 12.7 10.0 −2.6 9.9 8.0 −1.9
16 Secondary 33.3 32.5 −0.7 42.9 40.1 −2.9 38.6 38.1 −0.5
17 Vocational-technical 30.2 36.5 6.3 8.4 11.7 3.4 8.3 9.9 1.7
18 Special secondary 26 26.9 0.9 9.9 11.2 1.3 11.4 12.8 1.5
19 Higher education 17.5 21.9 4.4 13.7 16.9 3.1 23.4 23.8 0.3
20 Total 29.9 31.0 1.0 100 100 n.a. 100 100 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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change of –10.3 percentage points [4,C]. In fact, headcount ratios have 
also decreased for households with the head in the 25–29 age group [5,C], 
35–39 [7,C], 45–49 [9,C], and 50–54 [10,C]. When subgroups are divided 
according to household head’s education, we fi nd that the headcount ratio 
for the population living in the households where the head’s education is 
elementary or less is 44.2 percent [14,A]. In both years, the population in 
this subgroup had the highest headcount ratio.

Of all people who were poor in Georgia in 2003, 69.6 percent [1,D] 
were from male-headed households. The share of all poor living in male-
headed households increased to 71.5 percent in 2006 [1,E], an increase of 
1.9 percentage points [1,F]. In contrast, the share of poor in female-headed 
households fell by 1.9 percentage points from 30.4 percent [2,D] in 2003 to 
28.5 percent [2,E] in 2006.

There was not a large change in the population share in either male- or 
female-headed households. For male-headed households, the proportion 
of population increased by 0.3 percentage point from 73.3 percent [1,G] 
to 73.6 percent [1,H]. For the female-headed households, the propor-
tion of population decreased by 0.3 percentage point from 26.7 percent 
[2,G] to 26.4 percent [2,H]. Similarly, headcount ratios increased from 
38.4 percent [15,A] to 38.7 percent [15,B] for the subgroup having house-
hold heads with incomplete secondary education. But the headcount ratio 
for the subgroup having household heads with secondary education fell 
from 33.3 percent [16,A] to 32.5 percent [16,B]. The shares of poor in both 
groups decreased over the course of these three years: from 12.7 percent 
[15,D] to 10.0 percent [15,E] for heads with incomplete secondary and 
from 42.9 percent [16,D] to 40.1 percent [16,E] for heads with secondary 
education.

One might wonder why the share of poor in households with heads 
having incomplete secondary education decreased despite the increase in 
the headcount ratio. The answer can be found if we look at columns G 
and H. Notice that the population share with heads having incomplete 
secondary or less decreased from 9.9 percent in 2003 [15,G] to 8.0 percent 
in 2006 [15,H]. At the same time, headcount ratios for other subgroups 
increased. For example, headcount ratios for the subgroups with household 
heads in vocational-technical education and higher education increased by 
6.3 [17,C] and 4.4 [19,C] percentage points, respectively. Thus, despite an 
increase in headcount ratio, the shares of the poor population decreased for 
the subgroup with heads having incomplete secondary education.



187

Chapter 3: How to Interpret ADePT Results 

Population Distribution across Quintiles by Household 

Head’s Characteristics

Table 3.18 analyzes the distribution of population across fi ve quintiles of 
per capita consumption expenditure by household head’s characteristics. 
Column 1 denotes the lowest or fi rst quintile, column 2 denotes the second 
quintile, and so forth.

All cells in row 1 have a value of 20, obtained by dividing Georgia’s 
population into fi ve equal-sized groups in terms of per capita expenditure. 
Each group consists of 20 percent of the population. The fi fth quintile con-
tains the richest 20 percent of the population, the fourth quintile consists 
of the second-richest 20 percent of the population, and so on, and the fi rst 
quintile consists of the poorest 20 percent of the population.

 Table 3.18: Distribution of Population across Quintiles by Household Head’s 

Characteristics, 2003

percentage of per capita expenditure

Characteristic of household head

Quintile

First Second Third Fourth Fifth

A B C D E

1 Total 20.0 20.0 20.0 20.0 20.0

Gender
2 Male 18.6 20.2 20.1 20.7 20.3
3 Female 23.8 19.3 19.7 18.0 19.1

Age (years)
4 15–19 0.0 27.1 51.1 17.1 4.8
5 20–24 10.5 19.9 12.1 19.1 38.4
6 25–29 23.4 15.5 13.4 26.1 21.6
7 30–34 16.5 21.5 16.8 23.4 21.8
8 35–39 21.6 19.9 20.0 17.7 20.8
9 40–44 19.5 17.5 21.1 20.9 21.0

10 45–49 21.7 19.9 19.2 19.2 19.9
11 50–54 21.4 20.5 19.9 20.0 18.2
12 55–59 16.2 18.6 18.2 24.1 22.9
13 60–64 15.5 19.5 22.4 20.9 21.8
14 65+ 21.5 21.1 20.3 18.6 18.5

Education
15 Elementary or less 32.5 23.8 16.5 15.9 11.3
16 Incomplete secondary 25.5 23.7 20.1 16.9 13.9
17 Secondary 22.3 22.4 20.3 18.5 16.5
18 Vocational-technical 20.1 18.9 20.1 21.0 19.9
19 Special secondary 17.4 18.1 19.9 22.7 21.8
20 Higher education 10.7 14.4 20.6 23.6 30.7

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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The rows below row 1 report the distribution of population by vari-
ous household head characteristics for 2003 using the national quintiles. 
Consider the value 18.6 [2,A] for male household heads. This value implies 
that 18.6 percent of the total population in male-headed households lives 
with per capita expenditure less than the fi rst quintile. The population 
living in male-headed households is 20.2 percent in the second quintile 
[2,B]. Similarly, 20.3 percent [2,E] of the population from the male-headed 
households falls in the fi fth quintile. The population distribution is almost 
the same across all fi ve quintiles.

The largest proportion of population living in the lowest quintile belongs 
to households headed by someone who has not acquired education beyond 
elementary level [15,A]. At the other extreme, the largest proportion of 
population living in the highest quintile belongs to the households headed 
by someone in the 20–24 age group [5,E].

Lessons for Policy Makers

This table is helpful in understanding population mobility across different 
levels of consumption expenditure across different regions that a single wel-
fare, inequality, or poverty measure cannot refl ect.

Headcount Ratio by Employment Category

Table 3.19 analyzes Georgia’s headcount ratio by population subgroups 
according to household members’ employment category. The poverty line 
is set at GEL 75.4 per month. Table rows list employment sectors (agricul-
ture, industry, government, and so on) as well as unemployed and inactive 
categories to account for those not working.

Columns A, B, and C analyze poverty headcount ratios for 2003, 2006, 
and the change over time. Columns D, E, and F outline the distribution of 
poor people across the subgroups, with the number in the cell being the per-
centage of all poor people in the country that are located in that subgroup. 
Stated another way, this is the percentage contribution of the subgroup to 
overall poverty, or the headcount ratio times the population share in that 
group. Columns G, H, and I depict subgroup population distribution, or the 
population percentage found in that subgroup. The last row shows that overall 
headcount ratio increases from 29.9 percent in 2003 [15,A] to 31.0 percent in 
2006 [15,B], refl ecting a 1.0 percentage point increase in the headcount ratio.
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We fi nd that 29.4 percent [1,A] of people engaged in the agricultural 
sector are poor in 2003. In other words, the headcount ratio for this popula-
tion subgroup (with a household head employed in the agricultural sector) is 
29.4 percent. The headcount ratio for the same population subgroup (with a 
household head in the agricultural sector) fell to 28.2 percent in 2006 [1,B]. 
Thus, a 1.3 percentage point decrease [1,C] occurred in the headcount ratio 
between the two years. We see that the headcount ratio among members 
in the other services sector increased by 7.2 percentage points [5,C], from 
20.7 percent [5,A] to 27.8 percent [5,B]. This headcount ratio increase from 
2003 to 2006 is found in other sectors, such as employed industry [6,C], 
trade [7,C], and transport [8,C].

Of all people who are poor in Georgia in 2003, 23.2 percent [1,D] are 
employed in agriculture. We fi nd that the share of all poor employed in 
agriculture fell to 20.2 percent in 2006 [1,E]. This represents a decrease of 
3.0 percentage points [1,F].

Contrast those results with the fi gures for the unemployed population 
subgroup. Clearly, the poverty headcount ratio among this group in 2003 

 Table 3.19: Headcount Ratio by Employment Category

percent

Employment

Poverty headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 

Self-employed
1 Agriculture 29.4 28.2 −1.3 23.2 20.2 −3.0 23.6 22.2 −1.4
2 Industry 20.5 32.2 11.7 0.4 0.5 0.1 0.5 0.5 −0.1
3 Trade 23.8 22.1 −1.6 2.5 1.8 −0.7 3.2 2.5 −0.7
4 Transport 19.2 28.9 9.7 0.4 0.7 0.3 0.7 0.7 0.1
5 Other services 20.7 27.8 7.2 0.7 0.9 0.2 1.0 1.0 −0.0

Employed
6 Industry 21.3 24.7 3.4 1.5 1.6 0.0 2.1 2.0 −0.2
7 Trade 19.5 24.1 4.6 1.1 1.1 0.1 1.6 1.5 −0.2
8 Transport 21.1 28.2 7.1 0.7 0.8 0.1 0.9 0.9 −0.1
9 Government 18.9 17.8 −1.1 1.4 1.1 −0.3 2.2 1.8 −0.4

10 Education 19.1 17.4 −1.7 2.1 1.7 −0.3 3.3 3.1 −0.2
11 Health care 16.7 19.1 2.5 0.6 0.7 0.1 1.1 1.2 0.0
12 Other 23.1 24.9 1.8 2.9 3.1 0.2 3.7 3.8 0.1
13 Unemployed 37.3 40.3 3.1 8.9 10.8 1.9 7.2 8.3 1.1
14 Inactive 32.9 33.7 0.8 53.6 55.1 1.5 48.8 50.7 1.8
15 Total 29.9 31.0 1.0 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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[13,A] is larger than the poverty headcount ratio in 2003 among the sub-
group employed in the agricultural sector [1,A]. However, if we consider 
the share of all poor people who are found in these two subgroups in 2003, 
this number is nearly twice as large in the agricultural sector as that among 
the unemployed group. This is because of the different population shares of 
the two subgroups as given in the fi nal columns. The population share in the 
agriculture subgroup in 2003 is 23.6 percent [1,G], while the share in the 
unemployed subgroup is only 7.2 percent [13,G].

In row 1, the agricultural subgroup’s poverty headcount ratio falls 1.3 
percentage points [1,C], while the share of poor in this subgroup falls by 
3.0 percentage points [1,F]. For the other services subgroup, the headcount 
ratio increased 7.2 percentage points [5,C] between 2003 and 2006, while 
the share of poor in this subgroup increased by only 0.2 percentage point, 
from 0.7 percent [5,D] to 0.9 percent [5,E].

Lessons for Policy Makers

One might wonder why these two ways of evaluating changes are so 
different. Look at columns G and H. Notice that the population share 
employed in the agricultural sector is more than 20 percent of the total 
population in both 2003 [1,G] and 2006 [1,H]. In comparison, the popu-
lation share engaged in other services is only 1.0 percent in 2003 [5,G] 
and 2006 [5,H]. Consequently, a change of smaller magnitude in the 
headcount ratio in the agricultural sector has a larger impact on its share 
of the poor and vice versa.

Headcount Ratio by Education Level

Table 3.20 analyzes poverty by education levels. The poverty line is set at 
GEL 75.4 per month. Columns A, B, and C analyze poverty headcount 
ratios for 2003, 2006, and the difference over time. Columns D, E, and F 
outline the distribution of poor people across the subgroups, with the num-
ber in the cell being the proportion of all poor people in the country located 
in that subgroup. This is the subgroup’s percentage contribution to overall 
poverty, or the headcount ratio times the population share in that group. 
Columns G, H, and I depict subgroup population distribution, or the popula-
tion percentage in that subgroup. Row 7 shows that the overall headcount 
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ratio increases from 29.9 percent in 2003 [7,A] to 31.0 percent in 2006 [7,B], 
refl ecting a 1.0 percentage point (rounded) increase in the headcount ratio.

We fi nd that 40.4 percent [1,A] of the population who have elementary-
level education or less are poor. In other words, the headcount ratio for this 
population subgroup is 40.4 percent. The headcount ratio for the same popu-
lation subgroup fell to 35.9 percent in 2006 [1,B]. Thus, the headcount ratio 
fell by 4.6 percentage points [1,C] between these three years. At the other 
extreme, the headcount ratio for the subgroup with higher education increased 
by 3.4 percentage points, from 17.6 percent [6,A] to 20.9 percent [6,B].

Of all people who are poor in Georgia in 2003, 6.5 percent [1,D] 
have elementary education or less. The share of all poor with elementary 
education or less decreased to 5.7 percent in 2006 [1,E], a decrease of 0.7 
percentage point [1,F].

Clearly, the poverty headcount ratio among the population with incom-
plete secondary education in 2003 [2,A] is larger than the poverty head-
count ratio in 2003 among the higher education subgroup [6,A]. However, 
if we consider the share of all poor people who are found in these two 
subgroups in 2003, the number is larger for the population with higher edu-
cation because of the two subgroups’ different population shares, as given 
in the table’s fi nal columns. The population share with higher education 
in 2003 is 24.1 percent [6,G], whereas the population share with incom-
plete secondary education is only 11.5 percent [2,G]. The headcount ratios 
increased for the population with incomplete secondary education from 

 Table 3.20: Headcount Ratio by Education Level

percent

Education level

Poverty headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 
1 Elementary or less 40.4 35.9 −4.6 6.5 5.7 −0.7 4.6 4.1 −0.5
2 Incomplete secondary 36.1 38.2 2.1 14.3 13.9 −0.5 11.5 10.9 −0.6
3 Secondary 33.2 31.9 −1.3 46.8 44.1 −2.6 40.8 41.7 0.9
4 Vocational-technical 30.0 35.0 5.0 7.7 8.5 0.7 7.5 7.3 −0.2
5 Special secondary 25.2 27.7 2.5 10.1 11.2 1.2 11.6 12.2 0.6
6 Higher education 17.6 20.9 3.4 14.6 16.6 1.9 24.1 23.8 −0.3
7 Total 29.9 31.0 1.0 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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36.1 percent [2,A] to 38.2 percent [2,B], for vocational-technical education 
from 30 percent [4,A] to 35 percent [4,B], for special secondary education 
from 25.2 percent [5,A] to 27.7 percent [5,B], and for higher education from 
17.6 percent [6,A] to 20.9 percent [6,B].

Headcount Ratio by Demographic Composition

Table 3.21 analyzes poverty by population subgroup, where each subgroup 
is based fi rst on the number of children 0–6 years of age in the household, 
then on the household’s size. The poverty line is set at GEL 75.4 per month. 
Columns A, B, and C analyze poverty headcount ratios for 2003, 2006, and 
the difference over time. Columns D, E, and F outline the distribution of 
poor people across the subgroups, with the number in the cell being the 
proportion of poor people in the country contained in that subgroup. This is 
the subgroup’s percentage contribution to overall poverty, or the headcount 
ratio times the population share that falls in that group. Columns G, H, and 
I depict subgroup population distribution, or the percentage of the popula-
tion in that subgroup. Row 12 shows that overall headcount ratio increased 

 Table 3.21: Headcount Ratio by Demographic Composition

percent

Demographic characteristic

Poverty headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 

Number of children 0–6 years 
1 None 28.8 28.5 −0.4 69.6 66.1 −3.5 72.2 72.0 −0.2
2 1 31.2 36.2 5.0 20.5 22.2 1.7 19.7 19.0 −0.7
3 2 35.5 39.9 4.5 8.3 10.3 2.0 7.0 8.0 1.0
4 3 or more 43.7 40.6 −3.1 1.5 1.3 −0.2 1.0 1.0 −0.0

Household size
5 1 25.8 24.1 −1.7 2.6 2.6 −0.0 3.1 3.4 0.3
6 2 23.1 21.0 −2.1 6.7 5.9 −0.8 8.7 8.7 −0.0
7 3 25.0 23.2 −1.8 11.1 9.9 −1.2 13.3 13.2 −0.1
8 4 24.4 26.2 1.7 19.5 18.5 −1.1 23.9 21.8 −2.1
9 5 31.9 33.8 1.8 23.0 23.0 0.0 21.6 21.1 −0.5

10 6 36.2 35.4 −0.9 19.6 19.1 −0.4 16.2 16.7 0.6
11 7 or more 39.3 43.2 4.0 17.3 20.9 3.6 13.2 15.0 1.8
12 Total 29.9 31.0 1.0 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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from 29.9 percent in 2003 [12,A] to 31.0 percent in 2006 [12,B], refl ecting 
a 1.0 percentage point (rounded) increase in the headcount ratio.

First, consider the results based on the number of children in households. 
We fi nd that 28.8 percent [1,A] of the population with no child in the 
household is poor in 2003. In other words, the headcount ratio for this popu-
lation subgroup is 28.8 percent. The headcount ratio for the same population 
subgroup decreased to 28.5 percent in 2006 [1,B]. Thus, the headcount ratio 
decreased by 0.4 percentage point [1,C] over the course of these three years.

Headcount ratios also decreased for the population with three or more 
children in the household by 3.1 percentage points from 43.7 percent 
[4,A] in 2003 to 40.6 percent [4,B] in 2006. Similarly, consider the set of 
results corresponding to the household size. The headcount ratio among the 
population with only one member in the household in 2003 is 25.8 percent 
[5,A], which falls by 1.7 percentage points to 24.1 percent in 2006 [5,B]. At 
the other extreme, the headcount ratio among the people living in house-
holds with seven or more members increased by 4.0 percentage points from 
39.3 percent [11,A] to 43.2 percent [11,B].

The next cell in row 1 is 69.6 [1,D], meaning that of all people who are 
poor in Georgia in 2003, 69.6 percent of the population live in households 
with no child. In the next column, we fi nd that the share of poor with no 
child decreased to 66.1 percent in 2006 [1,E], a decrease of 3.5 percentage 
points [1,F]. 

Compare those results with the subgroup having three or more children. 
It is evident that the headcount ratio among the subgroup with no child in 
both years (28.8 percent in 2003 [1,A] and 28.5 percent in 2006 [1,B]) is 
lower than the headcount ratio for the subgroup with three or more children 
(43.7 percent in 2003 [4,A] and 40.6 percent for 2006 [4,B]). Note that the 
share of the former subgroup to total poverty is 69.6 percent in 2003 [1,D], 
which fell by 3.5 percentage points to 66.1 percent in 2006 [1,E]. The share 
of the latter to total poverty is 1.5 percent in 2003 [4,D], which fell by 
0.2 percentage point to 1.3 percent in 2006 [4,E]. However, in both years, 
the share of poor in the former subgroup is more than 40 times higher than 
that in the latter subgroup.

Lessons for Policy Makers

Note that the poverty rate among the subgroup with three or more children 
is higher than the subgroup with no child. However, the population share 
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in the subgroup with no child is so large (72.2 percent in 2003 [1,G] and 
72 percent in 2006 [1,H]), compared to the subgroup with three or more 
children (only 1.0 percent in both years [4,G] and [4,H]), that the share of 
the subgroup with no child in total poverty is high. The analysis in table 
3.21 enables a policy maker to understand the origin of poverty at a more 
disaggregated level. A policy maker should also focus on households with no 
child, even though the headcount ratio is lowest in this subgroup. Similar 
intuition should hold for the next set of results where the subgroups are 
based on household size.

Headcount Ratio by Landownership

Table 3.22 analyzes poverty by population household landownership sub-
groups for 2003, 2006, and the change across those years. The poverty line 
is set at GEL 75.4 per month. Columns A, B, and C analyze the poverty 
headcount ratios. Columns A and B report the headcount ratio for 2003 
and 2006, respectively, while column C reports the difference over time. 
Columns D, E, and F outline the distribution of poor people across the 
subgroups, with the number in the cell being the proportion of poor people 
in the country located in that subgroup. This is the subgroup’s percent-
age contribution to overall poverty, or the headcount ratio times the 
population share that lies in that group. Columns G, H, and I depict the 
subgroups’ population distribution, or the population percentage found in 

 Table 3.22: Headcount Ratio by Landownership

percent

Size of landholding 
(hectares)

Poverty headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 
1 0 29.4 32.7 3.3 39.0 46.4 7.3 39.7 43.9 4.2
2 Less than 0.2 39.4 36.2 −3.1 12.7 11.9 −0.7 9.6 10.2 0.6
3 0.2–0.5 33.9 36.9 2.9 17.2 18.4 1.1 15.2 15.4 0.2
4 0.5–1.0 25.1 24.3 −0.8 19.5 15.4 −4.1 23.2 19.6 −3.6
5 More than 1.0 28.2 22.4 −5.8 11.5 7.9 −3.6 12.2 10.9 −1.3
6 Total 29.9 31.0 1.0 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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each subgroup. Row 6 shows that the overall headcount ratio increases from 
29.9 percent in 2003 [6,A] to 31.0 percent in 2006 [6,B], refl ecting a 
1.0 percentage point (rounded) increase in the headcount ratio.

We fi nd that 29.4 percent [1,A] of people who belong to households 
with no landownership are poor in 2003. In other words, the headcount 
ratio for this population subgroup is 29.4 percent. The headcount ratio for 
the same population subgroup increases to 32.7 percent in 2006 [1,B]. Thus, 
the headcount ratio increased by 3.3 percentage points [1,C] over these 
three years. We see that the headcount ratio for the population in house-
holds with landownership of 0.5–1.0 hectare decreased by 0.8 percentage 
point, from 25.1 percent [4,A] to 24.3 percent [4,B].

Of all poor people in Georgia in 2003, 39 percent [1,D] lived in house-
holds with no landownership. The share of poor with no landownership 
increased to 46.4 percent in 2006 [1,E]. The headcount ratio among the 
subgroup with landownership of 0.5–1.0 hectare (25.1 percent in 2003 
[4,A] and 24.3 percent in 2006 [4,B]) is lower than the headcount for the 
subgroup with a landownership of less than 0.2 hectare (39.4 percent in 
2003 [2,A] and 36.2 percent for 2006 [2,B]). Note that the share of the 
former subgroup to total poverty is 19.5 percent in 2003 [4,D], which fell 
by 4.1 percentage points to 15.4 percent in 2006 [4,E]. The share of the 
latter to total poverty is 12.7 percent in 2003 [2,D], which fell by only 0.7 
percentage point to 11.9 percent in 2006 [2,E]. Note that despite a larger 
fall in the poverty rate of 3.1 percentage points [2,C] for the subgroup with 
landownership of less than 0.2 hectare, the share of poor in that subgroup 
fell by only 0.7 percentage point [2,F]. One might wonder about the reason 
behind this phenomenon.

The answer can be found if we look at columns G and H. Notice that the 
population share with landownership of less than 0.2 hectare is 9.6 percent 
in 2003 [2,G], and it increased by 0.6 percentage point to 10.2 percent in 
2006 [2,H]. In contrast, the population share with landownership of  0.5–1.0 
hectare fell by 3.6 percentage points, from 23.2 percent [4,G] in 2003 to 
19.6 percent [4,H] in 2006. Moreover, the population share in the latter 
subgroup is almost twice as high as that in the former subgroup in both 
years. Thus, despite a larger fall in headcount ratio for the subgroup with 
landownership of less than 0.2 hectare, its share in total number of poor did 
not decrease signifi cantly compared to the subgroup with landownership of 
0.5–1 hectare.
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Headcount Ratio by Age Groups

Table 3.23 analyzes poverty by population subgroup according to individuals’ 
ages. The poverty line is set at GEL 75.4 per month. Columns A, B, and C 
analyze poverty headcount ratios for 2003, 2006, and the difference over 
time, respectively. Columns D, E, and F outline the distribution of poor 
people across the subgroups, with the number in the cell being the propor-
tion of poor people located in that subgroup. This is the subgroup’s percent-
age contribution to overall poverty, or the headcount ratio times the overall 
population share that lies in that group. Columns G, H, and I depict the sub-
groups’ population distribution, or the percentage of the population that can 
be found in that subgroup. Row 14 shows that the overall headcount ratio 
increased from 29.9 percent in 2003 [14,A] to 31.0 percent in 2006 [14,B], 
refl ecting a 1.0 percentage point (rounded) increase in headcount ratio.

We see that 32.8 percent of the population in age group 0–5 years [1,A] 
is poor. In other words, the headcount ratio for this population subgroup 
is 32.8 percent. The headcount ratio for the same population subgroup 
increased to 34.9 percent in 2006 [1,B]. Thus, the headcount ratio increased 
by 2.1 percentage points [1,C] during these three years. In fact, the head-
count ratio increased among all age groups except 50–54 and 65+ years. 

 Table 3.23: Headcount Ratio by Age Groups

percent

Age group (years)

Poverty headcount ratio Distribution of the poor Distribution of population

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 
1 0–5 32.8 34.9 2.1 5.9 6.2 0.2 5.4 5.5 0.1
2 6–14 33.3 34.5 1.2 14.4 12.6 −1.8 12.9 11.3 −1.7
3 15–19 33.3 33.7 0.4 9.6 9.5 −0.1 8.6 8.7 0.1
4 20–24 30.7 31.6 0.9 8.0 8.7 0.7 7.8 8.5 0.8
5 25–29 30.9 31.5 0.7 7.3 7.4 0.1 7.1 7.3 0.2
6 30–34 30.2 32.6 2.4 6.9 6.8 −0.2 6.9 6.4 −0.4
7 35–39 30.2 32.1 1.9 6.8 6.8 −0.0 6.7 6.5 −0.2
8 40–44 27.9 31.4 3.5 7.2 7.0 −0.2 7.7 7.0 −0.8
9 45–49 28.6 29.1 0.5 6.9 6.8 −0.1 7.2 7.2 −0.0

10 50–54 28.3 27.1 −1.1 5.6 5.4 −0.2 6.0 6.2 0.2
11 55–59 23.0 25.8 2.8 3.2 4.5 1.2 4.2 5.4 1.2
12 60–64 23.0 26.7 3.8 3.5 3.0 −0.5 4.5 3.4 −1.1
13 65+ 29.3 28.8 −0.6 14.7 15.5 0.8 15.0 16.6 1.6
14 Total 29.9 31.0 1.0 100.0 100.0 n.a. 100.0 100.0 n.a.

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: n.a. = not applicable.
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Between 2003 and 2006, the headcount ratios decreased for age group 
50–54 years by 1.1 percentage points, from 28.3 percent [10,A] to 27.1 per-
cent [10,B], and for the age group 65+ years by 0.6 percentage point from 
29.3 percent [13,A] to 28.8 percent [13,B]. In contrast, headcount ratios 
increased for all other groups by 0.4 to 3.8 percentage points. For example, 
the headcount ratio for age group 30–34 years increased by 2.4 percentage 
points from 30.2 percent [6,A] in 2003 to 32.6 percent [6,B] in 2006.

Of all poor people in Georgia in 2003, 5.9 percent are in the age group 
of 0–5 years [1,D]. The share of all poor in age group 0–5 years increased to 
6.2 percent in 2006 [1,E], an increase of 0.2 percentage point. Now consider 
age groups 6–14 and 65+ years. The headcount ratio among the population 
in age group 6–14 years increased by 1.2 percentage points from 33.3 percent 
in 2003 [2,A] to 34.5 percent in 2006 [2,B], but the headcount fell by 0.6 
percentage point for age group 65+ years [13,C]. However, if we consider 
the change in share of all poor people found in these two subgroups in 2003 
(column F), this number went up for age group 65+ (0.8 [13,F]) and fell for 
age group 6–14 years (–1.8 [2,F]).

Lessons for Policy Makers

One might ask why the share of the poor has fallen in spite of an increase in 
headcount ratios. The answer can be found in columns G and H. Note that 
the share of people in the age group 6–14 years decreased by 1.7 percent-
age points from 12.9 percent in 2003 [2,G] to 11.3 percent in 2006 [2,H]. 
In contrast, the population share in age group 65+ years increased by 1.6 
percentage points from 15.0 percent in 2003 [13,G] to 16.6 percent in 2006 
[13,H]. Thus, despite a decrease in headcount ratio for age group 65+ years, 
its share of poor increased. A policy maker, therefore, should notice that a 
decrease in headcount among the 65+ years age group did not necessarily 
decrease the number of total poor in that age group.

Headcount Ratio and Age-Gender Pyramid

Until now, we have analyzed headcount ratios across individual population 
subgroups. We have not analyzed the headcount ratio across two different 
population subgroups simultaneously. Figure 3.2 presents one such example 
using a graph known as an age-gender pyramid. The age-gender pyramid 
analyzes the headcount ratios across gender and across different age groups 
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simultaneously. However, it can be used to analyze other subgroups with 
proper justifi cation. As before, the variable for our analysis is per capita 
consumption expenditure in lari, and the poverty line is set at GEL 75.4 per 
month. The outside vertical axes denote the age of the members in years, 
and the horizontal axis presents the share of the population.

The fi gure is divided vertically by gender: the right-hand side repre-
sents males and the left-hand side represents females. The distance from 
the middle to each side in dark gray denotes the total population share in 
that age group. The distance in light gray is the proportion of poor people 
in that age group of the total number of poor, again for each gender. Data 
are aggregated in fi ve-year increments, and each increment is displayed as 
a bar centered on the highest age in the increment. The data for ages 25 to 
30 years, for example, are represented by the bar at 30 years. For those zero 
to fi ve years of age, the shares of both males and females are 2.2 percent, 
and nearly 0.7 percent of both males and females in that age group reside in 

Figure 3.2: Age-Gender Poverty Pyramid

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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poor households. The headcount ratio among females in that age group is 
32 percent and among males it is 31 percent. The headcount ratio is highest 
among male members in the 85–90 years age group: 38 percent of the males 
in that age group reside in poor households. The largest headcount ratio 
among females is seen in the 80–85 years age group.

Sensitivity Analyses

In this section, we perform sensitivity analysis of poverty line choice, pov-
erty measures, and inequality measures, mostly at the national level and 
across urban and rural areas. In certain cases, the results are reported at the 
subnational levels or across geographic regions. However, all sensitivity 
analysis can be replicated at any disaggregated level.

Elasticity of FGT Poverty Indices to Per Capita Consumption

Table 3.24 provides a tool for checking the sensitivity of the three poverty 
measures to consumption expenditure. The table shows the result of increas-
ing everyone’s consumption expenditure by 1.0 percent and compares those 
values across two years, 2003 and 2006. There are two poverty lines: GEL 
75.4 and GEL 45.2 per month.

The percentage change in poverty caused by a 1.0 percent change in the 
mean or average per capita consumption expenditure is referred to as the 
elasticity of poverty with respect to per capita consumption. The particular way 

 Table 3.24: Elasticity of FGT Poverty Indices to Per Capita Consumption Expenditure

Region

Headcount ratio Poverty gap measure Squared gap measure

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4 
1 Urban −1.89 −1.72 0.17 −1.95 −2.03 −0.09 −2.09 −2.23 −0.14
2 Rural −1.66 −1.53 0.13 −1.71 −1.64 0.07 −1.82 −1.72 0.09
3 Total −1.77 −1.62 0.15 −1.81 −1.82 0.00 −1.93 −1.93 0.00

Poverty line = GEL 45.2 
4 Urban −2.06 −2.35 −0.29 −2.36 −2.47 −0.12 −2.24 −2.50 −0.26
5 Rural −1.87 −1.64 0.23 −1.86 −1.78 0.07 −1.94 −1.86 0.08
6 Total −1.95 −1.94 0.01 −2.05 −2.04 0.01 −2.05 −2.06 −0.02

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: FGT = Foster-Greer-Thorbecke.



200

A Unifi ed Approach to Measuring Poverty and Inequality

in which we consider an increase in the average per capita consumption 
expenditure is by increasing everyone’s consumption expenditure by the 
same percentage. This type of change is distribution neutral, because the 
relative inequality does not change.

The main columns denote three different sets of poverty measures: 
headcount ratio, poverty gap measure, and squared gap measure. The fi rst 
two columns within each set report the elasticities for 2003 and 2006, 
respectively, while the third column reports the difference between these 
two years.

Let us start with the GEL 75.4 per month poverty line. The elasticity of 
poverty with respect to the mean consumption expenditure for the urban 
area in 2003 is –1.89 [1,A]. In other words, if the consumption expenditure 
increases by 1.0 percent for everyone, then the mean per capita consump-
tion expenditure increases by 1.0 percent and the urban headcount ratio 
falls by –1.89 percent, or stated differently, 1.89 percent of the population 
who were living under the poverty line of GEL 75.4 will be out of poverty.

If the mean consumption expenditure is increased by 1.0 percent, then 
the headcount ratio for the urban area falls by 1.72 percent in 2006 [1,B]. A 
higher value implies higher sensitivity. The urban headcount ratio elasticity 
is less sensitive to consumption expenditure in 2006 than in 2003 by 0.17 
[1,C]. Similarly, the elasticity of poverty gap to the per capita consumption 
expenditure for the urban area in 2003 is –1.95 [1,D], which increases by 
–0.09 (rounded) to –2.03 in 2006 [1,E]. The elasticity of squared gap mea-
sure in 2003 is –2.09 [1,G], which increases by –0.14 to –2.23 in 2006 [1,H].

Negative elasticities mean a fall in poverty caused by an increase in con-
sumption expenditure. The higher magnitude implies higher elasticity even 
though the sign is negative. Note that both the poverty gap measure and the 
squared gap measure, unlike the headcount ratio, are more sensitive to con-
sumption expenditure in 2006 than in 2003. A similar pattern is seen for the 
GEL 45.2 per month poverty line: the poverty gap measure and the squared 
gap measure are more sensitive to the per capita consumption expenditure.

All elasticities in the rural area are lower in magnitude compared to 
what we see in the urban area for both poverty lines. In other words, all 
rural poverty measures are less sensitive to the per capita consumption 
expenditure. The overall headcount ratio elasticity decreases slightly from 
–1.95 in 2003 [6,A] to –1.94 in 2006 [6,B] for the GEL 45.2 poverty line, 
but it decreases by 0.15 from –1.77 in 2003 [3,A] to –1.62 in 2006 [3,B] for 
the GEL 75.4 poverty line. The elasticities of the overall poverty gap and 
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the squared gap measure did not change much between these two years for 
either poverty line.

Lessons for Policy Makers

Note that poverty lines are set normatively, which is diffi cult to justify 
exclusively. A slight change in per capita consumption expenditure may or 
may not change the poverty rates by signifi cant margins. If the distribution is 
highly polarized or, in other words, if the society has two groups of people—
one group consisting of rich people and the other group consisting of extreme 
poor—then a slight change in everyone’s income by the same proportion 
may not affect the headcount ratio.

In contrast, if marginal poor are concentrated around the poverty line, 
then a slight change in everyone’s income by the same proportion would 
have a huge impact on the poverty measures. For example, in the table 
the poverty measures are more sensitive to the lower GEL 45.2 per month 
poverty line than the higher GEL 75.4 per month poverty line. This is 
because the concentration of poor around the lower poverty line is much 
larger than that around the higher poverty line. Hence, this type of analysis 
may tell us about the impact of any policy on the poverty rate used by the 
policy maker.

Sensitivity of Poverty Measures to the Choice of Poverty Line

Table 3.25 presents a tool for checking the sensitivity of the headcount ratio 
with respect to the chosen poverty line. This exercise is similar to the exer-
cise for checking the elasticity of poverty measures to per capita consump-
tion expenditure, but it is more rigorous. It is always possible to fi nd a certain 
percentage of decrease in the poverty line that matches the increase in the 
consumption expenditure for everyone by 1.0 percent. In this exercise, 
we check the sensitivity of the poverty measure by changing the poverty 
line in more than one direction. Thus, in the table, we ask how the actual 
headcount ratio changes as the poverty line changes from its initial value, 
whether it is GEL 75.4 per month or GEL 45.2 per month.

Rows denote the change in poverty line, both upward and downward. 
Columns report the change in three poverty measures: the headcount ratio, 
the poverty gap measure, and the squared gap measure, and their change 
from actual. The variable is per capita consumption expenditure, measured 
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in lari. In this table, we report the results only for 2003, but this analysis can 
be conducted for any year.

Column A reports the headcount ratios for different poverty lines, and 
column B reports the change in the headcount ratios from the actual pov-
erty line, which can be either GEL 75.4 per month or GEL 45.2 per month. 
Rows 2 and 9, corresponding to +5 percent, denote the increase in poverty 
line by 5 percent. Thus, when the poverty line is GEL 75.4, then a 5 percent 
increase means the poverty line becomes GEL 79.2 and the headcount ratio 
increases by 3.7 percentage points from 29.9 percent [1,A] to 32.6 percent 
[2,A], or the headcount ratio increases by 9.0 percent [2,B] from its actual 
level of 29.9 percent.

Similarly, if the poverty line is decreased by 10 percent (–10 percent) 
from GEL 75.4, then the poverty headcount rate falls by 5.7 percentage 
points from 29.9 percent [1,A] to 24.2 percent [6,A], or the headcount ratio 
decreases by 19.1 percent from the actual level of 29.9 percent. The head-
count ratio is more sensitive to the change in poverty line when the actual 
poverty line is GEL 45.2 than when the poverty line is GEL 75.4. In fact, 
the poverty gap measure and the squared gap measure are also more sensitive 
to change in poverty line when the actual poverty line is GEL 45.2 rather 
than GEL 75.4.

 Table 3.25: Sensitivity of Poverty Measures to the Choice of Poverty Line, 2003

Headcount 
ratio

Change from 
actual (%)

Poverty gap 
measure

Change from 
actual (%)

Squared gap 
measure

Change from 
actual (%)

A B C D E F

Poverty line = GEL 75.4 
1 Actual 29.9 0.0 9.7 0.0 4.6 0.0
2 +5 percent 32.6 9.0 10.7 10.7 5.1 11.4
3 +10 percent 35.3 18.0 11.7 21.7 5.6 23.3
4 +20 percent 40.5 35.2 13.9 44.3 6.8 48.5
5 −5 percent 26.9 −10.0 8.7 −10.2 4.1 −10.8
6 −10 percent 24.2 −19.1 7.7 −19.9 3.6 −21.1
7 −20 percent 19.4 −35.3 6.0 −38.1 2.7 −40.0

Poverty line = GEL 45.2
8 Actual 10.2 0.0 3.0 0.0 1.4 0.0
9 +5 percent 11.4 11.8 3.4 12.2 1.5 12.4

10 +10 percent 12.7 24.1 3.8 25.2 1.7 25.6
11 +20 percent 15.8 54.5 4.7 53.8 2.1 54.6
12 −5 percent 9.2 −9.9 2.7 −11.6 1.2 −11.6
13 −10 percent 8.0 −21.4 2.4 −22.4 1.1 −22.4
14 −20 percent 6.0 −40.9 1.8 −41.6 0.8 −41.4

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
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Lessons for Policy Makers

This table helps us understand the robustness of a particular poverty esti-
mate. Selection of any poverty line is debatable, because it is set with nor-
mative judgment. If a change in the poverty line causes a drastic change in 
a poverty measure, then a cautious policy conclusion should be drawn from 
the analysis based on that particular poverty line. In contrast, if a poverty 
measure does not vary much because of a change in the poverty line, then a 
more robust conclusion can be drawn.

Other Poverty Measures

Table 3.26 analyzes the overall poverty for Georgia and decomposes it across 
rural and urban areas using three other poverty measures not in the FGT class. 
The table reports three different sets of poverty measures: the Watts index, 
Sen-Shorrocks-Thon (SST) index, and Clark-Hemming-Ulph-Chakravarty 
(CHUC) index (these measures are defi ned in chapter 2). This is a type of 
sensitivity analysis, but of the poverty measurement methodology. There are 
two poverty lines: GEL 75.4 per month and GEL 45.2 per month.

Columns A and B report the Watts index for both years. The Watts 
index is the mean log deviation relative to the poverty line. It is evident 
from row 1 that the urban Watts index increases from 12.0 in 2003 [1,A] 
to 12.7 in 2006 [1,B] when the poverty line is GEL 75.4 but falls slightly 
between the same years when the poverty line is GEL 45.2 [4,A] and [4,B].

 Table 3.26: Other Poverty Measures

Watts index Sen-Shorrocks-Thon index CHUC index

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4
1 Urban 12.0 12.7 0.7 15.7 16.8 1.1 16.6 16.5 0.0
2 Rural 15.6 16.2 0.5 19.2 19.6 0.4 22.2 22.8 0.6
3 Total 13.9 14.5 0.6 17.5 18.3 0.7 19.6 19.8 0.3

Poverty line = GEL 45.2 
4 Urban 3.3 3.2 −0.1 4.7 4.6 0.0 5.1 4.5 −0.6
5 Rural 5.2 5.7 0.5 7.0 7.6 0.6 8.5 9.0 0.4
6 Total 4.3 4.5 0.2 5.9 6.2 0.3 6.9 6.8 −0.1

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: CHUC = Clark-Hemming-Ulph-Chakravarty.
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Columns D and E report the SST index, which is also based on the 
headcount ratio, the income gap ratio, and the Gini coeffi cient across the 
censored distribution of consumption expenditure. The last is obtained 
by replacing consumption expenditure of all nonpoor people by the pov-
erty line. We see that when the poverty line is GEL 75.4, the SST index 
for the urban region in 2003 is 15.7 [1,D], and it increases by 1.1 to 16.8 
in 2006 [1,E]. Likewise, the rural region’s SST index increased by 0.4, 
from 19.2 in 2003 [2,D] to 19.6 in 2006 [2,E], for the same poverty line. 
The total increase in SST index is 0.7, from 17.5 in 2003 [3,D] to 18.3 
in 2006 [3,E].

The fi nal three columns report the CHUC index and its changes across 
time. Unlike the SST index, the CHUC index does not refl ect an increase 
in poverty across all regions. In fact, urban poverty falls marginally between 
2003 [1,G] and 2006 [1,H] when the poverty line is GEL 75.4. Furthermore, 
when the poverty line is set at GEL 45.2, the CHUC index shows a fall in 
Georgia’s overall poverty [6,I].

Lessons for Policy Makers

If these three measures, capturing different aspects of poverty and inequal-
ity among the poor, agree with the results from the measures in the FGT 
class, then the poverty analysis is robust. In contrast, if these measures do 
not agree with each other, the policy conclusion should be drawn with more 
care. Comparing table 3.2 with table 3.26, we see that the three measures 
reported in table 3.2 do not always agree with the results based on the 
poverty gap measure and squared gap measure. Thus, any conclusion about 
whether poverty has increased or decreased should be made cautiously.

Other Inequality Measures

Table 3.27 reports the Atkinson inequality measures and generalized entropy 
measures for 2003, then decomposes them across different regions. This is 
a type of sensitivity analysis for inequality measurement methodology. We 
report the Gini coeffi cient only in the last two sections of this chapter. 
However, the Gini coeffi cient may not be subgroup consistent (subgroup 
consistency is defi ned in chapter 2). Rows denote results for urban and rural 
population subgroups and for different geographic regions, such as Kakheti, 
Tbilisi, and Shida Kartli.
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 Table 3.27: Atkinson Measures and Generalized Entropy Measures by 

Geographic Regions, 2003

Atkinson measure Generalized entropy measure

 A(1/2) A(0) A(−1) GE(0) GE(1) GE(2)

A B C D E F

1 Urban 9.1 17.7 34.3 19.4 18.8 22.8
2 Rural 10.1 19.8 38.9 22.0 21.0 25.6

Subnational regions
3 Kakheti 9.8 19.2 39.1 21.3 20.1 24.4
4 Tbilisi 8.3 15.9 29.8 17.3 17.3 20.8
5 Shida Kartli 11.0 21.6 44.8 24.4 22.8 28.2
6 Kvemo Kartli 8.9 17.3 33.9 19.0 18.6 24.0
7 Samtskhe-Javakheti 9.0 17.4 34.1 19.1 19.0 24.6
8 Ajara 9.4 18.5 36.5 20.4 19.2 22.6
9 Guria 9.4 18.2 35.7 20.1 19.9 27.2

10 Samegrelo 9.5 18.3 35.3 20.2 19.7 23.7
11 Imereti 8.8 17.3 33.8 19.0 18.0 20.8
12 Mtskheta-Mtianeti 9.3 18.6 36.7 20.6 18.5 20.2
13 Total 9.6 18.8 36.8 20.8 20.0 24.2

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
Note: GE = generalized entropy.

Columns A, B, and C report the Atkinson measures for a = 1/2, 0, and –1,  
respectively, and columns D, E, and F report the generalized entropy measures 
for a = 0, 1, and 2, respectively. (For a theoretical discussion on the Atkinson 
inequality measure and generalized entropy measures, please refer to chapter 
2.) Intuitively, an Atkinson inequality measure of order a is the gap between 
the mean achievement and the generalized mean of achievements of order 
a divided by the mean achievement. Generalized mean is sensitive to inequal-
ity across the distribution, where a lower value of a refl ects higher sensitivity 
to inequality across the distribution. In other words, a lower value of a refl ects 
higher aversion toward inequality and, thus, it is also known as the inequality 
aversion parameter. When everyone has identical achievement, then it does 
not matter how sensitive one is toward inequality, so the generalized mean 
is equal to the arithmetic mean for all a. For the analysis in table 3.27, the 
inequality measures put more emphasis on the lower end of the distribution 
and thus assume a < 1. The Atkinson measure lies between 0 and 1. Similarly, 
if a household has equal per capita expenditure in a region, then the general-
ized entropy measure is also 0 for all a.

The Atkinson measure for a = 1/2, or A(1/2), for the urban area is 
9.1 [1,A]. Intuitively, the number implies that the generalized mean of 
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order 0.5 for urban Georgia is 9.1 percent lower than Georgia’s mean per 
capita expenditure in 2003. The next two cells to the right report A(0) and 
A(–1) for urban Georgia, where A(0) = 17.7 [1,B] and A(–1) = 34.3 [1,C]. 
Therefore, A(0) is 17.7 percent lower than the mean per capita expenditure 
and A(–1) is 34.3 percent lower than the mean per capita expenditure. 
Columns D, E, and F report three generalized entropy measures for a = 0, 1, 
and 2, denoted by GE(0), GE(1), and GE(2), respectively.

Row 2 reports the three Atkinson measures and three generalized 
entropy measures for rural Georgia. Each of these six measures shows that 
rural Georgia is more unequal than urban Georgia. For example, the A(1/2) 
for the rural area is 10.1 [2,A], compared with 9.1 in the urban area [1,A], 
and A(0) for the rural area is 19.8 [2,B], compared with 17.7 for the urban 
area [1,B]. However, the difference is much larger when the two regions are 
compared with respect to A(–1): 38.9 for the rural area [2,C] and 34.3 for 
the urban area [1,C].

Next, we consider the results across regions. The level of inequality 
of Ajara according to A(1/2) is 9.4 [8,A], which is higher than that of 
Samtskhe-Javakheti at 9.0 [7,A]. This means that Ajara has larger income 
inequality than Samtskhe-Javakheti. Even according to A(0), A(–1), 
GE(0), and GE(–1), Ajara has higher income inequality than Samtskhe-
Javakheti. However, in terms of GE(2), which gives more weight to larger 
incomes across the population, Samtskhe-Javakheti [7,F] has higher income 
inequality than Ajara [8,F].

Lessons for Policy Makers

A region’s income standards refl ect that region’s welfare level. However, 
higher welfare does not necessarily mean more equal distribution. A high 
level of inequality may be detrimental to a region’s welfare. We already 
reported the Gini coeffi cient for that purpose. However, given that the Gini 
coeffi cient has certain limitations, we report three Atkinson inequality mea-
sures and three generalized entropy measures to check the inequality ranking 
for regions. These six inequality measures are commonly used separately 
from the Gini coeffi cient.

Also unlike the Gini coeffi cient, Atkinson and generalized entropy 
class inequality measures are normative measures, in which we may choose 
varying degrees of inequality aversion. If these six measures agree with the 
Gini coeffi cient, then a conclusion based on the Gini coeffi cient can be 
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considered robust. However, if these six measures provide different rankings 
than the Gini coeffi cient, then a more cautious policy conclusion should be 
drawn based only on Gini.

Dominance Analyses

In the previous section, we conducted some dominance analysis with respect 
to the choice of poverty lines and measurement methodologies. In this sec-
tion, we perform additional dominance analyses. Note that when we analyze 
sensitivity with respect to the poverty line, we do not compare the results 
for all poverty lines. Similarly, when we check the sensitivity of inequal-
ity using different Atkinson and generalized entropy measures, we do not 
conduct the analysis for all parameter values. The dominance tests in this 
part of the chapter go beyond the sensitivity analyses. For example, accord-
ing to the dominance analyses in this section, we can say that poverty has 
unambiguously risen for all poverty lines, or inequality has risen, no matter 
which inequality measure is used to assess it.

Poverty Incidence Curve

A poverty incidence curve is the distribution function of the welfare indi-
cator across the population. The poverty incidence curve is useful while 
performing a dominance analysis of the headcount ratio with respect to the 
poverty line. In this dominance exercise, the welfare indicator is per capita 
consumption expenditure, assessed by lari. The horizontal axis of fi gure 3.3 
denotes per capita consumption expenditure. The height of the poverty 
incidence curve at any per capita consumption expenditure denotes the 
proportion of people having less than that per capita expenditure.

Therefore, the link between the poverty incidence curve and the head-
count ratio is clear. The height of the poverty incidence curve is the head-
count ratio when the poverty line is set at a particular per capita consumption 
expenditure. For a poverty line, a larger height denotes a larger headcount 
ratio or a larger share of the population having per capita expenditure below 
the poverty line. If the poverty incidence curve of a distribution lies to the 
right of the poverty incidence curve of another distribution, then the former 
distribution is understood to have an unambiguously lower headcount ratio 
or the former distribution has lower headcount ratios for all poverty lines.



208

A Unifi ed Approach to Measuring Poverty and Inequality

Figure 3.3 graphs the poverty incidence curves for urban Georgia in 
2003 and 2006. The vertical axis reports the headcount ratio. The solid 
line denotes the poverty incidence curve for 2003, while the dashed line 
denotes the poverty incidence curve for 2006. We saw earlier that the urban 
headcount ratio is higher in 2006 for both poverty lines: GEL 75.4 and GEL 
45.2. What about other poverty lines? Can we say that poverty has unam-
biguously fallen for any poverty line? Figure 3.3 suggests that we may not 
be able to. If we set the hypothetical poverty line somewhere between GEL 
320 and GEL 480, then the headcount ratio would have been lower in 2006 
than that in 2003.

Lessons for Policy Makers

Although such a poverty line seems very high and unlikely to be set at that 
value, the main point of the exercise is clear. When two poverty incidence 
curves cross, then an unambiguous judgment cannot be made. The crossing 

Figure 3.3: Poverty Incide nce Curves in Urban Georgia, 2003 and 2006
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may take place at a much lower level, as happened in the rural area. We 
have already seen that the headcount ratio showed an increase in 2006 
when the poverty line is set at GEL 75.4 but showed a decrease when the 
poverty line is set at GEL 45.2. Given the infi nite number of possible pov-
erty lines, it would be cumbersome to check them all one by one. Instead, 
the poverty incidence curve is a convenient way of checking for dominance 
(if two poverty incidence curves never cross). If dominance does not hold, 
then the graph can tell us which part is responsible for the ambiguity.

Poverty Defi cit Curve

A poverty defi cit curve is useful while performing a dominance analysis of the 
poverty gap measure with respect to the poverty line. In this dominance 
exercise, the welfare indicator is per capita consumption expenditure, 
assessed by lari. In fi gure 3.4, the horizontal axis denotes the welfare indica-
tor or per capita consumption expenditure. The height of the poverty den-
sity curve is proportional to the poverty gap measure, so that a larger height 

Figure 3.4: Poverty Defi ci t Curves in Urban Georgia, 2003 and 2006
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for a poverty line denotes a larger poverty gap measure. If a distribution’s 
poverty defi cit curve lies to the right of another distribution’s poverty defi cit 
curve, then the former distribution is understood to have an unambiguously 
lower poverty gap measure, or the former distribution has lower poverty gap 
measures for all poverty lines.

Figure 3.4 graphs the poverty defi cit curves of urban Georgia for 2003 
and 2006. The vertical axis reports total defi cit, which is directly propor-
tional to the poverty gap measure for the corresponding poverty line. The 
solid line denotes the poverty defi cit curve for 2003, while the dashed line 
denotes the poverty defi cit curve for 2006. We saw earlier that the urban 
poverty gap measure is higher in 2006 for both poverty lines: GEL 75.4 and 
GEL 45.2. What about other poverty lines? Can we say that poverty has 
unambiguously fallen for any poverty line? The graph suggests that we may 
not be able to. If we set the hypothetical poverty line to about GEL 320, 
then the poverty gap measure would have been lower in 2006 than in 2003.

Lessons for Policy Makers

Although such a poverty line seems very high and unlikely to be set at that 
value, the main point of the exercise is clear. When two poverty defi cit 
curves cross, then an unambiguous judgment cannot be made based on the 
poverty gap measure. Given the infi nite number of possible poverty lines, it 
would be cumbersome to check them all one by one. Instead, the poverty 
defi cit curve is a convenient way of checking for dominance (if two poverty 
defi cit curves never cross). If dominance does not hold, then the graph can 
tell us which part is responsible for the ambiguity.

Poverty Severity Curve

A poverty severity curve is useful when performing a dominance analysis of 
the squared gap measure with respect to the poverty line. In this dominance 
exercise, the welfare indicator is the per capita consumption expenditure, 
assessed by lari. In fi gure 3.5, the horizontal axis denotes the welfare indica-
tor or the per capita consumption expenditure. The height of the poverty 
severity curve is proportional to the squared gap measure, so that a larger 
height for a poverty line denotes a larger squared gap. If a distribution’s pov-
erty severity curve lies to the right of another distribution’s poverty severity 
curve, then the former distribution is understood to have an unambiguously 
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lower squared gap, or the former distribution has a lower squared gap for all 
poverty lines.

Figure 3.5 graphs the poverty severity curves of rural Georgia for 2003 and 
2006. The fi gure’s vertical axis reports total severity, which is directly propor-
tional to the squared gap measure of the corresponding poverty line. The solid 
line denotes the poverty severity curve for 2003, while the dashed line denotes 
the poverty severity curve for 2006. We saw earlier that the rural squared gap 
measure is higher in 2006 for both poverty lines: GEL 75.4 and GEL 45.2.

Lessons for Policy Makers

What about the other poverty lines? Can we say that poverty has unambigu-
ously fallen for any poverty line? The fi gure suggests that we may not be able 
to. One of the poverty severity curves does not lie below another poverty 
severity curve for all poverty lines. When two poverty severity curves cross, 
then an unambiguous judgment cannot be made based on the squared gap 

Figure 3.5: Poverty Severi ty Curves in Rural Georgia, 2003 and 2006
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measure. Given the infi nite number of possible poverty lines, it would be 
cumbersome to check them all one by one. Instead, the poverty severity 
curve is a convenient way of checking for dominance (if two poverty sever-
ity curves never cross). If dominance does not hold, then the graph can tell 
us which part is responsible for the ambiguity.

Growth Incidence Curve

Figure 3.6 graphs the growth incidence curve of Georgia’s per capita con-
sumption expenditure. The vertical axis reports the growth rate of consump-
tion expenditure between 2003 and 2006, and the horizontal axis reports 
the per capita consumption expenditure percentiles. We earlier reported the 
growth rate of mean per capita consumption expenditure and found that the 
overall growth rate was slightly negative. We also compared the median and 
four other quantile incomes.

Figure 3.6: Growth Inciden ce Curve of Georgia between 2003 and 2006

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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However, that analysis does not give us the entire picture, so we perform 
this dominance analysis through a growth incidence curve that graphs the 
growth rate of per capita consumption expenditure for each percentile of the 
population. The height of a growth incidence curve for a particular percentile 
of population is the per capita consumption expenditure growth of that per-
centile. In fact, a growth incidence curve assesses how the quantile incomes 
change over time. If the growth rates of the lower quintiles are larger than 
the growth rates of the upper quintiles, then the growth is said to be pro-poor.

The dotted-dashed straight line denotes the growth in mean per capita 
expenditure, which is negative in this case. It is not necessary that the entire 
population received an equal share of this growth. It is evident from the fi g-
ure that the per capita expenditure growth rate for the population’s higher 
percentiles between 2003 and 2006 is much larger and more positive than 
that for their lower percentile counterparts. Even though growth has been 
mixed throughout the quantile incomes, the lowest quantile income has a 
large negative growth. Given that the growth rate was negative, this means 
that the population’s poorer section had a proportionally larger decrease in 
its per capita expenditure.

What we can state by looking at the fi gure is that the quantile ratios—
such as 90/10, 80/20, or 90/50—increased between 2003 and 2006. The 
shaded area around the growth incidence curve reports the 95 percent con-
fi dence bounds. Can we say something about poverty? Yes, we can. For an 
absolute poverty line, the headcount ratio between 2003 and 2006 should 
not fall because the per capita expenditures of the population’s lower per-
centile decreased. Thus, growth in Georgia between 2003 and 2006 was not 
pro-poor.

Lorenz Curve

Figure 3.7 graphs the Lorenz curve of urban Georgia’s per capita expenditure 
for 2003 and 2006. The vertical axis reports the share of total consumption 
expenditure, and the horizontal axis reports the percentile of per capita 
expenditure. A Lorenz curve graphs the share of total consumption expendi-
ture spent by each percentile of the population. Thus, the height of a Lorenz 
curve for a particular percentile is the share of total consumption expenditure 
spent by that percentile out of the region’s total consumption expenditure. 
The Lorenz curve’s height is 1 when the percentile is 1. In other words, the 
share of the total consumption expenditure spent by the entire population is 
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100 percent. The diagonal straight line denotes the situation of perfect 
equality: each person has the same per capita expenditure.

As inequality increases, the Lorenz curve bows out, and the area between 
the Lorenz curve and the line of perfect equality increases. The area between 
a Lorenz curve and the line of perfect equality is proportionally related to 
the Gini coeffi cient: it is twice the Gini coeffi cient. If a distribution’s Lorenz 
curve lies completely to the right of another Lorenz curve, then the former 
distribution has unambiguously lower inequality, and any Lorenz-consistent 
measure—such as the Gini coeffi cient, the Atkinson class of indices, and 
the generalized entropy measures—ranks the former distribution as less 
unequal. If the Lorenz curves of two distributions cross, we cannot unam-
biguously rank those two distributions, even when one is ranked as more 
unequal than another by all the Lorenz-consistent measures we discussed 
earlier. Therefore, the Lorenz curve provides an opportunity to conduct a 
sensitivity analysis for the reported inequality measures.

Figure 3.7: Lorenz Curves  of Urban Georgia, 2003 and 2006
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The solid line represents the Lorenz curve for 2003, while the dotted 
line corresponds to 2006. It is evident that the dotted curve lies nowhere to 
the left of the solid curve. This implies that the inequality in urban Georgia 
unambiguously increased in 2006 compared with 2003. If these two curves 
had crossed, then the reported inequality measures would not have neces-
sarily agreed with each other.

Standardized General Mean Curve

Dominance in terms of the Lorenz curves is not very common. Therefore, 
for inequality comparisons, we need to rely on various measures we cov-
ered earlier. We reported the Atkinson measures and generalized entropy 
measures in addition to the Gini coeffi cient. The Gini coeffi cient is not 
subgroup consistent, which means that if inequality in one region increases 
but remains the same in another region, the overall inequality may fall. We 
also showed in chapter 2 that each generalized entropy for a < 1 is a mono-
tonic transformation of the Atkinson inequality measures, and for a ≠ 1 it 
is a monotonic transformation of the general means. However, we report the 
Atkinson measures and the generalized entropy measures for only certain 
values of parameter a. This exercise should be understood as a dominance 
analysis of the Atkinson measures and the generalized entropy measures.

Figure 3.8 graphs the standardized general mean curve of Georgia’s 
per capita expenditure for 2003 and 2006. The vertical axis reports the 
standardized general mean of per capita expenditure, where standardiza-
tion is done by dividing the general mean of per capita expenditures by 
their mean. The horizontal axis reports parameter a, which is the degree 
of generalized mean and also known as the degree of a society’s aversion 
toward inequality.

The general mean of a distribution tends toward the maximum and the 
minimum per capita expenditure in the distribution when a tends to ∞ 
and – ∞, respectively. Given that the largest per capita expenditure in any 
distribution is usually several times larger than the mean per capita expendi-
ture, allowing a to be very large prevents meaningful analysis. Therefore, we 
restrict a to between – 5 and 5, which we consider large enough. The height 
of a standardized general mean curve for a particular value of parameter a 
is the general mean per capita expenditure divided by the mean per capita 
expenditure. The height of any standardized general mean curve is 1 at a = 1.
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The solid line represents Georgia’s standardized general mean curve in 
2003, while the dashed line represents Georgia’s standardized general mean 
curve in 2006. If a standardized general mean curve lies completely above 
another standardized general mean curve to the left of a = 1 and completely 
below to the right of a = 1, then every Atkinson inequality measure and 
generalized entropy measure for a ≠ 1 agree that the former distribution has 
lower inequality than the latter. It is evident from the fi gure that for larger 
values of parameter a, inequality in 2006 has worsened. However, for a 
less than 1, inequality has not signifi cantly deteriorated. The standardized 
general mean curve is a convenient way of verifying the robustness of the 
Atkinson inequality measures and the generalized entropy measures.

Advanced Analysis

In this chapter’s fi nal section, we discuss certain advanced analysis methods. 
These techniques require knowledge of regression analysis. We assume read-
ers have the required background.
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Consumption Regression

Table 3.28 analyzes determinants of the variable used for measuring welfare 
(the per capita consumption expenditure in this case). Rows denote the set 
of regressors (such as logarithm of household size, share of children in the 
age group of 0–6 years, share of male adults, share of elderly) and a set of 

 Table 3.28: Consumption Regressions

Factors

2003 2006

Urban Rural Urban Rural

Coef SE Coef SE Coef SE Coef SE

A B C D E F G H

Household characteristics
1 Log of household size −0.093 0.06 −0.010 0.05 −0.001 0.06 0.051 0.05
2 Log of household size squared −0.020 0.03 −0.078*** 0.02 −0.102*** 0.03 −0.114*** 0.02
3 Share of children age 0–6 years (dropped) (dropped) (dropped) (dropped)
4 Share of children age 7–16 years −0.252*** 0.09 0.223** 0.09 0.249** 0.10 0.076 0.09
5 Share of male adults −0.064 0.10 0.254*** 0.09 0.477*** 0.11 0.251*** 0.10
6 Share of female adults −0.004 0.10 0.453*** 0.10 0.592*** 0.11 0.435*** 0.10
7 Share of elderly (age ≥60 years) −0.124 0.11 0.462*** 0.10 0.488*** 0.12 0.355*** 0.10

Characteristics of household head
8 Log of household head’s age −0.063 0.05 0.076 0.05 −0.318*** 0.05 0.210*** 0.05

Regions
9 Kakheti (dropped) (dropped) (dropped) (dropped)

10 Tbilisi 0.446*** 0.05 (dropped) 0.258*** 0.05 (dropped)
11 Shida Kartli 0.182*** 0.06 0.147*** 0.03 −0.050 0.06 0.182*** 0.03
12 Kvemo Kartli 0.061 0.06 0.075** 0.03 −0.023 0.06 0.183*** 0.03
13 Samtskhe-Javakheti −0.115* 0.06 0.185*** 0.03 0.231*** 0.07 0.163*** 0.04
14 Ajara 0.226*** 0.06 −0.035 0.04 0.103* 0.06 0.067* 0.04
15 Guria −0.077 0.08 0.250*** 0.03 0.030 0.08 0.131*** 0.04
16 Samegrelo 0.112** 0.06 0.194*** 0.03 −0.007 0.06 0.238*** 0.03
17 Imereti 0.270*** 0.05 0.529*** 0.03 0.208*** 0.05 0.381*** 0.03
18 Mtskheta-Mtianeti −0.060 0.07 0.164*** 0.03 0.020 0.08 0.144*** 0.04

sland
19 0 ha (dropped) (dropped) (dropped) (dropped)
20 Less than 0.2 ha 0.121*** 0.03 0.162*** 0.05 0.104*** 0.03 0.166*** 0.04
21 0.2–0.5 ha 0.180*** 0.04 0.356*** 0.04 0.138*** 0.05 0.193*** 0.03
22 0.5–1.0 ha 0.255*** 0.05 0.478*** 0.04 0.125* 0.07 0.365*** 0.03
23 More than 1.0 ha 0.021 0.09 0.565*** 0.05 0.192** 0.08 0.484*** 0.04

Gender of household head
24 Male (dropped) (dropped) (dropped) (dropped)
25 Female −0.073*** 0.02 −0.002 0.02 −0.101*** 0.02 −0.027 0.02

Education of household head
26 Elementary or less (dropped) (dropped) (dropped) (dropped)
27 Incomplete secondary −0.067 0.07 0.034 0.03 0.226*** 0.07 0.086*** 0.03
28 Secondary 0.021 0.06 0.105*** 0.03 0.179*** 0.06 0.196*** 0.03
29 Vocational-technical 0.118* 0.06 0.147*** 0.04 0.225*** 0.07 0.255*** 0.04
30 Special secondary 0.156*** 0.06 0.217*** 0.03 0.269*** 0.06 0.322*** 0.04
31 Higher education 0.289*** 0.06 0.274*** 0.03 0.441*** 0.06 0.477*** 0.04

(continued)
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dummy variables (such as regional dummies, gender dummies, dummies for 
household head education, and dummies for household head employment 
status). Columns report regression coeffi cients (Coef) and standard errors 
(SE) of four different ordinary least square regressions, where the depen-
dent variable, or the regressand, is the logarithm of per capita consumption 
expenditure. The four regression results correspond to the urban and rural 
areas for 2003 and 2006.

Each regression result has two columns. The fi rst column reports regres-
sion coeffi cients and the second reports standard errors of the coeffi cients. 
A regression coeffi cient of any regressor indicates the change in the regres-
sand caused by a one-unit increase in that regressor. The standard error 
of a regressor indicates the reliability of its coeffi cient. Standard errors are 
always positive, and a higher standard error indicates lower reliability of the 
coeffi cient.

 Table 3.28: Consumption Regressions (continued)

Factors

2003 2006

Urban Rural Urban Rural

Coef SE Coef SE Coef SE Coef SE

A B C D E F G H

Employment status of household head

Self-employed
32 Agriculture (dropped) (dropped) (dropped) (dropped)
33 Industry −0.028 0.09 0.430*** 0.09 −0.122 0.11 0.208* 0.11
34 Trade 0.082 0.05 0.275*** 0.05 0.056 0.06 0.193*** 0.06
35 Transport 0.026 0.08 0.311*** 0.07 −0.039 0.08 0.311*** 0.07
36 Other services 0.072 0.07 0.340*** 0.08 −0.099 0.07 0.033 0.09

Employed
37 Industry −0.043 0.06 0.127** 0.06 −0.036 0.06 0.140** 0.06
38 Trade −0.094 0.06 0.144 0.09 −0.024 0.07 0.115 0.10
39 Transport −0.021 0.06 0.212*** 0.08 −0.174** 0.07 0.282*** 0.08
40 Government −0.041 0.06 0.227*** 0.06 0.012 0.07 0.277*** 0.08
41 Education −0.037 0.06 0.054 0.06 −0.029 0.07 0.045 0.07
42 Health care −0.041 0.08 0.085 0.15 −0.039 0.08 0.279* 0.15
43 Other −0.120** 0.05 0.150*** 0.04 −0.022 0.06 0.005 0.05
44 Unemployed −0.376*** 0.05 −0.138** 0.06 −0.325*** 0.05 −0.066 0.06
45 Inactive −0.219*** 0.04 −0.117*** 0.02 −0.169*** 0.05 −0.067*** 0.02

Other
46 Constant 4.851*** 0.21 3.425*** 0.19 5.328*** 0.20 2.976*** 0.20
47 Number of observations 4,525 7,106 4,112 6,773
48 Adjusted R2 0.18 0.20 0.17 0.16

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: Coef = coeffi cient. ha = hectare. SE = standard error, sland = area of land owned.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Rows 46, 47, and 48 report the intercept term, number of observations, 
and adjusted R-squares (R2), respectively. The intercept term, or constant 
term, denotes the level of the consumption expenditure logarithm not 
explained or determined by any regressors, or adjusted R-square denoted 
power of prediction of all regressors, or the model’s goodness-of-fi t. If the 
adjusted R-square is 1, then the regressors predict the regressand with com-
plete accuracy. If a regressor’s p-value is less than 0.01, then *** is added 
to the coeffi cient. If the p-value is less than 0.05, then ** is added to the 
coeffi cient. Finally, if the p-value is less than 0.1, then * is added to the 
coeffi cient. P-values denote regressors’ signifi cance level.

Note that all variables in the regions, sland, gender of household head, edu-
cation of household head, and employment status of household head categories 
are dummy variables or binary variables. They take a value of only 0 or 1.

A binary variable coeffi cient denotes the change in regressand when 
the dummy variable’s value changes from 0 to 1. For example, consider the 
coeffi cient of the regressor Female in the household head gender category for 
urban regression in 2003. The coeffi cient is –0.073 [25,A], implying that the 
per capita expenditure logarithm for a member in a female-headed household 
is 0.073 units lower than that of a male-headed household. The regressor’s 
standard error is 0.02 [25,B] with a p-value less than 0.01 (indicated by *** 
after the regressor), and thus the coeffi cient is highly signifi cant. The coef-
fi cient of the same regressor for urban regression in 2006 is –0.101 [25,E] 
with a p-value of less than 0.01, implying that the per capita consumption 
expenditure gap between female- and male-headed households increased 
over the three-year period.

Lessons for Policy Makers

The table provides a detailed analysis of the determinants of per capita 
consumption expenditure. If we focus on column A, it is evident that vari-
ables such as the share of children age 7–16 years [row 43], female-headed 
households [row 25], and household head unemployed [row 44] and inactive 
employment [row 45] status have signifi cant negative effects on per capita 
consumption expenditure for the urban area in 2003.

In contrast, the variables such as 0.5–1.0 hectare of landholding [row 22], 
household head higher education [row 31], and living in Imereti [row 17] 
have a signifi cant positive impact on per capita expenditure for both urban 
and rural areas in both years. Hence, the analysis summarized in table 3.28 
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provides a tool to understand per capita consumption expenditure determi-
nants and to develop appropriate poverty eradication policies.

Changes in the Probability of Being in Poverty

Table 3.29 analyzes changes in the probability of being in poverty using a 
probit regression model based on the consumption regression presented in 
table 3.28. Rows denote changes in values for various variables—such as 
change from having no children 0–6 years old to having one child, change 

 Table 3.29: Changes in the Probability of Being in Poverty

percent

2003 2006

Urban Rural Urban Rural

Variables A B C D

Demographic event, child born in the family
1 Change from having no children 0–6 years old to having 1 child 2.0 18.0 31.5 17.8
2 Change from having no children 0–6 years old to having 2 children 4.7 33.1 57.9 33.5

Land acquisition event
3 Change from “0 ha” to “less than 0.2 ha” −18.9 −15.3 −16.6 −18.0
4 Change from “0 ha” to “0.2–0.5 ha” −27.4 −33.6 −21.8 −20.9
5 Change from “0 ha” to “0.5–1.0 ha” −37.4 −44.5 −19.8 −38.5
6 Change from “0 ha” to “over 1.0 ha” −3.5 −51.9 −29.5 −49.6

Change of household head (following divorce, migration, and so forth)
7 Change from “Male” to “Female” 13.0 0.2 18.4 3.9

Education event: change in household head’s education
8 Change from “Elementary or less” to “Incomplete 

secondary”
10.5 −4.5 −28.0 −10.3

9 Change from “Elementary or less” to “Secondary” −3.3 −13.6 −22.4 −23.0
10 Change from “Elementary or less” to “Vocational-technical” −17.6 −18.8 −27.8 −29.5
11 Change from “Elementary or less” to “Special secondary” −23.0 −27.2 −33.0 −36.7
12 Change from “Elementary or less” to “Higher education” −40.3 −33.7 −51.4 −51.8

Sector of employment event: household head’s sector of employment
13 Change from “Agriculture” to “Industry” 5.7 −53.1 25.3 −28.1
14 Change from “Agriculture” to “Trade” −15.6 −36.5 −10.6 −26.2
15 Change from “Agriculture” to “Transport” −5.2 −40.5 7.7 −40.3
16 Change from “Agriculture” to “Other Services” −13.8 −43.8 20.3 −4.7
17 Change from “Agriculture” to “Industry” 8.8 −17.7 7.1 −19.4
18 Change from “Agriculture” to “Trade” 19.6 −20.0 4.8 −16.0
19 Change from “Agriculture” to “Transport” 4.2 −28.7 36.8 −37.0
20 Change from “Agriculture” to “Government” 8.4 −30.7 −2.3 −36.4
21 Change from “Agriculture” to “Education” 7.5 −7.8 5.7 −6.4
22 Change from “Agriculture” to “Health Care” 8.3 −12.0 7.8 −36.7
23 Change from “Agriculture” to “Other” 25.3 −20.9 4.3 −0.7
24 Change from “Agriculture” to “Unemployed” 87.4 20.7 72.1 9.7
25 Change from “Agriculture” to “Inactive” 48.2 17.4 35.6 9.8

Source: Based on consumption regression presented in table 3.28.
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from owning 0 hectare of land to > 1 hectare of land, and change from 
male-headed household to female-headed household. Columns report the 
percentage changes in the probability of being in poverty for rural and urban 
areas and across 2003 and 2006.

Recall from our discussion about table 3.28 that the interpretation of 
dummy or binary variables is different from that of continuous variables. 
A dummy variable, unlike a continuous variable, may take only a value of 
either 0 or 1. Table 3.28 described how the probability of being in poverty 
changes as values of certain variables change.

The probability of being in poverty in 2003 increased by 2.0 percent 
[1,A] if an individual moved from an urban household with no children in 
the 0–6 years age group to an urban household with one child in the same 
age group, all other factors being identical. The probability of being in pov-
erty in 2003 is increased by 18.0 percent [1,B] if an individual moved from 
a rural household with no children in the 0–6 years age group to a rural 
household with one child in the same age group, all else being identical. In 
the urban area, the increase in the probability of being in poverty in 2006 
for the same reason is 31.5 percent [1,C].

Similarly, in 2003 if an individual moved from a male-headed urban 
household to a female-headed urban household, all else being identical, 
then the probability of being in poverty increased by 13.0 percent [7,A]. 
If an individual moved from a male-headed rural household to a female-
headed rural household, all else being identical, then the probability of 
being in poverty increased by only 0.2 percent [7,B]. The largest increase in 
the probability of being in poverty in 2003 in the urban area occurred when 
an individual moved from a household where the head is employed in the 
agricultural sector to a household where the head is unemployed [24,A], all 
else being identical.

Lessons for Policy Makers

The table provides a detailed analysis of how the probability of being in pov-
erty changes when some of the crucial determinants of poverty are adjusted. 
Note that if the household head’s education in the urban area in 2006 
increased from elementary education or less to secondary education, all else 
remaining equal, then the probability of a member in that household being 
in poverty fell by 22.4 percent [9,C]. Similarly, in rural Georgia for both 
years, if the household head transferred from the agricultural sector to any 



222

A Unifi ed Approach to Measuring Poverty and Inequality

other employment sector, all else being equal, then the probability of being 
in poverty fell. Hence, this analysis provides a tool to better understand the 
source of poverty and what type of policy would be more effi cient in terms 
of eradicating poverty.

Growth and Redistribution Decomposition of Poverty Changes

Table 3.30 decomposes the change in poverty into a change in the mean per 
capita consumption expenditure and a change in distribution of consump-
tion expenditure around the mean, following Huppi and Ravallion (1991). 
Table rows denote three regions—urban, rural, and all of Georgia—for two 
different poverty lines. The per capita consumption expenditure is measured 
in lari per month. Poverty lines are set at GEL 75.4 (poor) and GEL 45.2 
(extremely poor) for each household and household member. For simplicity 
in this table, we present the decomposition for headcount ratio only, but the 
technique is equally applicable to other poverty measures in the FGT class.

Columns A and B report the headcount ratio of the three regions for 
years 2003 and 2006, respectively, and column C reports the changes over 
time. Columns D, E, and F decompose the change in the headcount ratio 
between 2003 and 2006 into three different terms. Column D reports the 
effect of growth on poverty, referred to as the growth effect. Column E reports 
the effect of redistribution on poverty and is called the redistribution effect. 
Column F reports the interaction term and is referred to as the interaction 
effect, following Huppi and Ravallion (1991).

  Table 3.30: Growth and Redistribution Decomposition of Poverty Changes, 

Headcount Ratio

percent

2003 2006 Actual change Growth Redistribution Interaction

Region A B C D E F

Poverty line = GEL 75.4
1 Urban 28.1 30.8 2.7 0.6 1.9 0.1
2 Rural 31.6 31.1 −0.5 −0.7 −0.1 0.3
3 Total 29.9 31.0 1.0 0.0 1.0 0.0

Poverty line = GEL 45.2
4 Urban 8.9 9.3 0.4 0.3 0.0 0.1
5 Rural 11.4 12.1 0.7 −0.2 1.0 0.0
6 Total 10.2 10.7 0.5 0.0 0.5 0.0

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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It is evident from the table that the overall headcount ratio in 2003 is 
29.9 percent [3,A], which increased to 31.0 percent in 2006 [3,B]. These 
numbers can be verifi ed from table 3.2. The actual change in the overall 
headcount ratio is 1.0 percentage point (rounded) [3,C]. The actual change 
is broken down into three components: growth effect, redistribution effect, 
and interaction effect. By looking at the corresponding fi gures in columns D, 
E, and F, we see that the change is caused mainly by redistribution rather 
than growth. We can verify from table 3.1 that growth in mean is negligible 
compared to change in inequality in terms of the Gini coeffi cient.

The picture is slightly different for the urban and rural areas. The urban 
headcount ratio rose by 2.7 percentage points from 28.1 percent [1,A] to 
30.8 percent [1,B], with both growth effect and redistribution effect being 
positive. The urban redistribution effect [1,E] is more than three times 
larger than the urban growth effect [1,D]. For the rural area, the headcount 
ratio fell from 31.6 percent [2,A] to 31.1 percent [2,B]. In this case, both the 
growth effect [2,D] and the redistribution effect [2,E] are negative.

The appendix contains additional tables and fi gures that may be helpful 
in understanding concepts and results in terms of the data for Georgia in 
2003 and 2006.

Note

1. For technical details, see Huppi and Ravallion (1991).

Reference

Huppi, M., and M. Ravallion. 1991. “The Sectoral Structure of Poverty dur-
ing an Adjustment Period: Evidence for Indonesia in the Mid-1980s.” 
World Development 19 (12): 1653–78.





Chapter 4

As conditions change and policy concerns evolve, there is a steady demand 
from countries and institutions for new tools to evaluate poverty. In this 
chapter, we briefl y discuss frontier technologies that are, at the time of this 
writing, in various stages of being implemented in the ADePT software. 
Most are refi nements of the traditional approach to poverty measurement, 
but some elaborate on related concepts of inequality and income standards. 

Ultra-Poverty

Our fi rst enhancement builds on a theme that originally led to the con-
struction of poverty measures beyond the headcount ratio, namely, that 
within the poor population important differences exist in the nature of 
poverty. The headcount ratio P0 ignores these differences by valuing each 
poor person equally without regard to the depth of poverty. Measures like 
the poverty gap P1 refl ect the depth of poverty among the poor, while oth-
ers like the FGT (Foster-Greer-Thorbecke) index P2 take into account its 
distribution by emphasizing those with the largest gaps. The measurement of 
ultra-poverty carries this differentiation one step further by focusing on the 
poorest of the poor. 

People who are most impoverished according to some well-defi ned cri-
terion are often the subject of special concern. The poverty experienced 
by this group is often called “extreme” or “acute.” Here we use the term 
ultra-poverty to describe the condition of poorest poor. Who are the ultra-
poor and how can their poverty be measured? The answer depends on the 
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underlying concept of poverty and the availability of data. The traditional 
monetary approach to poverty would suggest focusing on people more deeply 
income deprived. A second chronic poverty approach might defi ne the 
ultra-poor as those who are more persistently deprived. If many different 
achievements are being measured, those who are more multiply deprived may 
be the ultra-poor. Alternatively, deprivation that is more spatially concen-
trated might be associated with ultra-poverty. The discussion here focuses on 
the fi rst of these: ultra-poverty as deep deprivation in income. 

In addition to the usual poverty line z that signifi es the minimum accept-
able level for the population under consideration, we now assume that an 
even lower ultra-poverty line zu < z is used to identify a more deeply deprived 
group called the ultra-poor. One method of evaluating ultra-poverty is to 
apply a traditional poverty measure P to the income distribution x given 
the lower line zu. The resulting level P(x;zu) could then be used to evaluate 
ultra-poverty in a way entirely analogous to the way poverty is evaluated 
using P(x;z) at the usual poverty line. Indeed, the pair P(x;z) and P(x;zu) 
could be used in concert to gauge the extent to which poverty and ultra-
poverty change across time and space.

A diffi culty with this approach is that, aside from the special case of the 
headcount ratio, the levels of ultra-poverty and poverty obtained are not 
directly related to each other. For example, P1(x;zu) identifi es fewer people 
than P1(x;z), but because zu is smaller than z, the normalized gaps of the 
ultra-poor are also reduced in P(x;zu). The ultra-poverty line zu is playing 
two roles here: the cutoff by which the set of ultra-poor people is identifi ed 
and the standard against which shortfalls are evaluated in the aggregation. 
An alternative would be to use the ultra-poverty line zu in the fi rst role and 
the standard poverty line z in the second. Ultra-poverty would be measured 
commensurate with overall poverty fi gures and would allow a straightfor-
ward calculation of the importance of the ultra-poor in a country’s overall 
poverty.

Hybrid Poverty Lines

It was argued above that an absolute poverty line zu may not be sustainable 
when a large change occurs in the size of the income distribution. A similar 
observation applies when comparing two countries at very different levels of 
development using an absolute line. The problem is that when the income 
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standard varies a great deal, it seems reasonable that the poverty line should 
refl ect this change, at least to some extent. Yet an absolute poverty line, by 
defi nition, is fi xed and independent of any changes in the income standard. 
Stated differently, when an income standard (such as the mean) changes by 
1 percent, an absolute poverty line changes by 0 percent, so that the income 
elasticity of the poverty line is zero.

An alternative approach uses a relative poverty line zr, defi ned as a fi xed 
proportion of a given income standard. For example, 60 percent of median 
income is a relative poverty line used in the European Union. For relative 
poverty lines, if a country’s income standard changes by 1 percent, then 
the poverty line also changes by 1 percent, implying that the poverty line’s 
income elasticity is one. An argument against this approach is that it makes 
the poverty line too sensitive to changes in the income standard.

Several approaches have been explored to negotiate the landscape 
between the extremes of absolute and relative poverty lines. Foster (1998) 
suggests a hybrid poverty line that is a weighted geometric mean of rela-
tive and absolute poverty lines. In symbols, the poverty line is z = zr

rza
1-r, 

where 0 ≤ r ≤ 1. Note that r can be interpreted as the income elasticity of 
the hybrid poverty line, because when zr’s income standard rises by 1 percent, 
the relative component zr rises by 1 percent, which, in turn, increases the hybrid 
poverty line z by r percent.

On the one hand, if parameter r is set to zero so the entire weight is 
given to the absolute component, then the hybrid poverty line becomes the 
absolute poverty line where the elasticity is zero. On the other hand, if r is 
one so the full weight is on the relative component, then the hybrid poverty 
line becomes the relative poverty line and the elasticity is one. If 0 < r < 1, 
then the hybrid poverty line will lie between the absolute and relative lines 
and have an elasticity between zero and one.

How is the elasticity to be set? One approach is to estimate the param-
eter using data on existing poverty lines and income levels. Foster and 
Székely (2006) regress poverty lines on private consumption per capita for 
92 household surveys across 18 countries and fi nd an elasticity of 0.36. A 
second approach is to select “reasonable” values and check for robustness. 
Madden (2000), for example, analyzed Irish poverty using the 1987 and 
1994 Irish Household Budget Surveys for two intermediate values of the 
parameter, 0.5 and 0.7, and found that results were similar for the two.

Finally, by interpreting r as the extent to which society believes the 
poor should share in growth, we can view the selection of r as a normative 
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decision requiring political discourse to obtain a solution. Regardless of the 
method for choosing r, the resulting tools allow a useful decomposition of 
poverty into an absolute poverty group (those below the absolute poverty 
line) and a hybrid or relative group (those above the absolute but below 
the hybrid poverty line). This is analogous to the above decomposition 
into the ultra-poor and the poor above the ultra-poverty line and likewise 
could be helpful in guiding differential policy responses for the two groups.

Atkinson and Bourguignon (2000) combine absolute and relative pov-
erty lines in a different way. When mean income is low enough that za > zr, 
they suggest that the absolute poverty line would be appropriate and hence 
the income elasticity of the poverty line is zero in this region. However, 
when incomes are high enough for zr > za, the relative poverty line should 
apply, yielding a unitary income elasticity of the poverty line. The hybrid 
poverty line of a country is then the maximum of the absolute poverty line 
and the relative poverty line, or z = max{za,zr}. Atkinson and Bourguignon 
use data on poverty lines and mean incomes to calibrate the absolute and 
relative lines.

Ravallion and Chen (2011) argue that an income elasticity of one is 
implausible and posit a weak relativity axiom that requires poverty to fall if 
all incomes rise by the same proportion. They then provide the alternative 
hybrid poverty line formula z = max{za,f+zr}, where f > 0 is interpreted as 
the fi xed cost of social inclusion. They set the three parameters of their 
proposed formula with the aid of data. Although the line of Atkinson 
and Bourguignon (2000) does not satisfy the weak relativity axiom for the 
standard scale invariant poverty measures, the lines of Foster (1998) and 
Ravallion and Chen (2011) do.

Categorical and Ordinal Variables

The previous analysis applies to any cardinal welfare indicator, where cardi-
nality requires that values convey more information than just more or less. 
Nonmonetary examples of cardinal variables might include calories, years of 
schooling, or hectares of land. Many other variables are more appropriately 
interpreted as ordinal, because their values are only indicators of order. 
Others might be categorical and have no values or underlying ordering at 
all. Examples of ordinal variables include self-reported health and subjec-
tive well-being. Categorical variables include sanitation facilities or the 
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fl oor materials in a house. What can be done if we want to evaluate the size, 
spread, or base of such a welfare indicator?

Allison and Foster (2004) describe ways of comparing distributions of 
self-reported health in terms of spread and, in the process, provide new 
approaches to evaluating size and base for this ordinal variable. The main 
tools are dominance rankings. Changes in size and poverty are evaluated 
using fi rst-order stochastic dominance. Changes in spread are twin fi rst-
order dominance movements away from the median category. To calculate a 
mean, an inequality measure, or an FGT poverty index for a > 0, one must 
cardinalize the ordinal variable, and hence the comparisons obtained are 
not generally meaningful (because a different cardinalization could reverse 
the ranking).

The headcount ratio, however, is identical for all cardinalizations and 
thus is an appropriate tool for measuring poverty when the variable is 
ordinal or even categorical. Of course, the headcount ratio provides no 
information at all about depth. Bennett and Hatzimasoura (2011) provide 
one approach to evaluating depth with an ordinal variable, based on a 
reinterpretation of the poverty gap as “average headcount ratios” across 
different poverty lines.

Chronic Poverty

Returning to the case of income, we saw how poor people can differ 
from one another in policy-relevant ways. For example, poor people with 
deeper income shortfalls are distinct from those just below the poverty 
line. Time is a second dimension for differentiating among the poor: 
persistent poverty is different from temporary poverty. Persistent poverty is 
usually termed chronic poverty, and there are two main ways of identifying 
and measuring it: 

• The components approach of Jalan and Ravallion (2000) identifi es 
as chronically poor someone whose average income across several 
periods is below the poverty line. This method rules out people whose 
incomes temporarily dip below the line in a given period, but who, 
on average, earn more than poverty line income. Chronic poverty 
can then be measured by applying a standard poverty measure to the 
average incomes distribution.
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 The use of average income implies that each period’s income is a 
perfect substitute for any other period’s income. Alternative methods 
that allow for imperfect income substitution across periods have been 
proposed: see Calvo and Dercon (2009) or Foster and Santos (2006). 

• In the spells method, exemplifi ed by Foster (2009), the chronically 
poor are those whose incomes are frequently below the poverty line, 
say, in two of four periods. People with fewer poverty spells are not 
chronically poor—their spells are censored out when chronic poverty 
is measured. Aggregation proceeds as in the standard FGT case, but 
now data on spells, normalized gaps, and squared normalized gaps are 
collected in matrices.

 The dimension-adjusted FGT indices are simply the means of the 
respective censored matrices. For example, the dimension-adjusted 
headcount ratio is the number of spells experienced by chronically 
poor people divided by the maximum number of spells that could be 
experienced by everyone. This approach assumes there is no income 
substitution across periods, and, indeed, incomes are never aggre-
gated as they are in the components approach. It also presumes that 
poverty spells have the same value, no matter the period or person.

Either approach to measuring chronic poverty allows the separate iden-
tifi cation of chronic and transient poor and a corresponding decomposition 
of poverty into chronic and transient components. This can be particularly 
useful for tracking chronic poverty across subgroups for better targeting of 
the policy mix.

Note that chronic poverty measurement increases data requirements 
substantially. Panel data linked across periods at the individual or household 
level are needed to undertake this form of measurement; it is not enough to 
have multiple data cross-sections. Given the relative scarcity of panel data, 
substantial efforts are being devoted to fi nd novels ways of constructing virtual 
panels from cross-sectional data. See, for example, Dang and others (2011).

Multidimensional Poverty

There is interest in developing and applying poverty measures that are 
multidimensional in that shortfalls from multiple welfare indicators are 
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used to identify the poor and measure poverty. Several reasons exist for 
this interest:

• Sen’s capability approach has received greater acceptance as a way 
of conceptualizing well-being and poverty. According to Sen (1999), 
poverty is seen as capability deprivation. Because many capabilities 
exist, an accurate assessment of someone’s poverty requires a simul-
taneous assessment of multiple dimensions.

• The number of datasets that would support a multidimensional 
assessment has increased.

• Strong demand comes from countries, international organizations, 
and nongovernmental organizations for instruments that measure 
poverty multidimensionally. For example, since 2009 the offi cial 
poverty measure in Mexico has been multidimensional, refl ecting 
shortfalls in income and several other “social” dimensions as required 
by the relevant law (CONEVAL 2011). More recently, Colombia 
elected to supplement its offi cial income poverty measure with a 
multidimensional poverty measure that is also used to coordinate 
social policy among its ministries and the presidency (Angulo, Diaz, 
and Pardo 2011).

The World Development Report 2000/2001: Attacking Poverty (World 
Bank 2000) expressed the generally accepted idea that poverty is inherently 
multidimensional. But as emphasized by Ferreira (2011), less agreement 
exists on how to measure poverty when it has many constituent welfare 
indicators. One way is to examine the nature of the indicators and how 
they relate to one another. Some variables—such as earned and unearned 
income—are easy to combine into a single aggregate. Others—such as 
health and employment outcomes—are not. It is helpful to distinguish 
between these cases.

When the variables can be meaningfully aggregated into a composite 
welfare indicator for each person, the distribution of the composite indica-
tor could be evaluated using traditional poverty measurement methods. An 
aggregate cutoff could be chosen to identify who is poor, and their poverty 
could be measured using a poverty measure. In this way, the multidimen-
sional case could be converted to the single dimensional environment, 
where well-known methods apply.
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However, just because combining variables into one indicator is fea-
sible does not necessarily mean it is the best way to proceed. Aggregate 
analysis conceals deprivations in individual variables that are compensated 
by higher levels in other dimensions. If missing deprivations are policy rel-
evant, a more disaggregated approach may be needed. In India, for example, 
aggregate consumption is expanding and poverty headcount ratios are fall-
ing, yet a high prevalence of malnutrition persists among children. Because 
of this situation, shifting focus from shortfalls in aggregate consumption to 
shortfalls in food consumption, or to shortfalls in consumption of food by 
children, may be natural, if the data allow. When an aggregate welfare indi-
cator conceals policy-relevant information, a lower level of aggregation may 
be preferable, even when full aggregation is feasible.

Now consider the case where all the key variables cannot be meaning-
fully aggregated into a single composite welfare indicator or where, for 
policy reasons, complete aggregation is not desirable (such as where depriva-
tions in a certain variable are important to track). In this case, alternative 
approaches must be explored. One option is to limit consideration to a sub-
set of the welfare indicators that can be aggregated and to drop the rest. This 
approach has the benefi t of expediency but ignores key poverty components. 
Let us suppose instead that all variables must be used and that two or more 
welfare indicators remain after aggregation. How can poverty be measured?

Many recent papers have considered this question, including Tsui (2002); 
Bourguignon and Chakravarty (2003); Alkire and Foster (2007, 2011); 
Massoumi and Lugo (2008); and Bossert, Chakravarty, and D’Ambrosio 
(2009). As with chronic poverty measurement, the aggregation step used by 
each is based directly on traditional, single-dimensional poverty measures, 
appropriately expanded to account for many dimensions. For the identifi ca-
tion step, all begin with a cutoff in each dimension—which might be called 
a deprivation cutoff. If the variable is below its respective cutoff, the person 
is considered to be deprived in that dimension. Most of these papers then 
adopt the union approach to identifi cation, whereby anyone who is deprived 
in even a single dimension is identifi ed as poor. Some also discuss the 
intersection approach, which is at the other extreme where someone must be 
deprived in every dimension to be identifi ed as being poor.

As noted by Alkire and Foster (2011), the union approach often identi-
fi es a very large group of poor, whereas the intersection approach often iden-
tifi es a vanishingly narrow slice, and this becomes particularly evident when 
the number of dimensions expands. They propose an intermediate approach 
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to identifying the poor that depends on a simple measure of the breadth or 
multiplicity of deprivation the person experiences. In this approach, every 
deprivation has a value. The overall breadth of deprivation experienced by 
a person is measured by summing the values of deprivations experienced. A 
poverty cutoff is selected, and if the breadth of deprivation is above or equal 
to the poverty cutoff, then the person is identifi ed as being poor. The union 
approach is obtained at one extreme where the poverty cutoff is very low, 
while the intersection approach arises at the other where the cutoff is very 
high. An intermediate poverty cutoff identifi es as poor those who are suf-
fi ciently multiply deprived. This is the dual cutoff approach to identifi cation 
suggested by Alkire and Foster (2011).

For aggregation, Alkire and Foster (2011) extend the FGT class of indi-
ces to the multidimensional context. They do this by constructing three 
matrices analogous to the vectors used in the FGT defi nitions, except that 
now each person has a vector containing information to be aggregated into 
the overall measure. The matrices are censored in that the data of anyone 
who is not poor are replaced by a vector of zeroes. The censored deprivation 
matrix g0 contains deprivation values (when a person is deprived in a dimen-
sion and poor) or zeroes (when the person is not deprived in the dimension 
or not poor). The adjusted headcount ratio M0 = m(g0) is its mean. The mea-
sure can be equivalently expressed as M0 = HA, where H is the population 
percentage identifi ed as poor and A is the average breadth of deprivation 
they experience. Analogous defi nitions yield the adjusted poverty gap M1 
and the adjusted FGT M2, as part of a family Ma of measures where a ≥ 0. 
The methodology of Alkire and Foster combines a dual cutoff identifi cation 
approach and an adjusted FGT index.

The adjusted headcount ratio has several properties that make it 
particularly attractive in practical applications. It can be used when 
the underlying data are ordinal or even categorical. Its interpretation as 
H × A is similar to the interpretation of PG, the traditional poverty gap, 
because PG = PH × PIG, where PH is the traditional headcount ratio and 
PIG is the average normalized income gap of the poor. M0 augments the 
information in H using A, which is a measure of breadth rather than 
depth. It is decomposable by population subgroup. It can dig down 
into the aggregate numbers to understand the key deprivations that are 
behind the measured poverty level. Related examples can be found in 
Alkire and Foster (2011) and the recent Human Development Reports 
of the United Nations Development Programme, which implemented 
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the approach across 109 countries as the Multidimensional Poverty Index 
(MPI) (see also Alkire, Foster, and Santos 2011).

Measuring poverty in a multidimensional environment is challenging, 
and the dual cutoff, adjusted headcount ratio methodology has been subject 
to intense scrutiny. See, for example, Ravallion (2011) and the rejoinders by 
Alkire and Foster (2011) and Alkire, Foster, and Santos (2011). Ravallion 
(2011) offers an alternative approach that evaluates each dimension sepa-
rately using a traditional single-dimensional method to generate a dashboard 
of dimension-specifi c deprivation measures. This approach provides useful 
information about who is deprived in a given dimension and the extent of 
their deprivation, and by using headcount ratios, it can also deal with ordi-
nal or categorical variables.

However, the approach provides no answer to the central question of 
identifi cation: Who is poor? In addition, the dimension-specifi c indices 
refl ect only the marginal distributions of the separate dimensions and hence 
ignore their joint distribution. The methodology of Alkire and Foster relies 
importantly on the joint distribution to determine the extent to which an 
individual is multiply deprived. Their proposal is a fi rst attempt at a practical 
methodology for measuring poverty multidimensionally. Given the demand 
for measurement methods that capture the multidimensional nature of pov-
erty, we can expect greater use of these and related methods in the future.

Multidimensional Standards

How should a society measure progress? Per capita income or expenditure 
is well suited for indicating the resources available to an average member 
of the society. However, there are at least two substantive critiques of this 
measure as the sole indicator of progress. First, as noted previously in the 
discussion of income standards, per capita income or expenditure thor-
oughly ignores the distribution of resources among the population. Other 
possibilities, such as the Atkinson or Sen income standards, are sensitive 
to the distribution and might well be preferable as an indicator of societal 
progress.

Second, monetary resources are not the only resources important to a 
person’s well-being. Without a more complete picture of the capabilities 
available to people, or at least of the levels of achievement in the vari-
ous domains, we may be seeing only a partial view of progress. To be sure, 
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income and other welfare indicators are often positively correlated, for 
both individual and country-level data, which may suggest that the 
nonincome indicators are not needed. But as emphasized by Sen (1999), 
notable exceptions to these regularities exist. A proper measure of progress 
should convey empirical realities in all eventualities, including excep-
tional cases. Correlation does not justify dropping important dimensions 
in assessing progress.

The Human Development Index (HDI) of the United Nations 
Development Programme was designed as an alternative to income per 
capita that includes health and education achievements in a country 
(thus addressing the second critique). The underlying structure of the 
traditional HDI is straightforward, even if the details of its construction 
are not. A country’s achievements in income, health, and education are 
summarized in three indicators that are normalized to lie between zero 
and one. The traditional HDI is a simple mean of these components. The 
precise construction of the indicators—including the choice of “goalposts” 
for normalizing a variable and its specifi c transformation—can affect the 
HDI’s picture of development across countries. As an example, the income 
indicator used in the HDI is based on a logarithm of income per capita; if 
the untransformed variable were used instead, the ranking at the upper end 
would more closely follow the income ranking of these countries.

This lack of robustness is indicative of the challenge of constructing 
component indicators that can be meaningfully combined into a composite 
indicator. One alternative to combining dimensions into an overall indica-
tor is to provide a dashboard of dimensional indicators. If indicators were not 
being combined, normalizing goalposts and special transformations would 
not be needed; the variables could be presented in their original, more 
comprehensible forms. In particular, one could dispense with the log trans-
formation, because average income itself would rank countries the same 
way—within this dimension.

However, many good reasons exist for using a composite indicator rather 
than a vector of components. A single numerical indicator is more salient 
and easier to track. A comprehensive measure emphasizes the point that we 
are more interested in overall progress than progress in any given dimension. 
Moreover, given that the aggregation formula is decomposable, it invites 
further analysis to identify which components are driving the overall results. 
The success of the HDI would have been unlikely if only a dashboard of 
dimensional indicators had been provided.
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The mean is just one way of combining dimensions to get a measure of 
progress. Other forms are possible. Foster, McGillivray, and Seth (2010, 
2013) use the weighted additive form of the traditional HDI but allow the 
weights to vary from the HDI’s case of equal weights. They examine the 
robustness of HDI comparisons to variations in weights and derive condi-
tions under which the original ranking is preserved.

A second aggregation formula can be found in the “new” HDI that 
appeared in the Human Development Report 2010 (UNDP 2010). Instead 
of aggregating by using an arithmetic mean, the new HDI has adopted a 
geometric mean. Under this approach, component indicators are viewed 
as imperfect substitutes rather than the perfect substitutes implicit in an 
additive form. The rates of trade-off across dimensions now depend on the 
component levels, with indicators having lower relative levels being valued 
more highly. This approach rewards balanced development in which no one 
dimension lags too far behind or moves too far ahead of the rest.

In the Human Development Report 2010, the relation between the old 
and the new methodology is presented in a fi gure in the statistical annex 
(UNDP 2010, 217 fi gure T1.1). Although the old and new HDI rankings 
have a positive relationship, the ranks are not perfectly positively associ-
ated. The new HDI values tend to be lower than the old HDI values, mainly 
because the income component had been normalized with respect to a much 
larger value, in addition to applying a geometric mean instead of the tradi-
tional arithmetic mean.

By focusing purely on average achievements in a country, the HDI is also 
subject to the fi rst critique of per capita income—that it ignores inequal-
ity across people. In a multidimensional setting, there are more ways for 
a concern for inequality to be incorporated into a measure. One aspect is 
inequality within each dimension. Hicks (1997), for example, uses the Sen 
(or Gini-discounted) mean to evaluate the distribution of each component, 
then averages across dimensions. Greater inequality with dimensions lowers 
the Sen mean and hence the overall measure.

Noting that the resulting measure is not subgroup consistent, Foster, 
López-Calva, and Székely (2005) propose an alternative class of distri-
bution-sensitive measures. A general mean with fi xed parameter a < 1 is 
applied to each component, thereby discounting for within-dimension 
inequality using an Atkinson inequality measure. To ensure that the overall 
measure is subgroup consistent, they aggregate across dimensions using the 
same general mean (having the same fi xed parameter a < 1). The resulting 
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formula can be viewed as a general mean of the matrix of individual welfare 
indicators and is an example of what might be called a multidimensional 
standard—which generalizes the notion of an income standard from a vector 
(of one welfare indicator across many people) to a matrix (of several welfare 
indicators across many people).

The approach has another advantage besides subgroup consistency: 
measures in this class are path independent, in that one obtains the same 
overall value whether one aggregates within each dimension and then 
across dimensions (as defi ned above) or one aggregates across dimensions 
for each person (analogous to a utility function) and then across people (as 
with a traditional individualistic social welfare function). The latter order 
of aggregation is more traditional in welfare economics, because it builds 
up from the individual. However, the alternate defi nition is easier to derive 
empirically, because the data need not be linked at the individual level. 
This convenient property was used in the construction of the Inequality-
Adjusted Human Development Index (IA-HDI), which has been reported 
in the Human Development Reports since 2010 (see Alkire and Foster 2010 
for a more extensive discussion). It is a member of the Foster, López-Calva, 
and Székely (2005) class using the geometric mean (or a = 0).

The second aspect of multidimensional inequality concerns association 
across dimensions and is perhaps best explained using terminology from 
statistics. The distribution of welfare indicators across people can be sum-
marized in the joint distribution, which indicates the prevalence of combina-
tions of welfare indicators across the population. Each joint distribution has 
associated with it a marginal distribution for each welfare indicator, which 
indicates the prevalence of the various levels of a welfare indicator in the 
population. Two different joint distributions may have the same marginal 
distribution; the association or correlation between indicators can be very 
different even when the distribution within each indicator is the same.

For example, suppose two societies have the same marginal distributions 
of achievements, and the well-being is measured by two dimensions: income 
and education. In the fi rst society the indicators are highly positively cor-
related, meaning that one with higher income has higher education. This 
may be due to a failure of governance in providing free public education. 
As a result, people with low income are unable to obtain higher levels of 
education. Now suppose in a second country, the marginal distributions of 
two societies are the same, but the correlation is much lower. This may have 
happened because the government arranged public provision of education. 
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To detect the difference between these two situations, we need to use a 
measure that is sensitive to association between dimensions.

Seth (2009) extended the method of Foster and others to a class of mul-
tidimensional standards that are sensitive to both forms of inequality: the 
welfare indicators of each person are fi rst aggregated using a general mean 
of order b < 1; then these personal aggregates are aggregated using a general 
mean of order a < 1 to obtain the overall measure. Note that when a is 
equal to b, the measure belongs to the Foster and others class and is neutral 
to the second form of inequality. When a is not equal to b, the measure is 
sensitive to association among dimensions. For the detailed methodology, 
see Seth (2012). This second form of inequality has also been discussed 
in the poverty measurement literature (see Tsui 2002; Bourguignon and 
Chakravarty 2003; Alkire and Foster 2007, 2011).

Given a multidimensional standard s incorporating one or both notions 
of inequality, it is then straightforward to defi ne a multidimensional 
inequality measure as the percentage shortfall of s from the overall mean 
achievement, namely, I = (m − s)/m. It should be noted, though, that many 
assumptions are needed to construct s, which can make multidimensional 
inequality I hard to measure in practice. Key among these are assumptions 
pertaining to the cardinalization and comparability of the component 
indicators; changing the way a variable is measured and altering its value 
vis-à-vis other variables can change the rankings provided by s and the 
inequality measure. Particularly vexing is the case where one or more of 
the variables are ordinal, so that the cardinal form of each variable must, 
by defi nition, be arbitrary. One way forward is to restrict consideration 
to multidimensional versions of stochastic dominance (see Atkinson and 
Bourguignon 1982). However, the case that addresses this issue—fi rst-order 
dominance—is precisely the case where the fi rst form of inequality must 
be ignored. Further work is needed to construct robust multidimensional 
standards and practical indicators of multidimensional inequality.

Inequality of Opportunity

The previous section examined the general case where several welfare indi-
cators contribute to a person’s well-being. We now return to the simpler 
case of a single welfare indicator, but where other variables provide infor-
mation on relevant characteristics or “identities” of the individuals. Recent 
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work has moved from evaluations of inequality across all people to measures 
of inequality across groups of people, with the goal of isolating forms of 
inequality that are particularly objectionable or policy relevant.

Roemer (1998) divides identity variables into circumstances, which 
are unrelated to actions taken by the person and hence the person is not 
accountable for such circumstances, and efforts, which are under the per-
son’s control. He argues that inequality across groups of people defi ned by 
circumstances is particularly objectionable. For example, income inequal-
ity across racial groups or across groups defi ned by the education levels of 
one’s parents should be of special concern because it refl ects an underlying 
inequality of opportunity. Ferreira and Gignoux (2008) implement this 
approach by applying Theil’s second inequality measure, or the mean log 
deviation, to a smoothed distribution defi ned by replacing each income in 
a group with the group mean. In other words, inequality of opportunity is 
measured as a between-group inequality term. This general approach can 
be applied for different circumstance variables, and hence ways of defi ning 
groups, to obtain different inequality of opportunity measures conditional 
on that choice.

Stewart (2002) contends that group inequalities, which she calls horizon-
tal inequalities, can be more important than overall or vertical inequalities. 
But rather than invoking a normative notion of equal opportunity, she uses 
an empirical argument: horizontal inequalities, such as those across ethnic 
groups, tend to be more closely linked to confl ict than are vertical inequali-
ties. Stewart emphasizes that many possible dimensions of achievements 
could be evaluated. The horizontal inequalities in a given dimension for a 
confi guration of groups can be measured and monitored using the associated 
between-group inequality term.

The World Bank’s Human Opportunity Index (HOI) is another group 
inequality measure that uses an opportunity interpretation of group inequal-
ities. Here the focus is on the provision of social services, so the underlying 
distribution is taken to be dichotomous, with a zero being posted for all 
people without access to the service and a one for those having access. The 
overall mean of this variable then corresponds to the coverage rate for the 
social service. The aim is to go beyond the mean coverage to account for 
differential coverage rates across population subgroups, where the groups 
are defi ned using circumstantial variables. An inequality measure is applied 
to the smoothed distribution (which replaces a person’s actual value with 
the group’s coverage rate) to obtain a measure of inequality of opportunity. 
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The HOI is the overall coverage rate discounted by the inequality of oppor-
tunity or, equivalently, a distribution-sensitive income standard applied 
directly to the smoothed distribution.

The inequality measure used in the original HOI was the relative mean 
deviation, a rather crude inequality measure that ignores transfers on either 
side of the mean (see de Barros and others 2009). However, it is easy to 
consider other inequality measures that generate between-group inequality 
measures that are sensitive to differential coverage across subgroups on the 
same side of the mean. For example, if we use the Atkinson inequality mea-
sure based on the geometric and arithmetic means, the resulting HOI will 
evaluate the smoothed distribution using the geometric mean. Note that 
every different social service can lead to a different picture of a population’s 
opportunity to access social services. An overall view may require aggregat-
ing access to services at the individual level or aggregating HOIs into an 
overall index. In addition, the measure is dependent on the particular cir-
cumstances selected to defi ne population subgroups. These implementation 
challenges are worthwhile because the measures can help reveal inequalities 
that are especially salient and unjust.

Polarization

The term polarization describes a situation where a population spreads apart 
into well-defi ned extremes of high and low and loses observations in the 
middle. It is related to inequality in that a regressive transfer from low 
incomes to high incomes (across the middle) increases both polarization and 
inequality. However, the process of observations coming closer together at 
the extremes and thereby raising polarization entails progressive transfers 
that lower inequality. The two concepts go in different directions for this 
form of transformation.

The concept of polarization is not the same as the concept of inequality 
and requires its own measurement approach. Several polarization measures 
have been proposed over the past two decades, but the two most frequently 
cited are those of Foster and Wolfson (1992, 2010) and Esteban and Ray 
(1994). The Foster-Wolfson polarization measure fi rst divides the entire 
population into two groups: one with achievements larger than the median 
achievement and the other with achievements below the median. The 
polarization measure is the difference between the between-group inequality 
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and the within-group inequality (as measured by the Gini coeffi cient) times 
the ratio of mean to median (where the ratio of mean to median is a measure 
of skewness of the distribution). 

Foster and Wolfson (1992, 2010) also propose dominance orderings 
based on polarization curves that can determine whether unambiguous 
increases in polarization have taken place. First-order polarization occurs 
when there are fi rst-order stochastic dominant movements away from the 
median. Second-order polarization occurs when there are second-order 
dominant movements away from the median. The Foster-Wolfson polar-
ization measure is related to the area below the second-order polarization 
curve. This approach has been extended by Zhang and Kanbur (2001) and 
Chakravarty and D’Ambrosio (2010).

In contrast to the Foster-Wolfson approach, in which two groups of 
observations are endogenously defi ned using the median as the dividing 
line, Esteban and Ray (1994) assume that several groups of observations are 
exogenously given, each around its own pole. Their polarization measure 
rises when the groups pull apart from one another, or when observations 
within a group become more tightly clustered together. The measure is 
challenging to implement in practice because no clear way is given for 
dividing an overall distribution into relevant clusters. These and other 
practical problems of implementation are addressed in Duclos, Esteban, 
and Ray (2004).
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Chapter 5

This chapter provides basic information about installing and using ADePT. 
The instructions are suffi cient to perform a simple analysis. More informa-
tion is available:

• Detailed instructions for using ADePT are provided in the ADePT 
User’s Guide, which you can download from http://www.worldbank
.org/adept  Documentation.

• Video tutorials are available at http://www.worldbank.org/adept  
Video Tutorials.

• ADePT provides online help through the Help  Contents command.
• For help with using an ADePT module, see appropriate chapters in 

this book or in another book in the Streamlined Analysis with ADePT 
Software series.

• Module-specifi c instructions, and example datasets, projects, and 
reports, are available at http://www.worldbank.org/adept  Modules.

• Examples of datasets and projects are installed with ADePT. They 
are located in the\example subfolder in the ADePT program folder. 
Use the examples with the instructions in this chapter to familiarize 
yourself with ADePT operations. 

Getting Started with ADePT
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Conventions Used in This Chapter

• Windows, buttons, tabs, dialogs, and other features you see on screen 
are shown in bold. For example, the Save As dialog has a Save button 
and a Cancel button.

• Keystrokes are shown in small caps. For example, you may be 
instructed to press the enter key.

• Menu commands use a shorthand notation. For example, Project  

Exit means “open the Project menu and click the Exit command.” 

Installing ADePT

System Requirements

• PC running Microsoft Windows XP (SP1 or later), Windows Vista, 
Windows Server 2003 and later, or Windows 7; ADePT runs in 32- 
and 64-bit environments.

• NET 2.0 or later (included with recent Windows installations) and 
all updates and patches

• 80MB disk space to install, plus space for temporary dataset copies
• At least 512MB RAM
• At least 1024 × 768 screen resolution
• At least one printer driver must be installed (even if no computer is 

connected).
• Microsoft® Excel® for Windows® (XP or later), Microsoft® Excel 

Viewer, or a compatible spreadsheet program for viewing reports 
generated by ADePT is required.

• A Web browser and Internet access are needed to download ADePT. 
Internet access is needed to install program updates and to load Web-
based datasets into ADePT. Otherwise, ADePT runs without needing 
Internet access.

Installation

1. Download the ADePT installer by clicking the ADePT Downloads 
button at http://www.worldbank.org/adept.

2. Launch the installer, and follow the on-screen instructions.

ADePT automatically launches after installation.

http://www.worldbank.org/adept
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Launching ADePT

1. Click the ADePT icon in the Windows® Start menu.
2. In the Select ADePT Module window, double-click the name of the 

module you want to use (see arrow in screenshot below). To open a 
health module, double-click Health, then click Health Financing or 
Health Outcomes.

3. You now see the ADePT main window. (The example below shows 
ADePT confi gured with the Poverty module. The lower left-hand 
and upper right-hand panels will be different when another module 
is loaded.)



248

A Unifi ed Approach to Measuring Poverty and Inequality

• To switch to another module after launching ADePT:
a. Module  Select Module... 
b. In the Select ADePT Module window, double-click the name of 

the module you want to use.

Overview of the Analysis Procedure

There are four general steps in performing an analysis:

1. Specify one or more datasets that you want to analyze.
2. Map dataset variables to ADePT analysis inputs.
3. Select tables and graphs.
4. Generate the report.
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Perform each step in the ADePT main window:

1. Click Add... button to load dataset(s).
Enter dataset year in Label column.  

3. Select tables and/or graphs
to be included in report.

4. Click Generate button.
2. Map dataset variables to input variables

by selecting dataset variables in drop-down lists.

The next sections in this chapter provide detailed instructions for the 
four steps.

Specify Datasets

Your fi rst task in performing an analysis is to specify one or more datasets. 
ADePT can process data in Stata® (.dta), SPSS® (.sav), and tab delimited 
text (.txt) formats.
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Operations in this section take place in the upper left-hand corner of the 
ADePT main window.

1. Click the Add... button.
2. In the Open dataset dialog, locate and click the dataset you want to 

analyze, then click the Open button. The dataset is now listed in the 
Datasets tab.

Tip: While learning to use ADePT, you may want to experiment 
with sample data. You can fi nd sample datasets in the ADePT\
Example folder.
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3. Specify a label for the dataset:
a. In the Label column, select the default label.
b. Type a label for the dataset. Recommended: Label the dataset using 

the year the survey was conducted (for example, 2002). When 
labels are years, ADePT can calculate differences between surveys.

c. Press enter.
4. Optional: Repeat steps 1–3 to specify each additional dataset.

Note: If more than one dataset is specifi ed, the datasets must contain 
only individual observations or household observations, not both.

• To remove a dataset: Click the dataset, then click the Remove button.
Three datasets have been specifi ed in this example.

Note: ADePT does not alter original datasets in any way. It 
always works with copies of datasets.

5. At the top of the Datasets tab
• Select Individual level if the datasets contain one observation for 

each household member.
• Select Household level if the datasets contain one observation for 

each household.
6. By default, the Show changes between periods option is activated.

• If you want ADePT to calculate changes between two periods, 
select the periods to the right of the option. The left-hand 
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period must be earlier than the right-hand period, as shown 
here:

• If you do not want ADePT to calculate changes between periods, 
deactivate the Show changes between periods option.

Map Variables

ADePT needs to know which variables in the dataset(s) correspond to the 
inputs to its calculations. You must manually map dataset variables to input 
variables.

Operations described in this section take place on the left-hand side of 
the ADePT main window. These examples show the Poverty module loaded 
into ADePT, but the process is similar for the other modules.

There are two methods for mapping variables:

Method 1: In the lower input Variables tab, open the variable’s list, then 
click the corresponding dataset variable, as shown for the Urban variable.
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Method 2: In the upper dataset Variables tab, drag the variable name and 
drop it in the corresponding fi eld in the lower input Variables tab.

Note: You can also type dataset variable names in the input variable 
fi elds. The above methods are preferred, however, because typing 
may introduce spelling errors. A spelling error is indicated by the red 
exclamation point next to the input variable fi eld.
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• To remove a mapping: Select the variable name in the input variable 
fi eld, and then press delete.
Some modules have multiple input variable tabs. The Education 
module, for example, organizes variables in three tabs.

In some input variable fi elds, you can specify multiple dataset variables. 
For example, in the ADePT Poverty module, you can specify two poverty 
lines (variables or numeric constants) instead of one, and the program will 
replicate all tables for each of the specifi ed poverty lines.

In this example, the pline_u and pline_l dataset variables have been 
mapped to the Poverty line(s) input variable.

The italic variable name indicates that this input variable fi eld accepts 
multiple dataset variables. When you select or drag a new input variable 
to one of these fi elds, it is appended to the previous value rather than 
replacing it.

Tip: Open the example project (Project  Open Example Project) to 
see the result of mapping dataset variables to input variables.

Select Tables and Graphs

After mapping variables, you are ready to select the tables and graphs you 
want ADePT to generate.

Operations described in this section take place in the right-hand side of 
the ADePT main window.
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In the upper right-hand (outputs) panel, select the tables and graphs you 
want to generate.

Note: If a name is gray, it cannot be selected. These tables and graphs cannot be gener-
ated because required variables have not been specifi ed.
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• To see a description of a table or graph: Click the name. Its description 
is displayed in the Table description and if-condition tab in the 
lower right-hand corner of the ADePT window.
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Generate the Report

You are now ready to generate your report:

1. Click the Generate button.

• To stop calculating: Click the Stop button.

2. Examine items in the Messages tab. ADePT lists potential problems 
in this tab.

ADePT can identify three kinds of problems:

  Notifi cation provides information that may be of interest to you. 
Notifi cations do not affect the content of reports generated by 
ADePT.

  Warning indicates a suspicious situation in the data. Warnings 
are issued when ADePT cannot determine whether the data pose 
an impossible situation. Examples include violation of parameters, 
presence of potential outliers in the data, inconsistent data, and 
inconsistent category defi nitions. ADePT reports are not affected 
by warnings.



258

A Unifi ed Approach to Measuring Poverty and Inequality

  Error prevents the use of a variable in the analysis. For example, a 
variable may not exist in a dataset (in this case, ADePT continues 
its calculations as if the variable was not specifi ed). If ADePT can 
match the problem to a particular variable fi eld, then that fi eld is 
highlighted in the input Variables tab.

3. As needed, correct problems, then generate the report again.

Note: Notifi cations, warnings, and errors can negatively affect the 
results ADePT produces. Carefully review messages and correct criti-
cal problems before drawing conclusions from tables and graphs.

Examine the Output

When the analysis is complete, ADePT automatically opens the results as a 
spreadsheet in Excel® or Excel Viewer. The results are organized in multiple 
worksheets:

• The Contents worksheet lists all the other worksheets, including 
titles for tables and graphs.

• The Notifi cations worksheet lists errors, warnings, and notifi cations 
that ADePT identifi ed during its analysis. This worksheet may be 
more useful than the Messages tab in the ADePT main window 
because the problems are organized by dataset.

• Table worksheets display tables generated by ADePT.
Tip: ADePT formats table data with a reasonable number of 
decimal places. Click in a cell to see the data with full resolution 
in the formula bar.

• Figure worksheets display graphs generated by ADePT.

Working with Variables

Viewing Basic Information about a Dataset’s Variables

1. In the Datasets tab, click the dataset you want to examine.
2. Click the Variables tab.
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• To search for a variable: In the Search fi eld, type a few characters of 
the variable name or variable label.

• To view statistics for a variable: Double-click the variable name or 
variable label. This opens the MultiDataset Statistics window for 
that variable.

Viewing a Dataset’s Data and Variable Details

1. In the Datasets tab, click the dataset you want to examine.
2. Click the Browse... button. This opens the ADePT Data Browser.
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The Data Browser lists observations in rows and organizes variables in 
columns.

• To see underlying data: Click the Hide Value Labels button  .
• To see value labels: Click the Show Value Labels button  .
• To view a variable’s statistics: 

a. Click in the variable’s column.
b. Click the Show Statistics... button  .

• To view detailed information about the dataset’s variables: Click the 
Variable View tab in the bottom left-hand corner of the Data 
Browser.
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• To hide or show variable columns in the Data View tab: In the Variable View tab, click 
the checkbox next to the variable name.

Tip: The ADePT User’s Guide describes other functions available in the Data 
Browser.

Generating Variables

You can create new variables that are based on variables present in a dataset. This might be 
useful for simulating the effects of changes in parameters on various economic outcomes. For 
example, in the Poverty module you can model the effect of income transfers on some popula-
tion groups on the basis of poverty and inequality.

1. In the Datasets tab in the main window, click the dataset that you want to modify.
2. Click the Variables | [dataset label] tab.
3. Right-click in the table, then click Add or replace variable... in the pop-up menu.
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4. In the Generate/Replace Variable dialog:
a. In the Expression fi eld, defi ne the new variable using the follow-

ing syntax:
<new_variable_name> = <expression> [if <fi lter_expression>],
where 
• <new_variable_name> is a unique name not already in the 

dataset(s).
• <expression> calculates new data for the variable (for more 

information about expressions, see “Variable Expressions” sec-
tion below).

• <fi lter_expression> fi lters observations that affect the calcula-
tion (optional).

b. Optional: Activate the Apply to all datasets option.
Note: If you loaded multiple datasets but do not generate the new 
variable for all datasets, you will not be able to use the new vari-
able in calculations. However, you may want to generate a new 
variable differently for each dataset in the project.

c. Click the Generate button.
5. In the Information dialog, click the OK button.

The new variable will be listed in the Variables | [dataset name] tab 
and in the Data Browser. If the variable was generated for all loaded data-
sets, it will appear in the drop-down lists in the input Variables tab.

When you save a project, variable expressions are saved with the project, 
and the variables are regenerated when you open that project. Generating 
new variables does not change original datasets.

Replacing Variables

You can replace an existing numeric variable by following the instructions 
in “Generating numeric dataset variables.” But in the Generate/Replace 
Variable dialog (step 4a), specify an existing variable name instead of a new 
variable name.

As with generated variables, these expressions are saved with a project, 
and the variables are regenerated when you open the project. Replacing 
variables does not change original datasets.
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Variable Expressions

The following operators can be used in expressions:

Operator Description

+ – *   /
abs sign

basic mathematical operators

= == equality check operators
^ pow sqrt exponent (e.g., x^2 is x squared), power (e.g., pow(4,2) is 42 = 16), 

and square root
round truncate shortening operators
min max
ceiling fl oor

range operators

Variable expressions can include constants, and strings can be used for 
variables that are of type string.

Expression examples are as follows: 

Expression Description

x = 1 sets all variable x observations to 1
x = y + z sets variable x observations to y observation plus z observation
x = y = 1 sets variable x observations to 1 (true) if y is 1; otherwise, sets variable x 

observations to 0 (false)
x = 23 if z == . sets variable x observations to 23 if z is missing ( . ); otherwise, sets to.
x = Log(y) if z = 1 sets variable x observations to log of y observations if z is 1; otherwise, sets to.
s = “test” sets all variable x observations to the string “test”

Note: The periods ( . ) in the table above represent system-missing values. This symbol is defi ned in 
SPSS® and is used to indicate missing data in datasets.

Another example: To simulate the impact on poverty of a 10 percent 
increase in incomes of households with more than 4 members, replace the 
existing income variable using this expression:

income = income*1.1 if hhsize > 4.

Deleting Variables

You can remove variables from the working copy of a dataset that ADePT 
uses for its calculations. This operation does not change the original data-
set. Native variables, as well as generated and replaced variables, can be 
deleted.

1. In the dataset Variables tab, right-click in the row containing the 
variable you want to delete, then click Drop Variable [variable 
name] in the pop-up menu.

2. In the Confi rmation dialog, click the Yes button.



264

A Unifi ed Approach to Measuring Poverty and Inequality

Setting Parameters

Some modules have a Parameters tab next to the input Variables tab. In 
the Parameters tab, you can set ranges, weightings, and other module-
specifi c factors that ADePT will apply during its processing. A Parameters 
tab may also have input variable fi elds for mapping dataset variables, as 
shown in the drop-down list below.

The mechanics for setting parameters are straightforward: activate 
options, set values, and select items in drop-down lists. The analytical rea-
sons for setting parameters can be found elsewhere in this book or in the 
appropriate book in the Streamlined Analysis with ADePT Software series.

Working with Projects

After specifying datasets and mapping variables, you can save the con-
fi guration for future use. A saved project stores links to datasets, variable 
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names, and other information related to analysis inputs. Projects do not 
retain table and graph selections, corresponding if-conditions, and fre-
quencies and standard errors choices because they are related to analysis 
outputs.

• To save a project: 
a. Project  Save Project or Project  Save As...
b. In the Save As dialog, select a location and name for the project, 

then click the Save button.

• To open a saved project:
a. Project  Open Project...
b. In the Open dialog, locate and select the project, then click the 

Open button.

ADePT supports Web-based projects and datasets.
• To open a Web-based project:

a. Project  Open Web Project...
b. In the Open web project dialog, enter the project’s URL, then 

click the OK button.

• To add a Web-based dataset:
a. In the Datasets tab, shift-click the Add... button.
b. In the Add Web Dataset dialog, enter the dataset’s URL, then 

click the OK button.

Adding Standard Errors or Frequencies to Outputs

• To calculate standard errors: Before clicking the Generate button, 
activate the Standard errors option.

Calculating tables with standard errors takes considerably more time 
than calculating tables without them—possibly an order of magnitude 
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longer. A good approach is to obtain the result you want without stan-
dard errors, then generate fi nal results with standard errors.

• To calculate frequencies: Before clicking the Generate button, activate 
the Frequencies option.

Tables with frequencies show the unweighted number of observations 
that were used in the calculation of a particular cell in a table. No 
signifi cant additional time is needed to calculate frequencies.

Results of standard error and frequency calculations associated with a 
table are provided in separate worksheets, labeled SE and FREQ, within 
the output report.

Applying If-Conditions to Outputs

The purpose of if-conditions is to include observations from a particular 
subgroup of a population in the analysis. The inclusion condition is formu-
lated as a Boolean expression—a function of the variables existing in the 
dataset. Each particular observation is included in the analysis if it satisfi es 
the inclusion condition (the Boolean expression evaluates to value true). In 
many cases, the conditions we use are quite simple. Consider the following 
examples:

If-condition Interpretation

urban=1 Only those observations having the value of variable urban equal to one will be 
included in the analysis.

region=5 Only observations from the region with code 5 are included in the analysis.
age_yrs>=16 Only those individuals who are 16 years old or older are included in the analysis.
sland!=0 Exclude from analysis those individuals who are not landowners (given that the 

variable sland denotes the area of the land owned).
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1. In the list of tables and graphs, click the table or graph name.
2. Enter the if-condition at the bottom of the Table description and 

if-condition tab (see list of operators below).

If-condition operators include the following:

Operator Description

= equal
== equal
>= greater than or equal
<= less than or equal
!= not equal
& logical AND
| logical OR
inlist(<variable>,n1,n2,n3,...) include only observations for which <variable> 

has values n1,n2,n3,...
inrange(<variable>,n1,n2) include observations for which <variable> is 

between n1 and n2.
!missing(<variable>) exclude observations with missing values in 

<variable>.

3. Click the Set button. A table or graph having an if-condition is high-
lighted.
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Generating Custom Tables

You can add a custom table to ADePT’s output.

1. Tools  Show custom table tab.
2. In the lower left-hand panel’s Custom table tab, activate the Defi ne 

custom table option.

3. Design the table by selecting items in the drop-down lists and by 
activating the options as desired.
The Custom table tab in the lower right-hand corner of the ADePT 
main window displays a simple preview of your table design. This 
preview enables you to interactively modify the table to suit your 
needs.

4. In the upper right-hand (outputs) panel:
a. Scroll to the bottom of the list.
b. Select Custom table.
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The custom table will be included in the report generated by ADePT.





This appendix provides additional tables and fi gures that may be useful in 
understanding the concepts and results discussed in chapters 1–3. We use 
the same Integrated Household Survey dataset of Georgia for 2003 and 
2006 that we used in chapter 3. Results in this appendix are reported at the 
national level, with rural and urban breakdown, and at the subnational level 
for 2003 only. Figures for a particular region cover both 2003 and 2006. 

Income Standards and Inequality

In chapter 3, we examined income standards such as quantile incomes, par-
tial means, and the arithmetic mean. Remember that quantile incomes and 
partial means, unlike arithmetic means, are not computed using the entire 
per capita expenditure distribution. So the arithmetic mean is the only stan-
dard among these three that depends on the entire distribution. However, it 
is not sensitive to any change in spread or inequality within the distribution. 
Given that any inequality index can be constructed using a higher income 
standard and a lower income standard, income standards can be used to 
construct the different inequality indices presented in chapter 3.

Table A.1 shows additional income standards that are sensitive to 
inequality across the entire distribution. Table rows report rural and urban 
areas and subnational regions. Row 13 reports the income standard for 
Georgia as a whole. The variable is per capita expenditure, assessed in lari.

Appendix
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Columns A through E show the general means for fi ve different values 
of the inequality aversion parameter a : a  = 1 for the arithmetic mean, 
a = 2 for the Euclidean mean, a  = 0 for the geometric mean, a  = –1 for 
the harmonic mean, and a  = 0.5. From our discussions of general means 
in chapter 2, we know that a distribution’s general mean decreases as a 
increases. Column F lists the Sen mean.

Column A reports the mean per capita consumption expenditure when 
a  = 1. The other income standards, with the mean, can be used to construct 
a particular inequality measure. For example, the mean can be combined 
with the Euclidean mean to construct the generalized entropy measure for 
a = 2. The mean and the geometric mean can be used to construct the 
Atkinson inequality measure A(0) and the generalized entropy measure 
GE(0). The mean and the harmonic mean are used together to compute the 
Atkinson measure of inequality A(–1). The mean and the general mean for 
a  = 0.5 are combined to compute A(0.5). Finally, the mean and the Sen 
mean can be used to compute the Gini coeffi cient.

For example, the mean per capita expenditure in Kakheti is GEL 107.9 
[3,A], whereas the Sen mean is GEL 70.7 [3,F]. Thus, the Gini coeffi cient 
is easily computed as 100 × (107.9 – 70.7)/107.9 = 34.4, which can be veri-
fi ed from table 3.8. Similarly, the mean for Tbilisi is GEL 144.5 [4,A] and 

 Table A.1: General Means and the Sen Mean

lari 

Region

General mean Sen
meana = 1 a = 2 a = 0 a = –1 a = 0.5

A B C D E F

1 Urban 128.9 155.5 106.1 84.7 117.2 85.7
2 Rural 123.5 151.8 99.1 75.4 111.0 79.9

Subnational
3 Kakheti 107.9 131.6 87.2 65.7 97.4 70.7
4 Tbilisi 144.5 171.8 121.5 101.4 132.5 98.0
5 Shida Kartli 122.9 153.6 96.3 67.8 109.3 77.9
6 Kvemo Kartli 93.5 113.7 77.3 61.8 85.2 63.0
7 Samtskhe-Javakheti 116.5 142.3 96.2 76.8 106.0 78.2
8 Ajara 107.8 129.9 87.9 68.5 97.7 71.2
9 Guria 134.3 166.9 109.9 86.4 121.6 88.7

10 Samegrelo 117.2 142.3 95.7 75.8 106.1 77.2
11 Imereti 150.3 178.9 124.3 99.6 137.1 100.7
12 Mtskheta-Mtianeti 113.0 134.0 92.0 71.5 102.6 75.2
13 Total 126.1 153.6 102.4 79.7 113.9 82.7

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006.
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the  geometric mean is GEL 121.5 [4,C], so the Atkinson measure A(0) is 
computed as 100 × (144.5 – 121.5)/144.5 = 15.9, which can be verifi ed from 
table 3.27.

Censored Income Standards and Poverty Measures

A distribution’s censored income standard is computed by applying income 
standards to a per capita expenditure distribution that is censored at the 
poverty line. In a censored distribution, the achievements of those below 
the poverty line are retained, and the achievements of those above the pov-
erty line are replaced by the poverty line itself.

The censored income standards shown in table A.2 are closely related 
to the poverty measures reported in chapter 3. Table rows report rural 
and urban areas and subnational regions. Row 13 reports the income 
standard for Georgia as a whole. The variable is per capita expenditure, 
assessed in lari.

Column A shows the doubly censored mean of a distribution, where 
censoring takes place at the distribution’s upper and lower ends. In a doubly 

Table A.2: Censored Income Standards

lari

Region

Doubly 
censored 

mean a  = 1 a  = 0 a  = –1 Sen mean

A B C D E

Poverty line = 75.4
1 Urban 54.2 68.9 66.9 62.9 63.6
2 Rural 51.6 67.4 64.5 58.6 60.9

Subnational region
3 Kakheti 46.1 65.3 61.8 54.4 57.7
4 Tbilisi 59.7 71.3 70.2 68.4 67.7
5 Shida Kartli 48.8 66.6 63.0 54.2 59.6
6 Kvemo Kartli 41.9 63.8 60.0 53.7 55.3
7 Samtskhe-Javakheti 52.7 67.9 65.3 60.4 61.8
8 Ajara 47.4 65.8 62.4 56.4 58.3
9 Guria 56.4 69.1 67.1 62.9 63.9

10 Samegrelo 50.2 67.1 64.5 59.7 60.6
11 Imereti 59.8 70.8 69.3 66.5 66.7
12 Mtskheta-Mtianeti 49.6 65.5 62.1 56.8 57.9
13 Total 52.8 68.1 65.6 60.6 62.2

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of 
Georgia 2003 and 2006. 

General mean
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censored distribution, people whose per capita expenditure is not less than 
the poverty line are assumed to have poverty-line income, and people whose 
per capita expenditure is less than the poverty line are assumed to have zero 
per capita expenditure. The doubly censored mean is the mean of the doubly 
censored distribution. The rest of the columns report income standards for 
distributions that are censored once at the poverty line. Columns B, C, and 
D show the arithmetic mean, the geometric mean, and the harmonic mean, 
respectively. Column E reports the censored distribution’s Sen mean.

Those fi ve censored income standards are related to fi ve different poverty 
measures, as explained in chapter 3. If the poverty line is denoted by z and a 
censored income standard is denoted by a, then a poverty measure can be com-
puted by combining each of those fi ve income standards and the poverty line.

The poverty line in this exercise is z = GEL 75.4. If the censored 
income standard a is the doubly censored mean, then the headcount ratio is  
(z – a)/z. Similarly, if the censored income standard a is the censored arith-
metic mean and the censored Sen mean, then (z – a)/z would be the poverty 
gap measure and the Sen-Shorrocks-Thon (SST) index, respectively. If the 
censored income standard a is the censored geometric mean, then the corre-
sponding poverty measure is the Watts index, computed as lnz – lna. Finally, 
if the censored income standard a is the censored harmonic mean, then the 
corresponding poverty measure is the Clark-Hemming-Ulph-Chakravarty 
(CHUC) index, computed as (z – a)/z. Thus, a mere comparison of the 
censored income standards for the same poverty line can provide a good 
understanding for poverty comparisons.

Here is how different poverty measures can be obtained using each of 
these censored income standards.

• In table 3.2, Georgia’s headcount ratio in 2003 for poverty line GEL 
75.4 is 29.9. This can be obtained from table A.2 using the national 
doubly censored mean of GEL 52.8 [13,A]: 100 × (75.4 – 52.8)/
75.4 = 29.9. 

• In table 3.2, the national poverty gap measure is 9.7. This can be 
obtained from table A.2 using the poverty line and the national 
censored arithmetic mean of GEL 68.1 [13,B]: 100 × (75.4 – 68.1)/
75.4 = 9.7.

• In table 3.26, the national Watts index is 13.9. This can be obtained 
from table A.2 using the poverty line and the national censored geo-
metric mean GEL 65.6 [13,C]: 100 × (ln75.4 – ln65.6) = 13.9.
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• In table 3.26, the national CHUC index is 19.6. This can be obtained 
from table A.2 using the poverty line and the national censored har-
monic mean of GEL 60.6 [13,D]: 100 × (75.4 – 60.6)/75.4 = 19.6.

• In table 3.26, the national SST index is 17.5. This can be obtained 
from table A.2 using the poverty line and the national censored Sen 
mean of GEL 62.2 [13,E]: 100 × (75.4 – 62.2)/75.4 = 17.5.

Elasticity of Watts Index, SST Index, and CHUC Index to 

Per Capita Consumption Expenditure

Table A.3 presents a tool for checking the sensitivity of three poverty mea-
sures to consumption expenditure: the Watts index, the SST index, and the 
CHUC index. In the table, we ask what the percentage change in poverty 
would be if everyone’s consumption expenditure increased by 1 percent. 
Results are compared across 2003 and 2006.

The percentage change in poverty caused by a 1 percent change in the 
mean or average per capita consumption expenditure is called the elasticity 
of poverty with respect to per capita consumption. The particular way in which 
we consider an increase in the average per capita consumption expenditure 
is by increasing everyone’s consumption expenditure by the same percent-
age. This type of change is distribution neutral, because the relative inequal-
ity does not change.

  Table A.3: Elasticity of Watts Index, SST Index, and CHUC Index to Per Capita Consumption 

Expenditure

Watts index SST index CHUC index

2003 2006 Change 2003 2006 Change 2003 2006 Change

A B C D E F G H I

Poverty line = GEL 75.4

1 Urban −2.00 −2.11 −0.11 −1.81 −1.88 −0.07 −1.78 −1.91 −0.12

2 Rural −1.76 −1.69 0.07 −1.57 −1.50 0.07 −1.48 −1.44 0.04

3 Total −1.86 −1.87 −0.01 −1.68 −1.67 0.00 −1.60 −1.63 −0.02

Poverty line = GEL 45.2

4 Urban −2.31 −2.49 −0.18 −2.31 −2.42 −0.12 −2.17 −2.41 −0.24

5 Rural −1.89 −1.83 0.06 −1.81 −1.73 0.08 −1.78 −1.78 0.00

6 Total −2.04 −2.06 −0.01 −2.00 −1.98 0.01 −1.93 −1.99 −0.06

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006. 
Note: Change is shown between years 2003 and 2006. CHUC = Clark-Hemming-Ulph-Chakravarty; SST = Sen-Shorrocks-Thon.
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Consumption expenditure is measured in lari per month, and the pov-
erty lines are set at GEL 75.4 and GEL 45.2 per month. For the former 
poverty line, if a Georgian household is not capable of providing a monthly 
consumption expenditure level of GEL 75.4 to each of its members, then 
the household (and each member) is identifi ed as poor. Columns A through 
I denote three different sets of poverty measures—Watts index, SST index, 
and CHUC index—each measure containing three columns. The fi rst two 
columns within each set report the elasticities for 2003 and 2006, respec-
tively, and the third column reports the difference between the two years.

Consider the results when the poverty line is GEL 75.4 per month. 
Note that the elasticities are negative, meaning poverty falls because of an 
increase in consumption expenditure, but the higher magnitudes imply high-
er elasticity even though signs are negative. The Watts index elasticity with 
respect to the mean consumption expenditure for the urban area in 2003 is 
–2.00 [1,A]. In other words, if the consumption expenditure increases by 1 
percent for everyone, then the mean per capita consumption expenditure 
increases by 1 percent and the urban headcount ratio falls by 2 percent.

If the mean consumption expenditure is increased by 1 percent in 2006, 
then the Watts index falls to 2.11 percent [1,B]. A higher value implies 
higher sensitivity. The urban elasticity of the Watts index is less sensitive 
to consumption expenditure in 2003 than in 2006 by 0.11 percentage point 
[1,C]. Similarly, the SST index elasticity relative to per capita consumption 
expenditure for the urban area in 2003 is –1.81 [1,D], which increases by 
0.07 point to –1.88 in 2006 [1,E]. The CHUC index elasticity in 2003 is 
–1.78 [1,G], which decreases by –0.12 point to –1.91 in 2006 [1,H].

Lessons for Policy Makers

Because poverty lines are set normatively, they are diffi cult to justify exclu-
sively. A slight change in per capita consumption expenditure may or may 
not change the poverty measures by signifi cant amounts. If the distribution is 
highly polarized or, in other words, there are two groups in the society—one 
group of rich people and the other group of extremely poor people—then a 
slight change in everyone’s income by the same proportion may not have any 
impact on headcount ratio. In contrast, if there is a concentration of mar-
ginal poor around the poverty line, then a slight change in everyone’s income 
by the same proportion would have a huge impact on poverty rates. Hence, 
this type of analysis may tell us how policy changes impact the poverty rate.
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Sensitivity of Watts Index, SST Index, and CHUC Index to 

Poverty Line

The exercise in table A.4 is analogous to the exercise for checking the elas-
ticity of poverty measures to per capita consumption expenditure, but it is 
more rigorous. It is always possible to fi nd a certain percentage of decrease 
in the poverty line that matches the increase in the consumption expendi-
ture for everyone by 1 percent. In this exercise, we check the sensitivity of 
poverty measures by changing the poverty line in more than one direction.

The table shows how the actual headcount ratio changes as the poverty 
line changes from its initial level, whether GEL 75.4 per month or GEL 
45.2 per month. Rows denote the change in poverty line in both upward 
and downward directions. Columns report the change in three poverty mea-
sures: Watts index, SST index, and CHUC index. The variable is per capita 
consumption expenditure measured in lari. This table shows results for 2003 
only, but this analysis can be conducted for any year.

Columns A and B report the national Watts index for different pov-
erty lines, and column C shows the change in the index from the actual 
 poverty line. The rows corresponding to +5 percent denote the results for a 

 Table A.4: Sensitivity of Watts Index, SST Index, and CHUC Index to the Choice of Poverty Line, 

2003

Watts index
Change from 

actual (%)
SST index

Change from 
actual (%)

CHUC index
Change from 

actual (%)

A B C D E F

Poverty line = GEL 75.4
1 Actual 13.9 0.0 17.5 0.0 19.6 0.0
2 +5% 15.4 11.0 19.2 9.6 21.3 9.0
3 +10% 17.0 22.4 20.9 19.2 23.1 18.0
4 +20% 20.3 46.1 24.3 38.5 26.6 35.8
5 −5% 12.4 −10.5 15.9 −9.3 17.8 −8.9
6 −10% 11.1 −20.4 14.3 −18.4 16.1 −17.6
7 −20% 8.5 −38.8 11.2 −35.9 12.8 −34.6

Poverty line = GEL 45.2
8 Actual 4.3 0.0 5.9 0.0 6.9 0.0
9 +5% 4.8 12.2 6.6 11.8 7.7 11.3

10 +10% 5.4 25.3 7.3 24.2 8.5 23.2
11 +20% 6.6 54.0 8.9 51.3 10.2 48.6
12 −5% 3.8 −11.6 5.2 −11.3 6.1 −10.8
13 −10% 3.3 −22.3 4.6 −21.9 5.4 −21.1
14 −20% 2.5 −41.5 3.5 −40.8 4.2 −39.7

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003. 
Note: CHUC = Clark-Hemming-Ulph-Chakravarty; SST = Sen-Shorrocks-Thon.
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5  percent increase in the poverty line. Thus, when the poverty line is GEL 
75.4, a 5 percent increase moves the poverty line to GEL 79.2. The Watts 
index increases by 1.5 points from 13.9 [1,A] to 15.4 [2,A], or by 11 percent 
from its actual level of 13.9.

Similarly, if the poverty line changes by –10 percent from GEL 75.4, 
then the poverty Watts index falls by 2.8 from 13.9 [1,A] to 11.1 [6,A], or 
by 20.4 percent from the actual level of 13.9. This index is more sensitive 
to change in the poverty line when the actual poverty line is lower at GEL 
45.2. In fact, the SST index and the CHUC index are also more sensitive 
to change in poverty line when the actual poverty line is GEL 45.2 rather 
than GEL 75.4.

Lessons for Policy Makers

The table helps us understand how robust a particular poverty estimate is 
with respect to the poverty line. Selection of any poverty line is debatable, 
because it is set with normative judgment. On the one hand, if a poverty 
measure changes drastically from a change in the poverty line, then a 
cautious policy conclusion should be drawn from the analysis based on a 
 particular poverty line. On the other hand, if a poverty measure does not 
vary much because of a change in the poverty line, then a more robust con-
clusion can be drawn.

Decomposition of the Gini Coeffi cient

Table A.5 analyzes the composition of inequality across different population 
subgroups using the Gini coeffi cient. Unlike the decomposable inequality 
measures containing a within-group term and a between-group term, the 
Gini coeffi cient decomposition usually has three terms: a within-group 
inequality term, a between-group inequality term, and an overlap term. 
The within-group inequality term is a weighted average of all subgroup 
inequalities. Note that the overlap term vanishes if the income rankings of 
the subgroups do not overlap. However, the residual term is nonzero when 
there are overlapping incomes.

Recall that the Gini coeffi cient lies between 0 and 1 (chapter 2 contains 
a detailed description of the Gini coeffi cient). When every household in a 
region has the same per capita expenditure, then the Gini coeffi cient is 0.  
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Row 1 reports the overall Gini coeffi cients. Subsequent rows report Gini 
coeffi cient decompositions for two different population subgroups: rural 
and urban regions and geographic regions. The fi rst row of each set reports 
the within-group inequality and the second and the third rows report the 
between-group inequality and the overlap term, respectively. The overall 
Gini coeffi cient in 2003 is 34.4 [1,A], which increases to 35.4 in 2006 [1,B]. 
Thus, in terms of the Gini coeffi cient, inequality increased in 2006.

The fi rst set decomposes the population into rural and urban areas. The 
total within-group Gini coeffi cient is 17.2 in 2003 and increases to 17.7 in 
2006 [row 2]. However, the between-group inequality decreased from 1.1 
in 2003 to 0.5 in 2006 [row 3]. The overlap term registers an increase from 
16.2 to 17.2 [row 4].

The decomposition of population by geographic regions has a similar 
story. The total within-group inequality increases from 4.9 in 2003 to 5.2 in 
2006 [row 5], but the between-group inequality decreases from 8.7 in 2003 to 
7.0 in 2006 [row 6], and the overlap term increases from 20.8 in 2003 to 23.2 
in 2006 [row 7]. Note that the overlap term is larger for the decomposition 
across geographic regions [row 7] than across rural and urban areas [row 4]. 
A possible reason could be the number of groups: as the number of groups 
increases, the possibility of overlap increases.

Lessons for Policy Makers

This type of analysis is important for policy purposes and may affect policy 
recommendations. Both the overall inequality and the intergroup  inequality 

 Table A.5: Breakdown of Gini Coeffi cient by Geography

 2003 2006

A B

1 Total 34.4 35.4

Urban and rural
2 Within-group inequality 17.2 17.7
3 Between-group inequality 1.1 0.5
4 Overlap term 16.2 17.2

Geographic regions
5 Within-group inequality 4.9 5.2
6 Between-group inequality 8.7 7.0
7 Overlap 20.8 23.2

Source: Based on ADePT Poverty and Inequality modules using Integrated 
Household Survey of Georgia 2003 and 2006. 
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may be detrimental to a nation’s welfare. Suppose there are two groups in 
a region and the overall income inequality is moderate. After the groups 
are decomposed into within-group and between-group terms, if the within-
group inequality is low and the between-group inequality is very high, then 
the society is polarized. This might increase the possibility of social confl ict, 
as discussed in chapter 4. Thus, merely looking into the overall inequality 
fi gures may not reveal this potential problem to the policy maker. The type 
of analysis conducted in this table may turn out to be crucial.

Decomposition of Generalized Entropy Measures

The Gini coeffi cient is not decomposable in the usual way because it has 
an overlap term. Thus, it is important to look at the usual decomposition 
(within-group and between-group inequalities) using additively decompos-
able measures. With this objective, table A.6 analyzes the decomposition 
of inequality across urban and rural areas and across geographic regions. 
The analysis is based on three different types of generalized entropy (GE) 
 measures: the fi rst Theil measure denoted by GE(1), the second Theil 

 Table A.6: Decomposition of Generalized Entropy Measures by Geography

 2003 2006 Change

GE(0) GE(1) GE(2) GE(0) GE(1) GE(2) GE(0) GE(1) GE(2)

A B C D E F G H I

1 Total 20.8 20.0 24.2 21.8 21.5 27.8 1.1 1.6 3.6

Urban and rural

2 Between-group 
inequality

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Between as a share 
of total (%)

0.1 0.1 0.1 0.0 0.0 0.0 −0.1 −0.1 −0.1

4 Within-group 
inequality

20.8 19.9 24.2 21.8 21.5 27.8 1.1 1.6 3.7

Geographic regions

5 Between-group 
inequality

1.3 1.2 1.2 0.8 0.8 0.8 −0.4 −0.4 −0.4

6 Between as a share 
of total (%)

6.1 6.2 5.0 3.8 3.7 2.8 −2.3 −2.5 −2.2

7 Within-group 
inequality

19.5 18.7 23.0 21.0 20.7 27.1 1.5 2.0 4.1

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006. 
Note: GE = generalized entropy.
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measure denoted by GE(0), and the generalized entropy measure for α = 2 
denoted by GE(2).

Each measure can be decomposed into a within-group inequality term 
and a between-group inequality term, where the within-group inequal-
ity term is a weighted average of all subgroup inequalities. However, the 
weights (except for the two Theil measures) do not necessarily add up to 1.  
Chapter 2 provides a more detailed discussion of generalized entropy 
measures.

Row 1 reports the three inequality indices for 2003 and 2006 and the 
changes across these two years. In 2003, we see that GE(0) is 20.8 [4,A], 
which increases by 1.1 (rounded) to 21.8 in 2006 [4,D]. Like GE(0), GE(1) 
and GE(2) also increase between 2003 and 2006.

Now consider rows 2 through 4, which report inequalities across and 
between two years for urban and rural areas. The between-group inequality 
areas [row 2] appear to be negligible compared to the overall inequality [row 1]  
for all three measures for both years. Given that the share of between-group 
inequality is negligible, the within-group inequality [row 4] is almost equal to 
the overall inequality.

For the next set of results, the entire population is divided into 10 geo-
graphic regions. Unlike the previous results, the between-group inequality 
[row 5] is not negligible, but it is still much lower than the within-group 
inequality [row 7]. For example, the between-group inequality in 2003 for 
GE(0) is 1.3 [5,A], which is 6.1 percent of the overall inequality [6,A]. The 
between-group inequality for GE(0) fell in 2006 to 0.8 [5,D], which is 3.8 
percent of overall inequality [6,D]. GE(1) and GE(2) show a similar pattern. 
However, the total within-group inequality increased between 2003 and 
2006. The total within-group inequality for GE(0) increased from 19.5 in 
2003 [7,A] to 21.0 in 2006 [7,D].

Lessons for Policy Makers

Policy recommendations might be driven by this analysis, because a nation’s 
welfare could be negatively affected by overall and intergroup inequalities. 
Consider a case in which income inequality is moderate between two groups 
in a region. Decomposition reveals low within-group inequality and very 
high between-group inequality, indicating a polarized society and the poten-
tial for social confl ict. Policy makers may overlook this critical situation if 
they focus only on overall inequality data.
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Dynamic Decomposition of Inequality Using the Second 

Theil Measure

Among all relative inequality measures, the generalized entropy measures 
are additively decomposable so that overall inequality is the sum of overall 
within-group inequality and between-group inequality. Overall within-group 
inequality is the weighted average of within-group inequalities of population 
subgroups. Weights attached to within-subgroup inequalities do not necessarily 
sum to 1. It turns out there are only two generalized entropy measures for which 
the weights sum to 1: the fi rst Theil measure and the second Theil measure.

For the fi rst Theil measure, weight attached to each subgroup is the share 
of overall income held by that subgroup. For the second Theil measure, 
weight attached to each subgroup is that subgroup’s population share. For 
dynamic decomposition of inequality, it is more interesting to understand 
the change in within-group and between-group inequality and also the 
change in subgroup population share.

Following Mookherjee and Shorrocks (1982), we use the second Theil 
measure and decompose the change in overall inequality into four compo-
nents: (a) change in within-group inequality, (b) change in between-group 
inequality, (c) shift in subgroup population shares, and (d) relative varia-
tion in subgroup mean incomes. Let us examine the process mathematically 
before interpreting the empirical results. Recall from chapter 2 that the 
second Theil measure is
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where x– is the mean of the income vector x and N is the total population 
size.

Suppose the overall population is divided into K > 1 population 
 subgroups. These population subgroups may be different geographic regions, 
ethnic groups, or rural and urban regions. For rural and urban decom-
position, K = 2. We denote the income vector of subgroup k by xk, the 
 population size of subgroup k by Nk, and the mean income of subgroup k by 
x– k. Let us denote the population share of subgroup k by vk = Nk/N and the 
income share of subgroup k by m k = x– k / x–. The second Theil measure can 
then be decomposed as 
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The fi rst component is the population-share weighted average of within-
group inequalities, and the second term is the between-group inequality.

Now, suppose we are interested in the dynamic decomposition of the 
second Theil measure between periods t0 and t1. The decomposition of 
changes in inequality between these two periods is
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where Δ represents the change in the variables from time t0 to t1. The four 
components can be interpreted as (a) the intertemporal change in within-
group inequality, (b) the change in the population shares of the groups in 
the within-group component, (c) the change in population shares of the 
groups in the between-group component, and (d) the change in the relative 
incomes of the subgroups.

Table A.7 provides a dynamic decomposition of   the overall Georgian 
income inequality using the second Theil measure. Results in the table cor-
respond to changes across years 2003 and 2006. The variable for our analysis 
is consumption expenditure in lari per month. Row 1 reports the change in 
overall inequality. Rows 2 through 5 decompose this change into four factors, 
as explained in the previous paragraph. Row 2 reports the change in overall 
within-group inequality. Rows 3 and 4 report the effect of changes in popula-
tion shares on the within-group inequality and the between-group inequality, 
respectively. Row 5 reports the change in relative subgroup incomes.

 Table A.7: Dynamic Decomposition of Inequality Using 

the Second Theil Measure

GE(0) 

A

1 Change in aggregate inequality −0.011

2 Within-group inequality −0.015

3 Population shares of within-group inequality 0.000

4 Population shares of between-group inequality 0.000

5 Mean group incomes 0.004

Source: Based on ADePT Poverty and Inequality modules using Integrated 
Household Survey of Georgia 2003 and 2006. 
Note: GE = generalized entropy.
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The decrease in the overall inequality between 2003 and 2006 is −0.011 
[1,A]. Row 2 indicates that this decline is mostly attributed to the decrease 
in the within-group inequality because it is evident from row 5 that the 
relative income share does not change in the same direction. The effect of 
change in population share on the within-group inequality [row 3] and the 
between-group inequality [row 4] is negligible.

Decomposition of Generalized Entropy Measure by 

Income Source

In table A.8, we fi rst break down the single variable into several compo-
nents, then we decompose the overall inequality across that variable into 
the inequality of its components. For example, the total disposable income 
of a household has several components such as male earnings, female earn-
ings, benefi ts, and income taxes. Analyzing inequality across disposable 
income may not reveal inequality across these various components. This 
type of inequality decomposition into factor components was studied in 
detail by Shorrocks (1982), but only for a single period. Jenkins (1995) 
conducted a dynamic intertemporal decomposition analysis across the popu-
lation. Following Jenkins, we use the generalized entropy measure of order 

 Table A.8: Decomposition of Generalized Entropy Measure by Income Source

Mean
(GEL)

Relative 
mean
(%)

Correlation 
with total

GE(2)
Absolute factor 

contribution

Proportionate 
 factor contribution

(%)

A B C D E F

2003

1 Food consumption 76.9 61.0 80.8 27.2 12.7 52.3
2 Expenditures on nonfood goods 15.2 12.0 62.5 57.2 3.0 12.4
3 Utilities 8.4 6.7 35.5 140.0 1.4 5.9
4 Expenditures on services 17.4 13.8 55.4 140.5 4.8 19.6
5 Other expenditures 8.2 6.5 48.5 179.6 2.4 9.8
6 Per capita consumption expenditure 126.1 100.0 24.2 24.2 100.0

2006

7 Food consumption 72.8 57.8 72.3 26.2 11.3 40.5
8 Expenditures on nonfood goods 13.2 10.5 56.3 74.8 2.9 10.5
9 Utilities 10.4 8.3 40.2 161.3 2.3 8.2

10 Expenditures on services 20.2 16.1 62.9 221.9 8.4 30.2
11 Other expenditures 9.3 7.4 50.0 186.7 2.9 10.6
12 Per capita consumption expenditure 126.0 100.0 27.8 27.8 100.0

Source: Based on ADePT Poverty and Inequality modules using Integrated Household Survey of Georgia 2003 and 2006.
Note: GE = generalized entropy.
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two for our analysis in this table, mainly because some components may be 
zero and the measure is additively decomposable, as discussed in chapter 2.

Before discussing the results, let us provide a brief theoretical back-
ground. Interested readers can refer to Shorrocks (1982) for a further theo-
retical discussion. The following theoretical brief was heavily drawn from 
Shorrocks (1982) and Jenkins (1995). Suppose the variable for our analysis 
is income and is denoted by vector x. Income has K components, and the 
distribution of the kth component across the population is denoted by xk. 
The mean of incomes is denoted by x–, and the mean of the kth component 
is denoted by x– k. Inequality across incomes is denoted by IGE(x; 2), and 
inequality across the kth component is denoted by  IGE(xk; 2). The overall 
inequality can be expressed as
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where rk is the correlation between x and xk, and Xk is the share of that 
component in the overall income. Thus, Sk is the absolute contribution of 
component k to the overall income. It turns out that the relative contribu-
tion of component k is
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Jenkins shows that the absolute change in IGE(x; 2) between time 
 periods t and t + 1 can be decomposed as
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Similarly, the proportionate change in inequality can be expressed as
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Table A.8 presents the results using the Georgian dataset for 2003 and 
2006. Rows denote different categories of consumption expenditure on food 
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items, nonfood items, utilities, services, and other expenditures for two 
years. Column A reports the mean consumption expenditure and the mean 
expenditure in each category. Georgia’s mean per capita expenditure in 
2003 is GEL 126.1 [6,A], which changes marginally to GEL 126.0 in 2006 
[12,A]. The mean per capita expenditure on food in 2003 is GEL 76.9 [1,A], 
which decreases to GEL 72.8 in 2006 [7,A]. Mean expenditure on nonfood 
also decreases over three years. However, mean expenditures for the other 
three categories increase.

Column B reports the mean expenditure of each category as a percent-
age of overall per capita expenditure. The food category accounts for 61.0 
percent of per capita expenditure in 2003 [1,B], which falls to 57.8 percent 
in 2006 [7,B]. Per capita expenditure on foods is highly correlated with the 
overall per capita expenditure—the correlation in 2003 is 80.8 [1,C] (the 
upper bound and the lower bound of correlation is 0), which falls to 72.3 in 
2006 [7,C], while the correlation between per capita expenditure on utili-
ties and the overall expenditure increases. Inequality of GE(2) for Georgia 
increases from 24.2 [6,D] to 27.8 [12,D]. Inequality in per capita food con-
sumption expenditure does not change much, but inequalities in utilities 
and expenditures on services drastically increase.

Finally, we look at the contribution of each component to over-
all inequality. As expected, the food category contributes the most to over-
all inequality. This category’s contribution is more than half of the overall 
inequality. Its proportionate contribution, however, falls to 40.5 percent in 
2006. The proportionate contribution of expenditure on services increases 
from 19.6 percent in 2003 [4,F] to 30.2 percent in 2006 [10,F].

Lessons for Policy Makers

Table A.8 is helpful for understanding the source of inequality. This table 
can identify components responsible for changes in inequality across two 
time periods and the contributory factor to the overall inequality in a single 
period of time. 

Quantile Function

Figure A.1 graphs the quantile function of per capita expenditure for urban 
Georgia. The vertical axis reports per capita expenditure, and the horizontal 
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axis reports percentiles. A quantile function reports the level below which 
per capita expenditure falls for a given population percentage, when the 
population is ranked by per capita expenditure. The solid line represents 
the quantile function for 2003, and the dotted line corresponds to the urban 
distribution of consumption expenditure for 2006. The horizontal lines are 
poverty lines for 2003 and 2006.

If a distribution’s quantile function lies completely above that of 
another distribution, then the situation is called fi rst-order stochastic 
dominance. When a distribution fi rst-order stochastically dominates 
another distribution, then every income standard reported ranks the former 
distribution better than the latter distribution. If two quantile functions 
cross each other, then a dominance relationship may not hold and rank-
ing distributions would depend on the particular per capita expenditure 
standards used.

The curve with the solid line represents Georgia’s urban quantile func-
tion in 2003, and the quantile function with the dotted line corresponds 
to Georgia in 2006. If a quantile function lies completely above another 
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quantile function, then every lower partial mean of the former distribution 
is larger than the corresponding lower partial mean of the latter distribu-
tion. However, in the case of urban Georgia, the two quantile functions 
cross each other, which prevents an unambiguous ranking. As evident from 
the fi gure, the 90th percentile in 2006 is larger than the 90th percentile 
in 2003, whereas the 40th percentile in 2006 is smaller than that in 2003. 
Given that a quantile function is an inverse of the cumulative distribution 
function, the example implies that fi rst-order stochastic dominance does not 
hold between these two time periods.

Generalized Lorenz Curve 

Figure A.2 graphs the generalized Lorenz curve of Georgia’s urban per capita 
expenditure for 2003 and 2006. The vertical axis reports the cumulative 
mean per capita expenditure and the horizontal axis reports the percentile 
of per capita expenditure. A generalized Lorenz curve graphs the share of 
mean per capita consumption expenditure spent by each percentile of the 
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population. The curve graphs the area under the quantile function up to 
each percentile of population, or the height of the Lorenz curve times the 
mean per capita expenditure. Thus, the height of the generalized Lorenz 
curve is equal to the mean consumption expenditure when the percentile is 
one. In other words, the share of the total consumption expenditure spent 
by the entire population is 100 percent.

The curve with the solid line represents the generalized Lorenz curve 
for urban Georgia in 2003. The generalized Lorenz curve with the dotted 
line corresponds to urban Georgia in 2006. If a generalized Lorenz curve 
lies completely above another generalized Lorenz curve, then every lower 
partial mean of the former distribution is larger than the corresponding 
lower partial mean of the latter distribution, and the former distribution 
has a larger Sen mean than the latter distribution. Also, when one gener-
alized Lorenz curve lies above another, the distribution corresponding to 
the former generalized Lorenz curve is said to second-order stochastically 
dominate the distribution corresponding to the latter. In this particular 
example, the distribution of per capita expenditure in 2003 second-
order stochastically dominates the distribution of per capita expenditure 
in 2006.

General Mean Curve

Figure A.3 graphs the general mean curve of urban Georgia’s per capita 
expenditure for two years. The vertical axis reports per capita expenditure, 
and the horizontal axis reports parameter α, also known as a society’s degree 
of aversion toward inequality. A general mean curve plots the value of 
general means of a distribution corresponding to parameter α. The general 
mean of a distribution tends toward the maximum and the minimum per 
capita expenditures in the distribution when α tends to ∞ and – ∞, respec-
tively.

Given that the largest per capita expenditure in any distribution is usu-
ally several times larger than the minimum per capita expenditure, allowing 
α to be very large would prevent any meaningful graphic analysis. So we 
restrict α = 1 to be between –5 and 5, which we consider large enough. 
The height of the curve at α = 1 denotes the arithmetic mean. Similarly, 
the heights at α = 0, α = –1, and α = 2 denote the geometric mean, the 
harmonic mean, and the Euclidean mean, respectively.
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The solid line represents urban Georgia’s general mean curve for 2003. 
The general mean curve with the dotted line corresponds to urban Georgia 
for 2006. If a general mean curve of a distribution lies completely above 
the general mean curve of another distribution, then every general mean 
of the former distribution is larger than the corresponding general mean of 
the latter. Then, for example, the former distribution would have a higher 
arithmetic mean, higher geometric mean, higher harmonic mean, and 
higher Euclidean mean than the latter distribution. Note that the standard-
ized general mean curve can be obtained from the general mean curve by 
dividing the curve throughout by the arithmetic mean.

Generalized Lorenz Growth Curve

Figure A.4 graphs the generalized Lorenz growth curve for Georgia’s per 
capita expenditure. The vertical axis reports the annual growth rate of 
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the lower partial mean consumption expenditures and the horizontal axis 
reports the cumulative population share. A generalized Lorenz growth curve 
graphs the growth of lower partial mean per capita consumption expendi-
ture for each population percentile. Thus, a generalized Lorenz growth curve 
indicates how every lower partial mean is changing over time.

General Mean Growth Curve

Figure A.5 graphs the general mean growth curve for Georgia’s per capita 
expenditure. The vertical axis reports the annual growth rate of the general 
mean consumption expenditures and the horizontal axis reports parameter 
α, also known as a society’s degree of aversion toward inequality. A general 
mean growth curve graphs the growth of different general means and thus 
indicates how the general means are changing over time. The growth rate 
in mean per capita expenditure is the same as the growth rate of general 
mean at α = 1.
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partial means and partial means ratios, 

168–69
partial means and partial means ratios in 

subnational regions, 178–79
poverty defi cit curves in urban Georgia, 

209f
poverty incidence curves in urban 

Georgia, 208–9
poverty measures, 203–4, 203t
poverty severity curves in rural Georgia, 

211–12
quantile PCEs and Quantile ratios of per 

capita consumption expenditures, 
167, 178

rural and urban poor population 
distributions, 163

sensitivity of measures to poverty line, 
278

sensitivity of poverty measures to choice 
of poverty line, 203

squared gap measures, 165
squared gap measures and subnational 

contribution to overall poverty, 176
standard of living and inequality across 

population, 159
standardized general mean curves of 

Georgia, 216
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subnational decomposition of headcount 
ratio, 182–83

poor income standard, 3, 32
poor population distribution, rural and 

urban, 162–63, 162t
population invariance properties

assumption, 4–5
income standards, 54, 55
inequality measures, 14, 82–83
poverty measures, 30, 108

population subgroup consistency, 10
poverty

analysis across other population 
subgroups, 183

changes in probability of being in, 220–
22, 220t

description of, 1
evaluating within society, 45–46
growth and, 41–43, 141–44
growth and redistribution decomposition 

of changes in, 222–23, 222t
growth curves, 41–42
growth elasticity of, 42
incidence curve, 135–36, 136f
overall, 160–62, 160t, 174–76, 174t, 175t
poor income standard, 32
profi le, 36
subgroup’s contribution to, 38
ultra, 225–26
World Development Report 2000/2001: 

Attacking Poverty, 231
poverty curves

defi cit, 39–40, 136–38, 137f, 151n19, 
209–10, 209f

growth, 41–42
incidence, 39, 135–36, 136f, 207–9, 208f
severity, 39, 137, 139–40, 139f, 210–12, 

211f
value, 38

poverty lines
absolute, 27–28, 140, 227–28
defi nition of, 26–27
hybrid, 140, 226–28
identifying, 3
income elasticity of, 42
intermediate, 29
relative, 28–29, 42, 227–28
sensitivity of measures to, 277–78, 277t

sensitivity of poverty measures to choice 
of, 201–3, 202t

types of, 140–41
U.S., 27

poverty measures
advanced, 118–26
aggregate data, 2–3, 44n1
analysis of, 106
applications of, 35–36
censored income standards and, 273–75
chronic, 229–30
CHUC family of indices, 203–4, 203t
counting, 29
defi cit curve, 39–40
defi nition of, 29–30
desirable properties, 106–13
distribution-sensitive, 34–35, 129–30, 

133–34
dominance properties, 31, 109
elasticity of FGT indices to per capita 

consumption expenditures, 199–201, 
199t

elasticity to per capita consumption 
expenditures, 275–76, 275t

FGT family of indices, 30, 33–34
FGT index, 123–24
focus axiom properties, 30, 108–9
gap, 30, 38–39, 114–18, 164–65
gap and contribution to overall poverty 

in subnational regions, 174–75
gap and defi cit curve, 137, 137f
gap in subnational regions, 174t
headcount ratio, 29, 114–15
identifi cation step, 26–27, 45
identifying, 2–3
incidence curve, 39
income distribution and, 26–27
income standards and, 32–34, 113
inequality measures and, 113
invariance properties, 107
mean gap measure, 124–25
multidimensional, 230–34
normalization properties, 107
numerical, 105
ordering, 38, 40–41, 140
persistent, 229–30
policy relevance of, 128–31
poor income standard, 3
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poverty measures (continued)
population invariance properties, 30
process of, 2–3
properties of, 30–32
pros and cons of, 126–28
public policy infl uenced by, 130–31
scale invariance properties, 31
sensitivity of headcount ratio to chosen 

poverty line, 201–3, 202t
severity curve, 39
squared gap measures, 38–39, 121–23
SST index, 119–21, 203––204, 203t
subgroup consistency properties, 112
symmetry properties, 30, 107
transfer principle properties, 110–11
transfer sensitivity properties, 111
Watts index, 118–19, 203–4, 203t
weak monotonicity, 31, 109
weak transfer properties, 31, 110–11
World Bank’s main standard, 27

private goods, 47
pro-poor growth, 77, 141–44
probability density function, 50–51, 51f
progressive transfer, defi nition of, 56
projects, working with ADePT, 264–65
public goods, 47
public policy, poverty measures infl uencing, 

130–31

Q
quantile functions

defi nition of, 5–6, 53–54, 53f
FSD using cdf and, 71f
generalized Lorenz curves, 11–12, 72f
partial means and, 61–62, 62f
Pen’s Parade, 5
quantile income and, 59–60, 59f
of urban per capita expenditure, Georgia, 

286–88, 287f
quantile incomes

defi nition of, 7
income standard, 58–60, 59f
quantile ratios and, 165–67, 166t, 

176–78, 177t
quantile ratios

inequality measures, 87–89
quantile incomes and, 165–67, 166t, 

176–78, 177t

quintile population, distribution of, 169–70, 
169t, 187–88, 187t

R
Rawls’s welfare function, 151n17
regressions, consumption, 217–20, 217t
regressive transfer, defi nition of, 56
relative poverty lines, 28–29, 42, 140, 

227–28
relative slope, 24
replication variance, 5
report generation, ADePT, 257–58
residual term, geographical interpretation 

of, 150n9
results, ADePT output, 259
robustness

of income standards, 10–12
of poverty comparisons, 41–42

rural/urban decomposition, 157

S
sample, equal-weighted, 4–5
scale invariance properties

inequality measures, 14
poverty measures, 31

scales
AE, 48–49
economies of, 47–48
equivalence, 47–48
invariance property, 82–83, 108

second-order polarization, 241
second-order stochastic dominance, 11–12, 

39, 74
second Theil measure, 22
Sen means, income standards

defi nition of, 8
general means and, 272t
naming of, 149n6
as two incomes, 66–69

Sen-Shorrocks-Thon (SST) index
defi nition of, 33
elasticity to per capita consumption 

expenditures, 275–76, 275t
poverty measures, 119–21, 203–4, 203t
pros and cons of, 126–27
sensitivity to poverty line, 277–78, 

277t
Sen’s capability approach, 231
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sensitivity. See also transfer sensitivity 
properties

analysis of, 199–207
distributions, sensitive measures, 236–37
distributions, sensitive poverty measures, 

34–35, 129–30, 133–34
headcount ratio and sensitivity to chosen 

poverty line, 201–3, 202t
to poverty line, 277–78, 277t

SES (socio-economic status), 20
single welfare indicator, 238–39
skewness

density function and, 158
of income distributions, 51–52

slope, relative, 24
smoothed distributions, 20
socio-economic status (SES), 20
space, poverty assessment of, 2
space selection, evaluating poverty with, 46
spells method, 230
squared coeffi cient of variation, half, 17
squared gap measures

poverty measures, 38–39, 121–23
poverty severity curve and, 139, 139f
pros and cons of, 127

squared gap vector, 30
SST. See Sen-Shorrocks-Thon (SST) index
standard errors, ADePT, 265–66
standard of living across population, 

inequality and, 158–59, 171–72, 
171t, 183–84, 184t

standardized general mean curves of 
Georgia, 215–16, 216f

standards, multidimensional, 234–38, 236–37
stochastic dominance. See dominance 

properties
strong transfer, 150n13
studies, income standards, 9
subgroups

consistency properties, 37–38, 57–58, 81, 
85–86, 112

contribution to overall poverty, 38
decomposability properties, 37–38
inequality levels, 21–22
population consistency, 10, 22
poverty analysis across other population, 

183
poverty measures, 132–33

subnational regions
analysis at level of, 170
decomposition of headcount ratio, 

181–83, 181t
distribution of population across quintiles 

by, 180–81, 180t
headcount ratio in, 172–73, 172t
mean and media per capita income, 

growth and Gini coeffi cient in, 
171–72, 171t

partial means and partial means ratios in, 
178–79, 178t

poverty gap measure and contribution to 
overall poverty, 174–75, 174t

squared gap measures and contribution to 
overall poverty, 175–76, 175t

survey data, consumer expenditure, 46–47
symmetry properties

income standards, 54–55
inequality measures, 14, 81–82
poverty measures, 30, 107

T
table cells, ADePT, 156
tables and graphs, ADePT, 254–56, 268–69
targeting, additive decomposability and 

geographic, 132–33
targeting exercise, poverty measures 

infl uencing, 128–30
Theil’s fi rst measure, 18, 24
Theil’s second measure, 17, 22, 97, 282–84, 

283t
third-order stochastic dominance, 39
total expenditure, 47
transfer neutral, 34
transfer principle properties

income standards, 54, 56–57
inequality measures, 8–9, 14, 81, 83–85
poverty measures, 110–11
regressive and progressive, 56
strong transfer as, 150n13

transfer sensitivity properties
inequality measures, 14, 20–21, 81, 

84–85
poverty measures, 31, 111

transformation, monotonic, 21
twin income standards, 15–16
twin-standard view of inequality, 25, 103–4



304

Index

U
ultra-poverty, 225–26
unanimous relation and dominance, 69–70, 

100
union approach to identifi cation, 232–33
unit consistency property, 149n7
upper end quantile ratio, 89
upper partial means, income standards, 7, 

60–61
urban/rural decomposition, 157
U.S. poverty line, 27
utility, diminishing marginal, 9

V
variable income, 4
variable line poverty ordering, 38
variable measure poverty ordering, 41–42, 

140
variables, ADePT

dataset’s data and details of, 259–61
deleting, 263
expressions, 263
generating, 261–62
replacing, 262

variance, analysis of (ANOVA), 21
variance, replication, 5
variation, coeffi cient of, 21
vector of incomes, 4–5, 50

W
Watts index

defi nition of, 33
elasticity to per capita consumption 

expenditures, 275–76, 275t
poverty measures, 118–19, 203––204, 

203t

poverty orderings of, 40–41
pros and cons of, 127–28
sensitivity to poverty line, 277–78, 277t

weak monotonicity
income standards, 6, 54, 55–56
poverty measures, 31, 109

weak relativity axiom, 228
weak transfer properties. See also transfer 

principle properties; transfer 
sensitivity properties

defi ned, 150n14
income standards, 54
inequality measures, 14, 83
poverty measures, 31, 110–11

wealth indicator, money-metric, 47
weighted sample, equal, 4–5
weighting, method of, 121–22
welfare

aggregate indicator, 232
Atkinson’s general class of functions, 39
cardinal indicator, 228
censored function, 134
function and inequality, 18
functions as income standards, 35
general means as measures of, 8–9, 66
indicator, 45–46
inequality measures and, 100
Rawls’s function, 151n17
single indicator, 238–39

within-group inequality measures, 21
World Bank

HOI (Human Opportunity Index), 
239–40

main poverty standard, 27
World Development Report 2000/2001: 
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